Discrete Collaborative Filtering

Hanwang Zhang1, Fumin Shen2, Wei Liu3,
\textbf{Xiangnan He}1, Huanbo Luan4, Tat-Seng Chua1

Presented by Xiangnan He

1. National University of Singapore
2. University of Electronic Science and Technology of China
3. Tencent Research
4. Tsinghua University

19 July 2016
Online Recommendation
• An *Efficient* Recommender System
• Latent Model: *Binary* Representation for Users and Items
• Recommendation as *Search* with Binary Codes

Offline Training
• *End-to-end* binary optimization
• *Balanced* and *Decorrelated* Constraint
• Small *SVD + Discrete* Coordinate Descent
Collaborative Filtering

Efficient CF: Hashing Users & Items

Recommendation is **Search**

- Ranking by `<user vector, item vector>`

Search in Euclidean space is **slow**

- Requires float operations & linear scan of the data

Search in **Hamming Space** is **fast**.

- Only requires XOR operation & constant-time lookup

User-Item Database

<table>
<thead>
<tr>
<th>Query Code</th>
<th>Hash Table</th>
<th>User-Item Database</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1010</td>
<td>010010</td>
</tr>
<tr>
<td>0</td>
<td>1000</td>
<td>10011</td>
</tr>
<tr>
<td>:</td>
<td>:</td>
<td>:</td>
</tr>
<tr>
<td>1</td>
<td>1100</td>
<td>00101</td>
</tr>
</tbody>
</table>
Stage 1: Relaxed Real-Valued Problem

\{B, D\} \leftarrow \text{Continuous CF Methods}

Stage 2: Binarization

\begin{align*}
B &\leftarrow \text{sgn} \ (B), \\
D &\leftarrow \text{sgn} \ (D)
\end{align*}

Code learning and CF are isolated

Quantization Loss
1. A,B,a,b are close but they are separated into different quadrants
2. C, d should be far but they are assigned to the same quadrant
Tackling Quantization Loss

User-Item Matrix

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>.8</td>
<td>.4</td>
<td>?</td>
</tr>
<tr>
<td>B</td>
<td>.8</td>
<td>.8</td>
<td>?</td>
<td>.4</td>
</tr>
<tr>
<td>C</td>
<td>.2</td>
<td>?</td>
<td>.2</td>
<td>.4</td>
</tr>
</tbody>
</table>

Relaxed Solution

- $A \cdot a^c$
- $B \cdot b^d$
- C

Round-off

- $-1 +1$
- $+1 +1$
- $-1 -1$
- $+1 -1$

Discrete Optimization

- $AB \cdot a \ b$
- c
- d
- C
Observed rating User code Item code

However, it may lead to non-informative codes, e.g.:
1. **Unbalanced Codes** → each bit should have split the dataset evenly
2. **Correlated Codes** → each bit should be as independent as possible
Illustration of the effectiveness of the two constraints in DCF

Without any constraints: 3 points are (-1, -1) and 1 point is (+1, -1), which is not discriminative.

Balanced: Separated in the 1st & 3rd quadrant

Decorrelated: Well separated
However, the hard constraints of zero-mean and orthogonality may not be satisfied in Hamming space!
Our DCF Formulation

Objective function:

\[\sum_{i,j \in V} (S_{ij} - b_i^T d_j)^2 + 2\alpha \| B - X \|^2 + 2\beta \| D - Y \|^2 \]

- Rating Prediction
- Constraint Trade-off

Binary Constraint

\[B \in \{\pm 1\}^{r \times m}, D \in \{\pm 1\}^{r \times n} \]

Balanced Constraint

\[X1 = 0, Y1 = 0, XX^T = mI, YY^T = nI \]

Decorrelated Constraint

Delegate Code Quality Constraint

Mixed-Integer Programming NP-Hard [Hastad 2001]
Our Solution: Alternating Optimization

Alternative Procedure

- **B-Subproblem**
 \[
 \arg\min_B \sum_{i,j \in \mathcal{V}} (S_{ij} - b_i^T d_j)^2 - 2\alpha tr(B^T X) \quad s.t., \quad B \in \{\pm 1\}^{r \times m}
 \]

- **D-Subproblem**
 \[
 \arg\min_D \sum_{i,j \in \mathcal{V}} (S_{ij} - b_i^T d_j)^2 - 2\beta tr(D^T Y) \quad s.t., \quad D \in \{\pm 1\}^{r \times n}
 \]

- **X-Subproblem**
 \[
 \arg\min_X - 2\alpha tr(B^T X) \quad s.t., \quad X1 = 0, XX^T = mI
 \]

