
DCast: Sustaining Collaboration in Overlay Multicast
despite Rational Collusion

Haifeng Yu
National University of Singapore

Republic of Singapore

haifeng@comp.nus.edu.sg

Phillip B. Gibbons
Intel Labs

Pittsburgh, PA, USA

phillip.b.gibbons@intel.com

Chenwei Shi
Mozat Pte Ltd

Republic of Singapore

shichenweixjtu@gmail.com

ABSTRACT

A key challenge in large-scale collaborative distributed systems is
to properly incentivize the rational/selfish users so that they will
properly collaborate. Within such a context, this paper focuses on
designing incentive mechanisms for overlay multicast systems. A
key limitation shared by existing proposals on the problem is that
they are no longer able to provide proper incentives and thus will
collapse when rational users collude or launch sybil attacks.

This work explicitly aims to properly sustain collaboration de-
spite collusion and sybil attacks by rational users. To this end, we
propose a new decentralized DCast multicast protocol that uses a
novel mechanism with debt-links and circulating debts. We for-
mally prove that the protocol offers a novel concept of safety-net

guarantee: A user running the protocol will always obtain a rea-
sonably good utility despite the deviation of any number of rational
users that potentially collude or launch sybil attacks. Our prototyp-
ing as well as simulation demonstrates the feasibility and safety-net
guarantee of our design in practice.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

Keywords

Algorithmic mechanism design, incentive mechanism, rational col-
lusion, sybil attack, whitewashing attack, overlay multicast

1. INTRODUCTION
The past decade witnessed the emergence of many large-scale

collaborative distributed systems, where the individual rational (self-
ish) peers are supposed to collaborate. How to incentivize these ra-
tional peers to sustain such collaboration (and avoid the tragedy

of the commons) is a key and well-known problem [12, 20, 21,
22]. This paper focuses on one particular kind of collaborative
distributed system, overlay multicast, for its practical importance.
Overlay multicast has key practical applications such as video

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CCS’12, October 16–18, 2012, Raleigh, North Carolina, USA.
Copyright 2012 ACM 978-1-4503-1651-4/12/10 ...$15.00.

streaming of sporting events or TV programs. A peer in over-
lay multicast is supposed to forward/relay the multicast data to
other peers. Without proper incentives however, a rational peer
may choose to save bandwidth by not forwarding the data to oth-
ers. Such user preference of minimizing bandwidth consumption
has been widely observed in previous measurement studies [1, 24],
where 30% of the Napster users deliberately under-reported their
available bandwidth to discourage others from downloading from
them and 70% of the Gnutella users did not contribute any band-
width. One way to sidestep this incentive problem in overlay multi-
cast, of course, is to deploy servers with high outgoing bandwidth
to directly send the data to each individual peer. Unfortunately,
compared to other collaborative systems, multicast is much less
amenable to such cloud computing style of solution, due to its ex-
cessive bandwidth requirements. As a result, current large-scale
commercial multicast systems (e.g., Adobe Flash Player 10.1 and
PPLive online TV platform [22]) often rely on overlay multicast.

To prevent peers from free-riding, researchers have proposed a
number of interesting and practical proposals on incentivizing over-
lay multicast in particular [9, 14, 15, 18, 22] and various collabo-
rative systems in general [2, 26, 30]. Unfortunately, these prior
solutions all share the key limitation that they can no longer prop-
erly provide incentives if rational peers collude, launch sybil at-

tacks1 [4], or launch whitewashing attacks2. In particular, some of
these incentive mechanisms may fail even if each rational peer only
colludes with a few other peers. While in some other designs, a peer
may survive purely on “seed money/credit” obtained via repeated
whitewashing (see Section 2). Thus in the presence of collusion
or sybil/whitewashing attacks, these prior proposals will again lead
to the tragedy of the commons, where no peer can obtain any data
from other peers. It is worth noting that collusion in the virtual
world is far easier than one might expect at first thought. For exam-
ple, all peers using the same “hacked” version of a protocol (e.g.,
posted online) are already coordinated and can readily collude. The
colluding peers do not need to know each other beforehand and the
collusion can form on-the-fly.

Challenges in defending against collusion. The inability of these
previous approaches to deal with collusion is related to the follow-
ing two challenges. First, the key to incentivizing collaboration is
always the implementation of a (potentially implicit) punishment
mechanism, to punish those peers who fail to collaborate. The pres-
ence of collusion makes it challenging to punish. Evicting a peer
is no longer an effective punishment — the evicted peer may ob-
tain multicast data from its colluding peers. This problem is further

1In this paper, we focus on rational sybil attacks, in which it profits
a user to create many identities.
2Whitewashing attack refers to a user abandoning her/his identity
to evade punishment and then rejoining with a new identity.

complicated by sybil attacks and whitewashing attacks. Existing
sybil defense mechanisms (e.g., [28]) need to assume collaboration
among the peers in the first place.

Second, in some cases the colluding peers might be able to ob-
tain the multicast data from each other more efficiently. For ex-
ample, suppose the multicast protocol is based on random gossip-
ing, for better robustness against churn. If the colluding peers have
low churn, then they can switch to using more efficient tree-based
multicast amongst themselves. Such deviation is already profitable.
Furthermore, the colluding peers can either continue to gossip with
the non-deviators as usual, or they can do so less frequently. De-
tecting such deviation from the non-deviators’ perspective is chal-
lenging, because occasional participation is indistinguishable from
legitimate but slow participation.

Our results: Safety-net guarantee and the DCast protocol. This
work aims to properly sustain collaboration in overlay multicast
despite collusion and sybil/whitewashing attacks by rational users.
As hinted by the previous example, we will first show that in over-
lay multicast, it is impossible in practice to prevent profitable de-
viations by a colluding set of peers. This contrasts sharply with
previous proposals that directly aim at eliminating profitable devi-
ations (since they do not deal with collusion) [9, 14, 15, 18, 22].
On the other hand, note that it is not deviation that is harmful —
rather, it is the deviation’s negative impact on other (non-deviating)
peers that is harmful. This leads to our novel concept of a safety-net

guarantee in a game theoretic context, which formalizes the goal of
this work. Intuitively, a protocol offers a safety-net guarantee if a
peer running the protocol (called a non-deviator) is guaranteed to
at least obtain a reasonably good utility (called the safety-net util-

ity), despite deviations by any number of rational users who may
collude or launch sybil/whitewashing attacks. Note that in classic
security settings focusing on malicious attackers, one can often as-
sume that the number of malicious users is limited. In comparison
in our game theory context, since all users are rational and aim to
maximize their utilities, all users are ready to collude or deviate if
opportunities arise.

While the concept of a safety-net guarantee helps to circumvent
the above impossibility, the two fundamental challenges discussed
earlier remain. This paper then proposes a novel DCast multicast
protocol, which is the first practical overlay multicast protocol with
such a safety-net guarantee. In contrast, previous designs [9, 14,
15, 18, 22] lack a safety-net guarantee, and a non-deviator can fail
to obtain any multicast data at all from other peers in the presence
of collusion among rational peers. DCast is also robust against a
small number of malicious peers. For achieving these guarantees,
DCast requires no crypto operations except for basic message au-
thentication and encryption.

Formally, we prove that DCast offers a safety-net guarantee with
a good safety-net utility. We further implement a DCast prototype
in Java, as well as a detailed simulator for DCast. Experimental
results from running the prototype on Emulab (with 180 peers)
and from simulation (with 10,000 peers) confirm the feasibility and
safety-net guarantee of our DCast design in practice.

Key techniques. DCast achieves the safety-net guarantee via the
novel design of debt-links and doins. Debt-links instantiate the idea
of pairwise entry fees, which allow a peer to interact with some spe-
cific peers to a limited extent. A debt-link from a peer A to a peer B
is established by B sending some junk bits to A. Doins (shorthand
for debt coins) instantiate the idea of profitable interactions. Doins
are circulating debts and can be viewed as a variant of bankless vir-
tual currency. A doin can be issued by any peer and circulates only
on debt-links. A doin occupies a debt-link that it passes through,
until the doin is eventually paid.

Occupied debt-links serve as an effective punishment, even in the
presence of collusion, to a peer that fails to pay for a doin. The doin
payment amount is explicitly designed to be strictly larger than the
cost of issuing the doin. Thus with proper debt-link reuse, the ac-
cumulated profit from doin payments will offset and further exceed
the cost of accepting a debt-link establishment. This in turn in-
centivizes peers to accept debt-link establishments and issue doins.
Under proper parameters, such profit also conveniently incentivizes
the colluding peers, even if they can enjoy a lower cost of dissemi-
nating data among themselves.

Summary of contributions. In summary, this paper aims to in-
centivize overlay multicast in the presence of rational collusion, a
setting where prior solutions will collapse. We make the following
main contributions: i) we introduce the notion of a safety-net guar-
antee in a game theoretic context, ii) we present the novel DCast
multicast protocol, iii) we formally prove that DCast offers a safety-
net guarantee, and iv) we demonstrate via prototyping and simula-
tion the feasibility and safety-net guarantee of the design in prac-
tice.

2. RELATED WORK

Concepts related to our safety-net guarantee. Designing algo-
rithms for sustaining collaboration among rational users is usually
referred to as algorithmic mechanism design [5]. Almost all previ-
ous efforts in algorithmic mechanism design aim to eliminate prof-
itable individual deviations (by forming a Nash equilibrium), or
to eliminate profitable group deviations (by forming a collusion-
resistant Nash equilibrium [19]). In comparison, this work shows
that such equilibrium is not possible in our context and thus explic-
itly does not focus on equilibrium. Instead, we aim to protect the
utility of the non-deviators. Our goal is more related to the price

of collusion [8], which quantifies the negative impact of collusion
on the overall social utility in a congestion game. In comparison,
our safety-net guarantee bounds the negative impact of collusion on
the utility of individual non-deviators in a multicast game. Further-
more, we consider all pareto-optimal strategy profiles of the collud-
ing peers, while the price of collusion considers only the strategy
profile that maximizes the overall sum of the utilities of the collud-
ing peers.

Incentivizing overlay multicast. A number of interesting and
practical techniques have been developed for building incentives
into overlay multicast [9, 14, 15, 18, 22]. When rational users col-
lude, however, none of these approaches can continue to provide
proper incentives.

Specifically in the Contracts system [22], a peer issues receipts

to those peers who send it data. These receipts serve to testify those
peers’ contribution. Contracts is vulnerable to even just two collud-
ing users. For example, a user A wanting the multicast data can
trivially obtain fake receipts from a buddy B who does not actually
need the multicast data. (In return, A may give fake receipts to B
in some other multicast sessions where A does not need the data.)
Receipt validation as in Contracts does not help here since B does
not need the data. If we have another colluding peer C who fur-
ther gives B fake receipts, then A’s contribution will further have
a good effectiveness (see [22] for definition), meaning that A is
credited with contributing to other contributing peers. BAR gos-
sip [15] and FlightPath [14] rely on evicting peers as an effective
punishment. Section 1 already explained that this will not be effec-
tive with collusion. The approaches in [9, 18] punish a deviator by
not sending it data, which is equivalent to eviction. Similarly, all
these approaches are vulnerable to rational sybil attacks and white-
washing. Second, in scenarios where the colluding peers can ob-

tain the data from each other more efficiently, the protocols in [9,
15, 18, 22] can no longer guarantee non-deviators’ utility. Flight-
Path [14] achieves a stronger guarantee under the assumption that a
peer will not deviate unless the deviation will bring at least ǫ (e.g.,
10%) extra utility, which corresponds to an ǫ-Nash [16]. The value
of ǫ usually is small since otherwise the ǫ-Nash assumption itself
becomes questionable. However, the colluding peers may easily
adopt optimizations specific to their own characteristics (e.g., low
churn rate) that far exceed such 10% threshold. In contrast, the
safety-net guarantee of DCast continues to hold even if the utility
gain of the colluding peers is much higher (e.g., 100% or 200%).

In the grim trigger approach [13], if a peer does not receive
enough multicast data, it conceptually signals the multicast root to
shut down the entire multicast session. While this is indeed robust
against rational collusion, the approach is rather vulnerable to even
just a single malicious peer and to various performance instabili-
ties in the system. More recently, Tran et al. [25] aims to maintain
collusion-resilient reputation scores for peers, but their approach’s
guarantee is rather weak and colluding peers can increase their rep-
utation scores unboundedly as the number of colluding peers in-
creases. Finally, a preliminary version of this work was published
as a 2-page Brief Announcement [29].

Incentivizing other collaborative systems. There have been many
efforts on incentivizing general p2p systems. These efforts are
largely heuristics and often do not even prevent individual devia-
tion, let alone dealing with collusion. A further common limitation
of these approaches [2, 11, 21] is the need to give new users some
“seed money/credit” to bootstrap them (regardless of whether cur-
rency or credit is explicitly used). As acknowledged in [2], such
“seed money/credit” necessarily introduces vulnerabilities to sybil
and whitewashing attacks. In contrast, our DCast design manages
to avoid “seed money/credit” completely. In the next, we will dis-
cuss in more detail efforts whose techniques are more related to
ours.

Samsara [3] is a p2p backup system that aims to prevent free-
riding. When a peer B wishes to back up data on peer A but A has
nothing to back up on B, A will force B to store a storage claim

of the same size as B’s backup data. Such design does not actually
sustain collaboration when users are rational — since A’s utility
decreases here, A actually has incentive not to engage in such an
interaction.

Many previous efforts [6, 11, 17] use credit chains (including
one-hop reputation [21] as length-2 credit chains) to achieve a sim-
ilar functionality as circulating currency. In these designs, there is
no mechanism to ensure that credits will be honored. DCast avoids
such problem by allowing doins to circulate only on established
debt-links.

KARMA [26] and MARCH [30] use a standard virtual currency
system to sustain collaboration, where a peer makes (spends) money
when offering (obtaining) service. Their key feature is to assign
each peer A some random set of other peers as A’s bank to main-
tain A’s balance. Such design is clearly vulnerable to on-the-fly
collusion between A and its bank peers. As explained in Section 1,
since all peers are rational in a game theory context, all peers are
ready to collude and deviate if opportunities arise. Thus such collu-
sion can occur as long as it benefits the bank peers as well.

Finally, bandwidth puzzles [23] aim to address rational collusion
in a general p2p context. In this approach, a trusted verifier first
collects information regarding all data transfers among the peers,
and then presents bandwidth puzzles to all peers simultaneously to
verify that each peer indeed has the content that it claims to have.
Despite its name, this approach still needs to assume that the com-
putational power of each peer is roughly the same, otherwise one

peer can help its colluding peers to solve their puzzles. In contrast,
our solution does not need to rely on such a strong and often unre-
alistic assumption. Our design does not need to collect and verify
global information about data transfers either.

3. SYSTEM MODEL AND SAFETY-NET

GUARANTEE

Basic model. A user of the multicast system has one or more identi-
ties (i.e., our model allows sybil attacks), and each identity is called
a peer. During the multicast session, each peer has a (fixed) IP ad-
dress and a (fixed) locally generated public/private key pair. Peers
are identified by their public keys, and their IP addresses serve only
as a hint to find the peers. We do not bind the IP address to the
public key and we allow IP address spoofing. The multicast root

is the source of the (signed and erasure-coded) multicast blocks,
which encode application-level data such as video frames. The root
has limited outgoing bandwidth, and can only directly send some
blocks to a small set of peers. Depending on the protocol, the root
may only send a small number of blocks to each peer in this set,
and the set membership may also change over time. The root has a
publicly-known IP address and public key, and always follows our
protocol. The peers and the root have loosely synchronized clocks
with bounded clock errors.

Rational peers and utility. We assume that all peers are ratio-

nal, except a small number of malicious (i.e., byzantine) peers. A
rational peer is selfish and aims to maximize its utility. The util-
ity increases with the number of multicast blocks (i.e., multicast
bits) received, and decreases with the number of non-multicast bits
received and the number of bits sent. To unify terminology, we
call bits sent or non-multicast bits received as cost bits. Cost bits
thus constitute an overhead that a rational peer wants to minimize.3

Usually the benefit of receiving one multicast bit will far exceed the
cost of sending/receiving one cost bit, since it is more important to
get the multicast data than reducing the cost. Except the above, our
discussion and proofs will not depend on the specific forms of the
utility functions.

A rational peer is a non-deviator if it chooses to follow our pro-
tocol, otherwise it is a deviator. There is no a priori limit on the
number of deviators; after all, every rational peer seeks to maximize
its utility and hence may potentially deviate.

For each deviating peer v, we assume that there exists some “pro-
tocol gaming” constant σv such that drawing on the collusion, v is
now (only) willing to incur one cost bit for every σv multicast bits
received on expectation. Here due to the collusion, σv can be close
to 1, or even above 1 if some other colluding peers are willing to
sacrifice for v. Different deviating peers may have different σv val-
ues. Let σ be a constant such that σ ≥ σv for most v’s. Having
this σ constant will be sufficient for us to later reason about the
guaranteed safety-net utility for non-deviators, since those (small
number of) deviating peers whose σv exceeds σ can be no worse
than malicious peers.

Pareto-optimal collusion strategies. We need to properly rule out
irrational deviations when reasoning about rational peers, since oth-
erwise they are no different from byzantine peers. We will apply the
notion of pareto-optimality to do so. A collusion strategy defines
the set of all the deviators, as well as the strategy adopted by each

3For example, doing so may save the power consumption and
potential data charges of a mobile user. Even for home users
with a flat-rate Internet service, reducing bandwidth consumption
improves the experience of other concurrent users/applications at
home. As discussed in Section 1, such user preference has been
widely observed in previous measurements [1, 24].

of them. A collusion strategy α is pareto-optimal if there does not
exist another collusion strategy β such that i) the sets of deviators in
α and in β are the same, ii) each deviator has the same or increased
utility under β compared to under α, and iii) at least one deviator
has increased utility under β.

Because the colluding peers are rational, it suffices to consider
only pareto-optimal collusion strategies since it is always better for
them to switch from a non-pareto-optimal strategy to a correspond-
ing pareto-optimal one. On the other hand, also note that there are
many different pareto-optimal collusion strategies. Some of them
may maximize the total utility across all the deviators. Others may
maximize the utility of one specific deviator while sacrificing the
utilities of all other deviators. One can also imagine a wide range
of strategies in between. We do not make assumptions on which
of these strategies will be adopted by the collusion — rather, our
safety-net guarantee will hold under any pareto-optimal collusion
strategy.