- **Y-Subproblem**
 \[
 \arg\min_X - 2\beta tr(D^T Y) \quad s.t., \quad Y1 = 0, YY^T = nI
 \]
B-Subproblem for Binary Codes

Objective Function
\[
\arg\min_{B} \sum_{i,j \in \mathcal{V}} (S_{ij} - b_i^T d_j)^2 - 2\alpha tr(B^T X) \quad s.t., \quad B \in \{\pm 1\}^{r \times m}
\]

For each user code \(b_i \), optimize bit by bit

```
for i=1 to m do
    repeat
        for k=1 to r do
            \( \hat{b}_{ik} \leftarrow \sum_{j \in \mathcal{V}_i} (S_{ij} - d_{jk}^T b_{ik}) d_{jk} + \alpha x_{ik} \);
            \( b_{ik} \leftarrow \text{sgn}(K(\hat{b}_{ik}, b_{ik})) \);
        end
    until converge;
end
```

Parallel for loop over \(m \) users
Usually converges in 5 iterations

D-Subproblem can be solved in a similar way
B-Subproblem Complexity

\[O(r^2 T_s \| \mathcal{V} \| / p) \]

#bits #bit-by-bit iterations #computing threads

#training ratings

Linear to data size!
X-Subproblem for Code Delegate

Objective Function

\[
\arg\min_x \quad -2\alpha \text{tr}(B^T X) \quad s.t., \quad X1 = 0, \quad XX^T = mI
\]

Small SVD \(r \times m\)

\[
\begin{bmatrix}
P_b \hat{P}_b \\ Q_b
\end{bmatrix} \leftarrow \text{SVD} \left(\overline{B} \right)
\]

Orthogonalization

\[
\hat{Q}_b \leftarrow \text{GramSchmidt} \left(\begin{bmatrix} Q_b & 1 \end{bmatrix} \right)
\]

\[
X \leftarrow \sqrt{m}[P_b \hat{P}_b][Q_b \hat{Q}_b]^T
\]

Y-Subproblem can be solved in a similar way
X-Subproblem Complexity

\[O(r^2 m) \]

Linear to data size!

#bits
#users
Summary

- Recommendation is **search**
- We can accelerate search by **hashing**
- Unlike previous erroneous **two-stage** hashing, **DCF** is an **end-to-end** hashing method
- Fast **$O(n)$ discrete optimization** for DCF
Evaluations

• Dataset (filtering threshold at 10):

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Rating#</th>
<th>User#</th>
<th>Item#</th>
<th>Density</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yelp</td>
<td>696,865</td>
<td>25,677</td>
<td>25,815</td>
<td>0.11%</td>
</tr>
<tr>
<td>Amazon</td>
<td>5,057,936</td>
<td>146,469</td>
<td>189,474</td>
<td>0.02%</td>
</tr>
<tr>
<td>Netflix</td>
<td>100,480,507</td>
<td>480,189</td>
<td>17,770</td>
<td>1.18%</td>
</tr>
</tbody>
</table>

• Random split: 50% training and 50% testing.
• Metric: NDCG@K
• Search Protocol: Hamming ranking or hash table lookup
Evaluation 1: Compared to state-of-the-art

- **MF:** Matrix Factorization [Koren et al 2009]

 Classific MF, Euclidean space baseline

- **BCCF:** Binary Code learning for Collaborative Filtering

 [Zhou & Zha, KDD 2012]

 MF+balance+binarization

- **PPH:** Preference Preserving Hashing [Zhang et al. SIGIR 2014]

 Cosine MF + norm&phase binarization

- **CH:** Collaborative Hashing [Liu et al. CVPR 2014]

 Full SVD MF + balance + binarization
DCF is a new state-of-the-art

1. DCF learns compact and informative codes.
2. DCF’s performance is most close to the real-valued MF.
3. End-to-end > Two stage
Evaluation 2
DCF generalizes well to unseen users

Training: full histories of 50% users
Testing: the other 50% users that have no histories in training
Evaluation: simulate online learning scenario.

Figure 4: Recommendation performance (NDCG@10) on 50% held-out “new” users (RQ 2).
MF: original MF
MFB: MF+Binarization
DCFinit: the variant of DCF that discards the two constraints.

Figure 5: Recommendation performance (NDCG@10) of CF and DCF variants (RQ 3).
Conclusions

- **Discrete Collaborative Filtering**: an end-to-end hashing method for efficient CF
- A fast **algorithm** for DCF
- DCF is a general **framework**. It can be extended to any popular CF variants, such as SVD++ and factorization machines.
Code available: https://github.com/hanwangzhang/Discrete-Collaborative-Filtering