Novel concept of safety-net guarantee. As explained in the exam-
ple from Section 1 regarding colluding peers with low churn, de-
tecting (and preventing) certain deviations is rather difficult if not
impossible in overlay multicast. Fundamentally, this is because the
utility function in multicast involves performance overheads. Un-
less a protocol offers optimal performance for each possible subset
of the peers (without knowing their specific properties such as low
churn rate), some subset can always profit by deviating and switch-
ing to a more optimized protocol.

With such impossibility, we do not intend to prevent deviation.
Rather, we aim to protect the utility of the non-deviators, by in-
troducing the concept of safety-net guarantee in a game theoretic
context. A safety-net guarantee requires that if a peer A chooses to
stick to the protocol and if all peers are rational, then A should at
least obtain a reasonably good utility (called the safety-net utility),
despite any set of peers deviating from the protocol. Considering
“any” set of peers is necessary here, since all users aim to maximize
their utilities and thus all users are ready to collude or deviate if op-
portunities arise. We do not need to protect the deviators — if a
deviator’s utility is below the safety-net utility, it can always switch
back to being a non-deviator.

The safety-net guarantee provides a lower bound on the utility
of the non-deviators: When most peers do not deviate, the non-
deviators’ utility will likely be higher. One might argue that any
loss of utility due to other peers deviating is unfair to the non-
deviators. However, it would also be unfair to prevent colluding
deviators from benefiting from advantageous factors such as low
churn rate among themselves. In some sense, it is the non-deviators
who prevented the system as a whole from using a more efficient
protocol in such cases.

The safety-net guarantee by itself does not guarantee the utility
for a non-deviator if malicious peers aim to bring down its utility.
The need for this limitation is simple: Malicious peers can always
send junk bits to a specific non-deviator, and drive down that non-
deviator’s utility arbitrarily. Dealing with this kind of targeted DoS
attack is clearly beyond the scope of the safety-net guarantee. Note
however that DCast offers additional properties beyond the safety-
net guarantee, and we will explain later how DCast is robust against
malicious users.

4. DCast DESIGN AND INTUITION
This section discusses the conceptual design and intuition of

DCast, while leaving the protocol level details and formal proofs
to Sections 5 and 6, respectively.

4.1 Design Space Exploration
We start by exploring the design space for effective punishment

in the presence of collusion, which will naturally lead to the key
design features in DCast.

Entry fee as effective punishment. A natural (and perhaps the
simplest) punishment mechanism in the presence of collusion and
sybil/whitewashing attacks is to impose an entry fee on each new
peer. With proper entry fee, evicting a peer will constitute an effec-
tive punishment despite collusion. The key question, however, is
how to design this entry fee and how to evict a peer when needed.

Since overlay multicast needs peers to contribute bandwidth, the
entry fee must be in the form of bandwidth consumption. For ex-
ample, if we instead use computational puzzles, then users with
ample computational resources may still prefer whitewashing over
contributing bandwidth. Using bandwidth consumption as the entry
fee turns out to be tricky. Directly paying this entry fee to the root
would overwhelm the root. Paying this entry fee to individual peers
would enable colluding peers to accept fake entry fees from each
other and vouch for each other. Furthermore, this entry fee must
be in the form of sending junk data since a new peer has no useful
data to send. This means that the individual peers have negative
incentive to accept this entry fee.

Evicting a peer is also tricky under collusion due to the difficulty
of disseminating the eviction information to all peers. The collud-
ing peers clearly have incentive to interfere and stall the dissemina-
tion of an eviction notice.

Pairwise entry fees and profitable interactions. One way to over-
come the above difficulties is to use pairwise bandwidth entry fees.
Traditional system-wide entry fees admit a peer into the global sys-
tem and entitle it to interact with all peers in any way it wants. With
pairwise bandwidth (entry) fees, a peer sends junk data to some
specific peers to be allowed to interact with only those peers and
in a limited capacity that is proportional to the fee. Such pairwise
nature prevents a colluding peer from giving other colluding peers
interaction access to non-deviators. It also conveniently enables in-
dividual peers to unilaterally evict a peer, overcoming the previous
difficulty of disseminating the eviction information globally.

The system still needs to properly incentivize individual peers
to accept this (junk data) entry fee. One way to do so is to al-
low them to later profit from the interactions with those peers who
paid the entry fee. Such profit hopefully can exceed the cost of
accepting the entry fee. Rather conveniently, a properly designed
profit here can further incentivize colluding peers to interact with
non-deviators, even when the colluding peers may be able to obtain
multicast blocks from each other more efficiently.

4.2 DCast Design
DCast essentially instantiates the above ideas of pairwise entry

fees and profitable interactions.

Basic framework. Similar to several recent efforts [9, 14, 15]
on incentivizing overlay multicast, DCast uses standard pull-based
gossiping to disseminate multicast blocks for its simplicity and its
robustness against churn. The multicast session is divided into in-

tervals, and each interval has a fixed number of synchronous gos-
siping rounds (e.g., 30 rounds of 2 seconds long each). In each
round, the root sends signed and erasure-coded multicast blocks to
a small number of random peers, and all other peers each pull mul-
ticast blocks from another random peer. Before sending a block to
a peer, the root requires the peer to send Droot (e.g., 3) junk blocks

to the root, where each junk block is of the same size as a multicast
block. To avoid delay, the sending of the junk blocks can be done
before the round starts. (Note that these junk blocks are not “entry

fees” and the number of junk blocks received by the root does not
grow with system size.) Whenever a peer accumulates a sufficient
number of erasure-coded multicast blocks for a given (typically ear-
lier) round, a peer can decode the video frames for that round. If
a peer fails to obtain enough blocks before a certain deadline (e.g.,
20 rounds after the blocks were sent by the root), it will consider
the frames as lost.

DCast allows peers to dynamically join and leave the multicast
session, by contacting the root. The root maintains a list of the
IP addresses of all peers. This list is obviously subject to sybil
attack and we will address that later. To find other peers to gossip
with, a peer may periodically request from the root a random view

containing a small number of random IP addresses in the root’s list.
Note that a rational peer has no incentive to repeatedly request a
view since it consumes its own bandwidth as well.

Incentive mechanism: Debt-links and doins. Rational colluding
peers may profitably deviate from the above protocol in many ways.
For example, a colluding peer A can pretend that it has no multicast
blocks to offer when a non-deviator pulls from A. A can also pull
from multiple non-deviators in each round. A user may further
launch a sybil attack to attract more multicast blocks directly from
the root. DCast builds proper incentives into the protocol so that
each such deviation either is not rational or will not bring down the
utilities of the non-deviators below the safety-net utility.

The incentives basically instantiate the ideas of pairwise entry
fees and profitable interactions via the novel design of debt-links

and doins. During the pull-based gossip, the propagation of a mul-
ticast block from one peer A to another peer B is always coupled
with the propagation of a doin on an unoccupied debt-link from
A to B. A debt-link from A to B is established by B sending
Dlink (e.g., 2.5) junk blocks to A. Fundamentally, this debt-link
is a pairwise bandwidth entry fee paid by B. Notice that establish-
ing the debt-link hurts the utility of both A and B. B may estab-
lish multiple debt-links from A, and there may simultaneously exist
debt-links in the reverse direction from B to A. A debt-link is un-

occupied when first established. After propagating a doin via that
debt-link, the debt-link becomes occupied until the corresponding
doin is paid.

A doin is a debt and can be issued by any peer. The current holder
of a doin conceptually “owes” the issuer of the doin. Doins may
circulate (i.e., be relayed) in the system and thus can be viewed as
a special kind of bankless virtual currency. All doins issued within
one interval expire at the beginning of the next interval, after which
new doins will be issued. A peer holding an expired doin will pay
for that doin by sending the doin issuer Dpay (e.g., 2) multicast
blocks. Our earlier idea of profitable interactions is achieved by
properly setting Dpay: Under proper Dpay, it will be profitable for
a peer to issue/relay a doin, assuming that the doin is later properly
paid.

We will present later the protocol level details on doin circula-
tion, doin payment, and freeing up debt-links, as well as a formal
theorem. For now, let us first obtain some intuition on the incen-
tives in this design.

4.3 DCast Intuition
For better understanding, we for now assume i) infinite number

of intervals in the multicast session, ii) no message losses, and iii)
no control message overhead (i.e., a bit sent is a bit in either some
multicast block or some junk block). Section 4.4 will explain how
these assumptions can be removed.

We set the parameters in DCast such that max(1, σ) < Dpay<
Dlink< Droot. Recall from Section 3 that the constant σ is such
that for most colluding peers, the benefit of receiving σ multicast

bits on expectation exceeds the cost of sending/receiving one cost
bit. We expect σ to be relative small (e.g., <2) in practice: Even
in cases where the colluding peers may be able to obtain multicast
blocks from each other with lower (but non-zero) bandwidth cost, σ
will be above 2 only if their utility gain is above 100%, as compared
to other peers.

Roughly speaking, the safety-net utility offered by DCast is such
that i) a non-deviator will receive sufficient erasure-coded multi-
cast blocks to decode all the video frames,4 and ii) a non-deviator
sends no more than Droot cost bits for each multicast bit received.
Since peers in overlay multicast usually care much more about re-
ceiving the data than the overhead of sending data, we expect such
utility to be sufficiently good as a safety-net utility for those non-
deviators. Moreover, Droot cost bits is simply a worst-cast bound:
In our experiments later, non-deviators can send as few as 1.077
cost bits for each multicast bit received. In comparison in previ-
ous designs [9, 14, 15, 18, 22] without the safety-net guarantee, a
non-deviator would fail to obtain any multicast data at all in the
presence of collusion, regardless of how many cost bits it sends.

Incentivizing doin payment. The first key incentive in DCast is us-
ing debt-link establishment cost as an effective punishment against
peers who do not pay for doins. A peer B establishes debt-links
from other peers purely for the purpose of pulling blocks from them.
Since establishing a debt-link incurs overhead on B and since B
has a choice over whether or not to establish a debt-link, a rational
B will establish a debt-link only if the debt-link’s existence is nec-
essary to maintain its utility. If B does not pay for a doin, then the
corresponding debt-link will remain occupied, and B may need to
establish another debt-link to compensate. Doing so is less desir-
able than paying for the doin since Dpay < Dlink.

Such argument holds for colluding peers as well. A colluding
peer can obtain multicast blocks from other colluding peers. But if
the colluding peer does establish an incoming debt-link from a non-
deviator, it indicates that the peer is not able to rely on other collud-
ing peers only, and has to pull blocks from some non-deviators via
debt-links.

Incentivizing doin issuance/relay. Establishing a debt-link from
A to B involves B sending junk blocks to A, and thus gives A
disincentive to accept such debt-link establishment and to later is-
sue/relay doins. DCast solves this problem by setting Dpay >
max(1, σ) and by properly re-using debt-links. Under such Dpay,
A makes some constant profit each time a doin is issued/relayed
on a debt-link and then paid. Re-using the debt-link a sufficient
number of times during the multicast session will then enable the
accumulated profit to exceed the initial setup cost of the debt-link.
This in turn incentivizes A to accept debt-link establishments and
to send multicast blocks when non-deviators pull from them. In par-
ticular, such incentive also applies to deviators — while they might
be able to disseminate data among themselves more efficiently than
with non-deviators, under Dpay > max(1, σ), issuing doins and
then getting doin payments from non-deviators incur even smaller
cost.

DCast does not provide any mechanism for peers to negotiate
Dpay, for two reasons. First, we do not believe that it is practical
for users to negotiate the payment price. Second, setting a fixed
price precludes the possibility of monopoly pricing. Namely, since
the non-deviators will only make payments by the system-set price,

4Strictly speaking, even when all peers are non-deviators, random
gossiping may still fail to achieve such a property, with some van-
ishingly small probability. It is however trivial to fully qualify our
discussion by adding a “with high probability” condition.

B

D1 D2 D3

all 3 links now freed

x, y
x,z

y,z

D1 D2 D3

all 3 links now occupied

y zx

x y z

x,y,z

x,y,z

x,y,z

x,y,z x,y,z

B

Figure 1: A non-deviator B pulls three blocks (x, y, and z),

together with three doins, from three deviators D1, D2, and

D3. B then uses these blocks to pay off the exact three doins

accompanying the three blocks under Dpay= 2. The arrows in

the figure are messages. The debt-links from D1, D2, and D3

to B are not shown in the figure.

the deviators simply will not get a payment (and will hurt their own
utilities) if they ask for a higher price.

Ability to pay debts. So far we have intuitively explained that a
peer has the incentive to pay for a doin. For the payment to actually
occur, the peer needs to have i) enough multicast blocks to offer to
the doin issuer, and ii) enough bandwidth to send those blocks. It
may not be immediately clear why peers will have enough blocks to
pay off their (potentially high-interest) debts. If we view each block
as a dollar and if Dpay= 2, then every dollar must be repaid with
two dollars and it seems that such an “economy” is impossible to
sustain. Fortunately, our situation is fundamentally different from a
real economy in that a peer B can send the same block to multiple

peers and thus use that same “dollar” to offset multiple debts. This
even makes it possible for B to purely rely on blocks pulled from
deviators to pay off the debts to those deviators, despite that pulling
those blocks will incur more debts. For example in Figure 1, B
starts without any blocks, and then pulls 3 blocks from 3 deviators
(D1, D2, and D3), respectively. Afterwards, B can use these 3
blocks to fully pay off the debts to the 3 deviators.

The example also illustrates what will happen if B does not have
enough (upload) bandwidth to pay off the debts. Conveniently, if B
does not have bandwidth to pay, then B will not have bandwidth to
establish new debt-links either. In fact, once B has available band-
width, it will prefer paying off the old debts instead of establishing
new debt-links. This avoids the undesirable situation where a peer
without enough bandwidth just keeps borrowing new debts without
paying off the old debts.

Rational sybil attacks. All our reasoning above applies to both
non-sybil peers and sybil peers, except for the discussion on the
peer list maintained by the root. Sybil attack enables one ratio-
nal user to occupy a large fraction of the peer list, with two ef-
fects. First, the sybil peers will be selected more often for receiv-
ing blocks directly from the root. But since Dlink < Droot, di-
rectly receiving the blocks from the root even exceeds the cost of
pulling them from other peers. Thus the user has no incentive to
create sybil identities to attract more blocks from the root. The sec-
ond effect is that the sybil peers will more likely be in the view of
other peers, and thus attract debt-link establishments. By our de-
sign, debt-link establishment by itself actually hurts a peer. Rather,
the peer makes a profit only when it issues/relays doins and when
the doins are paid. Thus a rational user only has the incentive to
create as many sybil peers as they have enough bandwidth to is-
sue/relay doins. As long as the sybil peers do this, they will not
have any negative impact other than increasing the system size.

Small social cost. To sustain collaboration, peers in our DCast de-
sign sometimes need to send junk blocks. Our later experiments
will show that, as a nice property of DCast, the relative social cost
incurred by these junk blocks actually tends to zero over time in a

large scale system. At a high level, this is because i) the total num-
ber of debt links established quickly stabilizes and thus debt link
establishments largely only incur junk blocks at the beginning of
the multicast session, and ii) the number of junk blocks sent to the
root is dwarfed by the total amount of multicast blocks exchanged
in the whole system.

4.4 Practical Issues
This section explains how to remove the three assumptions in the

previous section, and also discusses the effects of malicious peers.

Finite number of intervals. Assuming infinite number of intervals
enabled us to avoid the well-known end-game effect. For example,
if the peers know that there are exactly 10 intervals, then no peer
will issue doins in the 10th interval since they will not be paid back.
In turn, no peer will have incentive to pay the doins issued in the 9th
interval and free up the occupied debt-links. Backward induction
will cause such argument to cascade back to all the intervals. This
end-game effect is quite fundamental and applies to all previous
proposals [9, 13, 14, 15, 18, 22] on incentivizing overlay multicast,
as well as to all kinds of repeated games such as the iterated pris-
oner’s dilemma.

On the other hand, this effect is widely considered [16] to be an
artifact of modeling instead of a good prediction of how rational
peers will behave. There are many well-known ways [16] to avoid
this effect. For example, it suffices [9] just to assume that in each in-
terval, the peers expect (which may or may not correspond to what
actually happens) that with constant positive probability, there will
be at least one more interval. Alternatively, one can invoke the ǫ-
Nash concept and assume that the extra small utility obtained by
not issuing doins in the very last interval does not give sufficient
incentive for the peers to deviate [16]. Since these are largely or-
thogonal to DCast, to focus on DCast, our following discussion will
simply continue considering infinite number of rounds.

Message losses and other unexpected events. Properly setting
the parameters in DCast can easily take care of potential message
losses. Let p be an upper bound on the probability of messages be-
ing lost. (Note that we do not require independent message losses.)
Then the incentives in the previous section will continue to hold as
long as max(1, σ) < (1 − p)Dpay < (1 − p)2 Dlink < (1 −

p)3Droot, as explained below.
Let us first consider the incentive for doin payment. Previously

without message losses, Dpay < Dlink provided incentive for a
peer to pay a doin instead of establishing a new link. Now with
message losses, it is possible that the payment is lost and thus the
link remains occupied after payment. Furthermore, the doin issuer
and the doin holder may now have an inconsistent view regarding
whether the payment has been made. All these, however, will not
disrupt the incentive as long as Dpay < (1 − p)Dlink. Since the
payment successfully reaches the doin issuer with probability at
least (1 − p), each payment frees up at least (1 − p) debt-links on
expectation. If the peer instead chooses to establish (1 − p) new
debt-links, it needs to send at least (1− p)Dlink junk blocks. Note
that the cost may be even higher if messages get lost during debt-
link establishments. Since Dpay < (1 − p)Dlink, the peer will
prefer paying for doins (while knowing that the payment may get
lost) instead of establishing new debt-links.

Similar arguments apply to the incentives for issuing/relaying
doins (provided max(1, σ) < (1 − p)Dpay) and the disincentives
for attracting blocks from the root (provided Dlink< (1−p)Droot).
Finally, similar arguments also apply to other unexpected events
such as peer failures: As long as we set the parameters properly
based on an upper bound on the probability of such events happen-
ing, peer failures will not disrupt our incentives.

 and 1 doin
A BA BA B

1. B indicates which

B pays for the doin from A

 creation of this

2. A records the

1. B sends 2.5 junk blocks

 debt−link

 debt−link state

 from "unoccupied"

3. A updates the

 to "occupied"

4. A updates the

 debt−link state

 from "occupied"

 to "unoccupied"
B pulls a multicast block and a doin from A

B establishes a debt−link from A to B

1. B indicates which

2. A indicates which of

 those blocks A needs

 multicast blocks B needs multicast blocks B has

3. B sends 2 blocks

2. A sends 1 block

Figure 2: Illustrating the key components of the basic one-hop protocol in Section 5.1. Here we use Dlink= 2.5 and Dpay= 2, and

only consider a single debt-link.

Control message overhead. Control message overhead is rather
easy to accommodate: We again only need to set Dpay, Dlink, and
Droot properly so that the gaps among σ, Dpay, Dlink, and Droot
are still preserved after taking control overhead into account.

Effects of malicious peers. The safety-net guarantee does not pro-
tect the utility of a non-deviator if malicious peers bring down its
utility (e.g., by sending it junk bits). Besides such direct DoS at-
tacks on individual peers, overlay multicast by definition has a sin-
gle root and thus is fundamentally vulnerable to DoS attacks on the
root. Defending against these DoS attacks is beyond the scope of
this work. However, we still aim to ensure that the attacker cannot
significantly amplify its attack capacity (i.e., its attack bandwidth
budget) by exploiting our DCast design, as compared to directly
launching DoS attacks to the root or the peers. In particular, we in-
tend to avoid grim trigger designs [13] where the whole system can
“melt down” due to a single malicious peer sending a single mes-
sage. The following discusses possible malicious attacks in DCast.

Malicious peers may attract multicast blocks from the root and
then discard those blocks. For each such multicast block, the mali-
cious peers need to send Droot junk blocks. If the malicious peers
can send enough junk blocks to attract all the multicast blocks (no-
tice that the root usually sends out as many multicast blocks as its
bandwidth allows), then they can likely already directly DoS the
root with such bandwidth.

Malicious peers may also interact with and attack the peers, in
the following two ways. First, malicious peers may remain silent
when other peers pull from them. To do so however, the malicious
peers need to receive the junk blocks for debt-link establishment
first, which makes the damage constrained by their attack band-
width. Further because a peer monitors the multicast blocks it re-
ceives so far, the peer will simply establish new debt-links and pull
from other peers when under such attack. Second, malicious peers
may actively participate in doin issuance/propagation/payment. But
the worst situation that can happen here is non-payment and for
all the debt-links on the propagation chain to be permanently occu-
pied. Under our full design with subintervals (Section 5.2), the total
number of non-deviators that a doin can traverse is bounded (e.g.,
within 10). This in turn limits the damage that a malicious peer
can cause in such a case. Note that in order to participate in doin
issuance/propagation, the malicious peers will need to send/receive
multicast blocks, which again makes the damage constrained by
their attack bandwidth.

5. DCast PROTOCOL
This section elaborates the protocol level details on debt-link es-

tablishment, doin propagation, and doin payment. Algorithm 1 pro-
vides concise pseudo-code for these key procedures. For clarity,
Section 5.1 first presents a basic version of the protocol, and then

Section 5.2 describes the full DCast protocol. Also for clarity, the
discussion in Section 5.1 and 5.2 will assume that the peers have
no clock error — at the end of Section 5.2, we will explain how
bounded clock errors can be trivially accounted for. Finally, we
will describe the protocol as if there were no message losses. When
messages are lost, no special action is needed and the intended re-
ceiver simply assumes that the sender did not send that message.
As long as the protocol parameters are set properly as explained in
Section 4.4, the incentives in DCast will not be disrupted by such
message losses.

5.1 The Basic Protocol
Figure 2 illustrates the message exchanges in the key compo-

nents of the basic protocol.

Message encryption and authentication. In DCast, every mes-
sage is encrypted and authenticated via a MAC using a symmet-
ric session key. In sharp contrast to typical virtual currency de-
signs (e.g., [27]), DCast does not need any other crypto operations.
Setting up these session keys is trivial since each peer has a pub-
lic/private key pair. Specifically, a peer B may communicate with
peer A when i) paying for doins issued by A, ii) establishing or free-
ing up debt-links from A, or iii) pulling multicast blocks from A.
When paying for a doin, A’s public key’s hash is already contained
in the doin’s id (explained later). When establishing debt-links, B
will contact some random IP addresses in its view to obtain those
peers’ public keys. Since here B just needs to obtain the public
key of some random peers, it does not matter if the IP address is
spoofed — that would just be equivalent to polluting B’s view via
a sybil attack, which we already discussed earlier. Finally, when
freeing up debt-links or pulling blocks from A, B must already
have A’s public key during debt-link establishment.

Establishing debt-links. To establish a debt-link from A, B sim-
ply sends Dlink junk blocks to A. No reply from A is needed.
How many debt-links to establish from which peers is largely a per-
formance issue, and DCast uses the following heuristic. During
each of the first few rounds (e.g., 10), each peer B selects a dis-
tinct peer in its view and establishes a certain number (e.g., 20 to
80, depending on available bandwidth) of debt-links from that peer.
Afterwards, B monitors the number of multicast blocks that it has
received in recent rounds, and establishes additional debt-links if
that number is low.

Pulling blocks and propagating doins. In each round, a peer B
selects some random peer A that has debt-links to B, and pulls
multicast blocks from A. To do so, B first sends to A a summary

describing the multicast blocks that B already has. A then sends
back those blocks that A has but B does not have, up to the num-
ber of unoccupied debt-links from A to B. For each block, A also
passes to B the id of some doin. A doin’s id includes the IP address

Algorithm 1 DCast routines for pulling blocks, sending blocks
with doins, paying for doins, and freeing up debt-links. All mes-
sages are encrypted and authenticated (not shown). RLI means re-
lease local id, which serves to enable the two peers at the current
hop to differentiate (potentially) concurrent Releases for the same
debt-link when some peers deviate.

1: /* Pulling multicast blocks */

2: Send 〈“data-request”, summary〉 to a random peer that has at
least one unoccupied debt-link to me;

3: Wait for 〈“data-reply”, (block, doin id, debt-link id) tuples〉;

4: /* Sending multicast blocks and doins */

5: Upon receiving 〈“data-request”, summary〉 from B:
6: S = set of blocks that I have and are not in summary;
7: k = max(|S|, number of unoccupied debt-links to B);
8: if I hold less than k doins, then issue new doins;
9: Send back 〈“data-reply”, k tuples of (block, doin id, debt-

link id)〉;

10: /* Paying for a doin */

11: for each expired doin that I hold do

12: Send 〈“pay-request”, doin id, summary〉 to doin issuer;
13: Wait for 〈“bill”, doin id, blocks needed〉;
14: Send back 〈“payment”, doin id, Dpay blocks〉;
15: Wait for time d;
16: Send 〈“release”, debt-link id, RLI〉 to predecessor;
17: end for

18: /* Accepting a doin payment */

19: Upon receiving 〈“pay-request”, doin id, summary〉:
20: if I can find in the summary at least Dpay blocks that I need

then

21: Send back 〈“bill”, doin id, blocks needed〉;
22: Wait for 〈“payment”, doin id, Dpay blocks〉;
23: Mark the doin as paid;
24: end if

25: Upon receiving 〈“release”, debt-link id, RLI〉 and if I am the
issuer of the corresponding doin:

26: if the doin has been paid, then free up debt-link;
27: else send back 〈“denial”, debt-link id, RLI〉;

28: /* For a peer who previously relayed the doin */

29: Upon receiving 〈“release”, debt-link id, RLI〉:
30: Relay release to predecessor (with proper debt-link id and

RLI);
31: Set a timer of 2d · (doin’s r-stamp) for this release;
32: if no denial within the timeout, then free up debt-link;
33: Upon receiving 〈“denial”, debt-link id, RLI〉:
34: if the corresponding release has not timed out then

35: Invalidate the release (i.e., will not free up debt-link);
36: Relay denial to successor (with proper debt-link id and

RLI);
37: end if

and the one-way hash of the public key of the doin issuer, a distinct
sequence number assigned by the doin issuer, as well as the issuing

interval indicating the interval during which the doin was issued.
The total size of the doin id is less than 40 bytes (in comparison,
multicast blocks are often 1KB or larger). The one-way hash func-
tion is publicly-known, and the hash enables the authentication of
the doin issuer. One could directly include the public key itself, but
a hash is shorter.

The above protocol with doins has several salient features as
compared to virtual currency systems. First, our protocol is highly
efficient and is the same as plain gossiping except for piggybacking
the doin ids in A’s reply. In particular, there is no need for A to ob-
tain any signature from B to certify the acceptance of the debt. It
does not matter if B later denies the debt — if B does not pay for
the debt, A simply will not free up the corresponding debt-links. In
fact, even if A obtained a signature from B, such signature would
be of no use: There is no arbitrator in the system that can arbitrate
the interaction and punish B. Second, the double-spending prob-
lem with virtual currency is completely avoided — a rational peer
will prefer to issue a new debt instead of relaying the same debt
to two different peers. Third, there is no need to protect the doin
id from manipulation when a doin is relayed. Modifying any field
in the doin id will be equivalent to “issuing” a new doin and not
propagating the current doin.5

Paying for one-hop doins and freeing up debt-links. If a doin
only circulated for one hop before being paid, the payment process
would be simple. Namely, the current holder B of the doin will
send to the doin issuer A the doin id and a summary of the multicast
blocks that B has. If A can find Dpay multicast blocks that A
needs, A tells B those blocks. (Otherwise B needs to try again
later.) B then sends the blocks to A and completes the payment.
After receiving the blocks, A frees up the debt-link.

Same as earlier, here B does not need to obtain a signature from
A to certify the payment. A has no incentive not to free up the
debt-link after the payment. After all, even if it does not free up
the debt-link, B will not make a second payment.6 Furthermore,
not freeing up the debt-link would prevent A from making further
profits on the debt-link.

5.2 The Full Protocol

Paying for multi-hop doins and freeing up debt-links. The situa-
tion becomes more complex when a doin traverses a chain of peers.
The central difficulty here is the lack of incentive for the doin issuer
to notify other peers on the chain to free up their corresponding out-
going debt-links. For example, imagine that a doin traverses three
peers A → C → B and then B pays A for the doin. C needs
to be notified of the successful payment so that it can free up the
debt-link to B. A has no incentive to notify C, since sending no-
tification costs bandwidth. B does have the incentive to notify C,
but B needs to present C a receipt from A to convince C. Unfor-
tunately, A again has no incentive to send B such a receipt. The
standard way of solving this problem is to use fair exchange proto-
cols [10] so that A will only get the payment if it simultaneously
gives B a receipt. Unfortunately, those heavy-weight multi-round
protocols incur by far too much overhead for our purpose.

It turns out that by leveraging the rationality of the peers, a fair
exchange is not necessary. Our key observation here is that while
A has no incentive to confirm the payment, it does have the incen-
tive to rebut a false payment claim. Namely, if B does not pay and
falsely claims to C that B has paid, then A has the incentive to tell

5Of course, this also means that a deviator may “issue” doins on
other peer’s behalf. Our proof will show that a deviator has no
incentive to do so, again because a doin is a debt.
6Formally, it is possible to model this interaction as a game with
two Nash equilibria, and the completion of the payment publicly
signals to the two peers the transition from one equilibrium to the
other. Properly switching between two equilibria is a well-known
technique [16] in mechanism design. Here we omit the tedious
formalism. Also as shown earlier, unexpected message losses can
be readily dealt with as well, as long as the loss probability is not
excessive.

C that B has lied, because otherwise A will no longer get the pay-
ment. This observation leads to the following design where A does
not send out a receipt — rather, it sends out a denial if necessary.

In DCast, after making the payment, B propagates a simple Re-

lease message backward along the chain to request the debt-links
to be freed up. Each peer on the chain has clear incentive to re-
lay the Release to its predecessor, since doing so is the only way
to free up its incoming debt-link. When the Release reaches A, if
A did not actually receive the payment, A will propagate a Denial

message along the chain to prevent the debt-links from being freed
up. A has clear incentive to do so, because otherwise A will no
longer get a payment. Similarly, all the peers on the chain have the
incentive to relay the Denial to make sure that the message reaches
B (so that a rational B will make the proper payment), because
otherwise their incoming debt-links will never be freed up.

Obviously, A may still propagate a Denial even though payment
has been made. A closer examination shows that A actually has no
incentive to do so. The reason is exactly the same as in our earlier
scenario with one-hop doins: A will simply not obtain a second
payment even if it propagates a Denial after a payment has been
made. Finally in the above design, after receiving a Release, a peer
needs to wait for a potential Denial within a certain timeout, before
freeing up the debt-link. The following discusses how to properly
set the timeout value.

Properly timing out when waiting for a potential Denial. Con-
sider a chain of peers through which the doin has traversed. If
every peer on the chain naively uses the same timeout, then a de-
viator may intentionally delay the Denial and cause the Denial to
reach some peers but not others before the timeout. Conceptually
to avoid this problem, peers farther away from the doin issuer need
to have larger timeout. Hop counts would enable a peer to deter-
mine how far away it is from the doin issuer, but hop counts can
be easily manipulated by the deviators. Instead, DCast uses the re-
ceiving time of a doin as a secure hop count that is guaranteed to be
monotonic but not necessarily consecutive. Specifically, we divide
each interval into a number (e.g., 10) of equal-length subintervals.
A peer records the subinterval during which a doin is received as the
doin’s r-stamp. For a doin received in subinterval i, a non-deviator
may only relay the doin in subinterval j when j ≥ i + 1. In other
words, a doin traverses at most one non-deviator in one subinterval.

A peer B with a doin r-stamp of r simply uses a timeout dura-
tion of 2dr after it forwards a Release to its predecessor C. Here
d is a pessimistic upper bound on message propagation delay, and
messages with delay larger than d will simply be treated as lost. As
explained in Section 4.4, message losses will not disrupt the incen-
tives in DCast as long as the loss probability is not excessive. If
B and B’s predecessor C are both non-deviators, then B’s timer’s
duration will be at least 2d longer than C’s. Thus if C receives
the Denial in time, B is guaranteed to receive the Denial in time
as well, if the message is not lost. The following simple lemma,
whose proof is trivial and thus omitted, formalizes the properties of
this design when no messages are lost:

LEMMA 1. Consider any consecutive sequence of non-deviators
A1A2...Ak that a doin traverses. With our above design, if A1 re-
ceives (or generates, when A1 is the doin issuer) a Denial before
its local timer expires, then the Denial will reach every peer Ai

(1 ≤ i ≤ k) before Ai’s timer expires.

With deviators on the propagation chain, the chain will be di-
vided into multiple consecutive sequences of non-deviators. Rea-
soning about each such sequence individually (as in Lemma 1) will
be sufficient for our formal proof later.

Simultaneous exchange. The full DCast protocol further has the
following optional but useful optimization. Imagine two peers A
and B, each with a multicast block needed by the other party. These
two blocks can be propagated using two doins, which will occupy a
debt-link from A to B and a debt-link from B to A. As an optimiza-
tion, DCast permits A and B to exchange these two blocks without
eventually occupying any debt-links, if they both would like to do
so. Specifically, when B pulls from A, A will propagate the block
together with a doin as usual. If A is interested in performing si-
multaneous exchange, A sets a flag in the message and indicates
which multicast block that A wants (based on B’s summary). The
flag tells B that if B returns the requested block by the next round,
A will consider the doin as never having been propagated to B, and
will free the debt-link from A to B immediately. If B does not re-
turn that block, this interaction will just be considered as a normal
pull, and B will hold the doin.

Dealing with clock errors. Finally, our discussion in Section 5
so far has been assuming zero clock error. Non-zero clock errors
will introduce two issues. First, when a peer A propagates a doin
(issued during interval i) to another peer B, A may consider the
current time to be in interval i, while B’s current time is in interval
i + 1 or i − 1. This problem is trivial to address — A will simply
avoid propagating doins issued during interval i (and start issuing
doins for interval i+1) when it is rather close to the end of interval
i. A peer should accept doins whose issuing interval is either the
current interval or some future interval. A second and similar issue
arises for subintervals: When A relays a doin with an r-stamp of
x in the (x + 1)th subinterval (according to A’s local clock) to B,
B may believe that the current time is still in the xth subinterval.
This is easily addressed by having A avoid relaying doins with an r-
stamp of x during the first few seconds of subinterval x+1. Finally,
clock errors will not affect our timeout design for waiting for a
potential Denial, since there we rely on timer duration instead of
clock readings.

6. FORMALLY ACHIEVING SAFETY-NET

GUARANTEE
This section presents the main theorem on DCast’s safety-net

guarantee. The formalization is non-trivial, and we start from the
notion of a reference execution.

Reference execution. We want to avoid defining any specific util-
ity functions, since it is hard to predict the exact form of the peers’
utility functions. Without a concrete utility function, however, we
will not be able to assign a numerical value to the safety-net util-
ity. Rather, we will use a reference execution as the reference point,
where all peers follow a certain simple multicast protocol. Because
there are no deviating peers in this reference execution, the utility
achieved by each peer here is easy to understand, and one can read-
ily plug in various utility functions to obtain instantiated utility val-
ues. We will then show that DCast’s safety-net utility for a specific
peer is the same as that peer’s utility in the reference execution.

For our formal arguments next, we will assume a static setting
where no peers join or leave on the fly. Our reference execution is
the execution of a simple multicast protocol using pull-based gos-
siping. There are m users in the system, and user i has xi ≥ 1
identities (peers). The multicast proceeds in rounds, where in each
round the root sends erasure-coded multicast blocks to some set of
peers chosen arbitrarily. Also in each round, a peer selects a uni-
formly random peer out of the

P

m

i=1
xi peers from whom to pull

multicast blocks. All messages are reliable. Because all peers are
cooperative, there are no concepts such as debt-links or doins. The

execution has a single parameter Ψ: For each multicast bit received,
a peer sends Ψ cost bits to some special virtual sink peer.

The main theorem. Now we can present our main theorem. For
clarity, here we will simplify away the issues discussed in Sec-
tion 4.4, since Section 4.4 already explained how they can be prop-
erly taken into account. Specifically, for our main theorem, we will
assume infinite number of rounds, no message losses, no peer fail-
ures, no control message overhead, and no malicious peers. With
infinite number of rounds, we further assume that if the two peers
incidental to a debt-link are willing to use the debt-link whenever
opportunities arise, then that debt-link will be reused infinite num-
ber of times during the multicast session. This assumption is mainly
for simplicity and is not necessary for the theorem to hold (see Sec-
tion 7 for more discussion).

THEOREM 2. Assume that:

• When pulling multicast blocks from another peer, a non-

deviator establishes enough new debt-links, if needed, to pull

all the blocks that it needs from that peer.

• During doin payment, the payer always eventually finds

enough blocks that the payee does not have, so that the pay-

ment can be completed.

• At any point of time, a deviator gets at least those multicast

blocks that it would get if it did not deviate.

If we set the parameters in DCast such that:

max(1, σ) < Dpay < Dlink < Droot (1)

where σ is defined as in Section 3, then DCast provides a safety-net

guarantee where despite the rational deviation of any set of peers,

a non-deviating peer will always obtain a utility no smaller than its

utility in the reference execution with the same set of peers and with

a parameter Ψ =Droot. In other words, this utility in the reference

execution is the safety-net utility.

To better understand the assumptions in the theorem, let us ex-
amine these assumptions one by one. First, a non-deviator clearly
needs to establish enough debt-links in order to achieve a reason-
able utility. Second for doin payment, in our later experiments, we
observe that over 99.95% of the doins can be properly paid. The
last assumption is needed because if the deviators receive fewer
multicast blocks after deviating, then the non-deviators will not be
able to pull enough multicast blocks even if the deviators entirely
cooperate with the pull.

Proving Theorem 2. We leave the full proof to the Appendix,
and briefly explain here how it is obtained. As discussed in Sec-
tion 3, we need to consider only pareto-optimal collusion strate-
gies. At a high level, our proof first shows that a pareto-optimal
collusion strategy must be non-damaging. Roughly speaking, un-
der a non-damaging collusion strategy, for every doin that involves
at least one deviator, the non-deviators’ utilities resulted from that
doin’s issuance/propagation/payment are the same as or better than
when the involved deviators exactly followed the doin issuance/
propagation/payment protocol. Intuitively, a pareto-optimal collu-
sion strategy in DCast must be non-damaging because if a deviator
does some “damaging” action to the non-deviators, it will hurt its
own utility as well.

Next based on Equation 1 in the theorem, we show that issuing
doins is profitable under proper debt-link reuse, and thus the devi-
ators will be willing to issue doins and propagate multicast blocks
to the non-deviators. Furthermore because the collusion strategy

is non-damaging, the utility of the non-deviators during doin is-
suance/propagation/payment will be properly protected. This en-
ables us to reason about the total cost bits that a non-deviator needs
to send/receive for obtaining the multicast blocks. Combining all
the above will complete the proof (see Appendix).

7. IMPLEMENTATION AND EVALUATION
The main purpose of our implementation and experiments is to

supplement our formal proof in Section 6. Specifically, our experi-
ments aim to i) quantify/illustrate the end guarantees of DCast, ii)
quantify the overheads in DCast, and iii) validate some of the sim-
plifying assumptions made in Theorem 2. Note that our experi-
ments do not serve to show DCast’s improvement over previous de-
signs, since the improvement (i.e., robustness against rational col-
lusions and sybil/whitewashing attacks) is qualitative and has been
proved in Theorem 2.

To this end, we have implemented both a prototype and a simu-
lator for DCast. Our prototype serves to validate the feasibility of
DCast in practice, and also to validate the accuracy of our simulator.
The simulator on the other hand, enables us to perform experiments
of larger scale. The DCast prototype is implemented in Java 1.6.0
using regular TCP for communication. To strike a balance between
performance and ease of implementation, we use an event-driven
architecture with non-blocking I/O in bottleneck components, and
a simpler multi-threading architecture elsewhere.

Unless otherwise mentioned, all our experiments use the follow-
ing setting. The multicast session uses 10,000 peers, and is one
hour long with a streaming rate of 200Kbps. The session has 60
one-minute intervals where each interval has 30 two-second rounds.
The size of each multicast block is 1KB. We set Dlink=Dpay+0.5
and Droot=Dpay+1, with Dpay ranging from 2 to 4. We do not
expect that Dpay> 2 is needed in practical scenarios, and thus
those settings mainly serve as stress tests. In each round, the root
sends 100 erasure-coded multicast blocks to 100 randomly chosen
peers.7 Any 50 out of these 100 blocks are sufficient to decode the
video frames. The deadline of the multicast blocks is 20 rounds
after they are sent from the root.

In the next, we first elaborate our large-scale simulation results,
and then present the validation results of the simulator using our
prototype. The end-to-end metric for video streaming is usually
delivery_rate, which is the fraction of rounds that an average peer
receives the corresponding multicast blocks by the deadline and
thus can render the video frames for those rounds. In all our sim-
ulation experiments (even with colluding deviators), we observe a
delivery rate for the non-deviators of at least 99.95% and thus we
will not discuss delivery_rate further. The following presents re-
sults that help us to gain further insights into the social cost and the
safety-net guarantee of DCast.

No deviators: Social cost. We first investigate the social cost
(i.e., where junk blocks are involved) of DCast when no peer de-
viates. This social cost has two components: debt-link establish-
ment costs and the cost incurred by sending junk blocks to the root.
The first component by far dominates the second one. Figure 3
plots the average number of debt-links established by each peer, de-
noted as links_established. The figure shows that for the first few
rounds, there is a sharp jump since all peers are establishing new

7We intentionally keep the load on the root light. This not only
reserves enough bandwidth for the root to receive junk blocks, but
also stress tests our design. Under the given streaming rate, the total
load on our root (including the load incurred by the junk blocks) is
less than half of the load in similar prior experiments with gossip-
based multicast [14].

 200

 400

 600

 800

 1000

 1200

0 300 600 900 120015001800

a
v
g

 #
 o

f
lin

k
s
 e

s
ta

b
lis

h
e

d

of rounds

Dpay=2
Dpay=3
Dpay=4

Figure 3: Average number of debt-links

created by a peer.

 0

 5

 10

 15

 20

 25

0 300 600 900 1200 1500 1800

a
v
g

 #
 o

f
ti
m

e
s
 u

s
e

d

of rounds

Dpay=2
Dpay=3
Dpay=4

Figure 4: Average number of times that

a debt-link is used.

 1

 1.5

 2

 2.5

 3

 3.5

0 0.2n 0.4n 0.6n 0.8n n-1

ψ
(#

 c
o

s
t

b
it
s
/m

u
lt
ic

a
s
t

b
it
s
)

of deviators

Droot
max ψ

average ψ

Figure 5: Example of safety-net guaran-

tee.

debt-links. Then the curve grows rather slowly, and remains be-
low 1,200 in the end.8 On average each peer establishes 0.67 debt-
links in each round. Such overhead is rather small and involves
only 0.67×Dlink junk blocks, as compared to 50 multicast blocks
sent/received by an average peer in each round. Thus the relative
overhead incurred by the junk blocks is roughly 0.67×Dlink/50,
or between 3.35% and 6.03% under our experimental parameters.

No deviators: Number of times a debt-link is used. Next we
examine the number of times that a debt-link is used9 (denoted as
times_used) and payment success rate (defined below) in DCast.
These two quantities capture two key assumptions behind Theo-
rem 2. The proof for Theorem 2 assumes that a debt-link is used
infinite number of times, as long as the two peers incidental to the
debt-link are willing to use it whenever opportunities arise. How-
ever, since the total number of rounds is not actually infinite, the
usage time will not be infinite either. If times_used is overly small,
the accumulated profit of issuing/relaying doins might not be able
to offset the debt-link establishment cost. Figure 4 shows that an av-
erage debt-link is used over 20 times during the one-hour multicast
session. This value is far larger than what is needed to offset the ini-
tial debt-link establishment cost: Establishing a debt-link from A to
B involves Dpay+0.5 junk blocks, while every time the debt-link
is used, A sends one multicast block and in return either receives
Dpay multicast blocks (if A issues a doin) or eliminates Dpay
blocks of debt (if A relays a doin). Thus, times_used only needs
to satisfy the following inequality in order for Theorem 2’s proof
(see Appendix) to hold: (times_used + Dlink) × max(1, σ) <
times_used × Dpay. As a numerical example, for σ = 1 and
Dpay= 2, times_used only needs to reach 2.5 to offset the debt-
link establishment cost.

No deviators: Payment success rate. Payment success rate (de-
noted as pay_succ_rate) is the fraction of expired doins that are
paid by the time that the multicast session ends. While a rational
peer always has the incentive to pay, pay_succ_rate may still be
below 100% if it has no multicast blocks to offer to the doin is-
suer. If pay_succ_rate is so low such that pay_succ_rate×Dpay <
max(1, σ), then the peers may no longer have incentive to issue
doins. We observe a pay_succ_rate of above 99.95% in all our ex-
periments, which is clearly large enough as long as we include a
small extra gap between Dpay and max(1, σ).

Effect of deviators. So far our results on links_established,
times_used, and pay_succ_rate are only for scenarios where no

8With the simultaneous exchange optimization, the number of debt-
links needed by a peer can be smaller than the number of multicast
blocks received during an interval (which is 50 × 30 = 1500).
9We exclude debt-link utilization in simultaneous exchanges,
which only makes our results more pessimistic.

peer deviates. For times_used and pay_succ_rate, notice that larger
times_used and pay_succ_rate benefit all peers. Thus the deviators
actually have the incentive to further increase these two quantities,
if possible. So at the very least, we do not expect that the deviators
will behave in such a way to significantly decrease them, as com-
pared to what we have observed in our earlier experiments. On the
other hand with deviators, links_established and the corresponding
social cost may increase, as in our later experiments on the safety-
net guarantee. In those experiments, the debt link establishment
cost will be directly captured in (i.e., deducted from) the utility
achieved by the non-deviators.

Having 0 through n−1 deviators: Safety-net utility under an ex-

ample collusion strategy. We next aim to illustrate the safety-net
guarantee offered by DCast under an example collusion strategy,
with Dpay= 2. We do not intend to be exhaustive here — ex-
perimental methods by definition cannot cover all collusion strate-
gies. It is not meaningful to consider “representative” collusion
strategies either, because the human attacker is intelligent and may
devise novel collusion strategies that we do not expect today. Ul-
timately, the safety-net guarantee has to be proved, as we did in
Theorem 2. Our experiments here purely serve as an example.

In this example collusion strategy, a deviator never pulls data
from a non-deviator, to avoid establishing debt-links, receiving doins,
and paying for doins. The deviators collude by pulling data from
each other, without the constraints of debt-links and doins. Doing
so enables them to disseminate the multicast blocks faster and with
lower overheads. Since issuing doins is profitable, a deviator will
still issue doins to non-deviators and still accept doin payments.

Our experiments vary the number of deviators from 0 to n − 1,
where n is the total number of peers. For each non-deviator, we
record the ratio between the total number of cost bits sent/received
and the total number of multicast bits received — this ratio is essen-
tially the Ψ parameter in the safety-net utility. Note that since the
delivery_rate we observe is close to 100%, the non-deviators almost
always receive enough multicast blocks to decode the video frames
in each round. Figure 5 plots both the average and the maximum
Ψ across the non-deviators, which is always below Droot and thus
consistent with Theorem 2. Even with the extreme case of n − 1
deviators, by running DCast, the single non-deviator still enjoys a
delivery_rate of above 99.95%, while paying about 2 cost bits for
each multicast bit received. Recall that in multicast, it is usually far
more important to obtain the data (e.g., to watch the movie) than
reducing bandwidth consumption (i.e., to incur fewer cost bits).

As expected, Ψ increases with the number of deviators in Fig-
ure 5. Such increase is the combined result of paying for more
doins, issuing fewer doins, and establishing more debt-links. But
even when there is no deviator, Ψ is still around 1.5. Here debt-link
establishment and sending junk blocks to the root only contribute

metric prototype simulation

delivery_rate 99.93% 99.996%
links_established 1114 890

times_used 13.5 12.7
pay_succ_rate 99.97% 1.0

Table 1: Validating the simulator using the prototype.

about 0.056 and 0.0012 to Ψ, respectively. The remaining part is
for sending multicast blocks to other peers. This part is larger than
1.0 because with simultaneous exchange, sometime multiple peers
may send redundant blocks to the same target peer. Our simulator
is particularly pessimistic in this aspect — the multicast blocks re-
ceived by the target peer will only be visible in the next round (i.e.,
2 seconds later). This causes a relatively large number of redundant
blocks. Further simulation confirms that if the multicast blocks re-
ceived are immediately visible, then Ψ will drop from 1.5 to 1.077
as expected.

Validating the simulator using the prototype. To validate the
accuracy of our simulator, we run our DCast prototype on the Emu-
lab testbed, with 180 peers and Dpay= 2. While our protocol is an
overlay multicast protocol, it is infeasible for us to emulate a net-
work topology, which would require us to emulate all the routers
between each pair of the peers. Instead, we artificially add realis-
tic wide-area communication delays for the messages, by mapping
each peer to a random node in the King Internet latency dataset [7]
and using the latency there as the delay values.

Table 1 compares the results from a half-hour multicast session
using our prototype versus the results from our simulator under
the same setting. The value of times_used is rather similar in the
two cases. While delivery_rate and pay_succ_rate on Emulab are
slight lower than in the simulation, their absolute values remain
rather high. The difference is mainly caused by unexpected delays
on some Emulab nodes, which our simulator is unable to capture.
Finally, the Emulab experiment establishes about 25% more debt-
links than the simulation experiment. This is due to the processing
delay on some Emulab nodes, which causes peers to establish more
debt-links to ensure that they can get the multicast blocks in time.
Since debt-link establishment contributes to a rather small compo-
nent of Ψ (e.g., 0.056 out of 1.077), we believe that the safety-net
utility observed in the simulation is still quite accurate.

8. CONCLUSION
The state of the art in overlay multicast is rather weak when it

comes to security. This paper aims to address one of the key vul-
nerabilities in all prior overlay multicast protocols — the vulner-
ability against the collusion and sybil/whitewashing attacks by ra-
tional users. To this end, we first introduced the novel notion of a
safety-net guarantee in a game theoretic context, which focuses on
protecting the utility of the non-deviators. We then presented the
DCast multicast protocol that uses a novel mechanism with debts
circulating on pre-established debt-links. This mechanism enabled
us to overcome two fundamental challenges introduced by rational
collusion. We formally proved that the protocol offers a safety-net
guarantee, and further demonstrated via prototyping and simulation
the feasibility and safety-net guarantee of our design in practice.

9. ACKNOWLEDGMENTS
We thank Binbin Chen and the CCS anonymous reviewers for

helpful feedbacks. This work is partly supported by National Uni-
versity of Singapore FRC grant R-252-000-406-112, and partly sup-

ported by the Intel Science and Technology Center for Cloud Com-
puting (ISTC-CC).

10. REFERENCES
[1] E. Adar and B. Huberman. Free riding on Gnutella. First Monday,

5(10), 2000.

[2] C. Aperjis, M. Freedman, and R. Johari. Peer-assisted content
distribution with prices. In CoNext, 2008.

[3] L. P. Cox and B. D. Noble. Samsara: Honor among thieves in
peer-to-peer storage. In SOSP, 2003.

[4] J. Douceur. The Sybil attack. In IPTPS, 2002.

[5] J. Feigenbaum and S. Shenker. Distributed algorithmic mechanism
design: Recent results and future directions. In DIALM, 2002.

[6] Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat. SHARP: An
architecture for secure resource peering. In SOSP, 2003.

[7] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimating latency
between arbitrary internet end hosts. In SIGCOMM, 2002.

[8] A. Hayrapetyan, E. Tardos, and T. Wexler. The effect of collusion in
congestion games. In STOC, 2006.

[9] I. Keidar, R. Melamed, and A. Orda. EquiCast: Scalable multicast
with selfish users. In PODC, 2006.

[10] S. Kremer, O. Markowitch, and J. Zhou. An Intensive Survey of Fair
Non-Repudiation Protocols. Computer Comm., 25(17), 2002.

[11] R. Landa, D. Griffin, R. Clegg, E. Mykoniati, and M. Rio. A
sybilproof indirect reciprocity mechanism for peer-to-peer networks.
In INFOCOM, 2009.

[12] D. Levin, K. LaCurts, N. Spring, and B. Bhattacharjee. BitTorrent is
an Auction: Analyzing and Improving BitTorrent’s Incentives. In
SIGCOMM, 2008.

[13] D. Levin, R. Sherwood, and B. Bhattacharjee. Fair File Swarming
with FOX. In IPTPS, 2006.

[14] H. C. Li, A. Clement, M. Marchetti, M. Kapritsos, L. Robison,
L. Alvisi, and M. Dahlin. Flightpath: Obedience vs. choice in
cooperative services. In OSDI, 2008.

[15] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy, L. Alvisi, and
M. Dahlin. BAR Gossip. In OSDI, 2006.

[16] G. J. Mailath and L. Samuelson. Repeated Games and Reputations.
Oxford University Press, 2006.

[17] A. Nandi, T.-W. J. Ngan, A. Singh, P. Druschel, and D. S. Wallach.
Scrivener: Providing incentives in cooperative content distribution
systems. In Middleware, 2005.

[18] T.-W. J. Ngan, D. S. Wallach, and P. Druschel. Incentives-compatible
peer-to-peer multicast. In P2P Econ, 2004.

[19] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani. Algorithmic
Game Theory. Cambridge University Press, 2007.

[20] M. Piatek, T. Isdal, T. Anderson, A. Krishnamurthy, and
A. Venkataramani. Do incentives build robustness in BitTorrent. In
NSDI, 2007.

[21] M. Piatek, T. Isdal, A. Krishnamurthy, and T. Anderson. One hop
reputations for peer to peer file sharing workloads. In NSDI, 2008.

[22] M. Piatek, A. Krishnamurthy, A. Venkataramani, R. Yang, and
D. Zhang. Contracts: Practical Contribution Incentives for P2P Live
Streaming. In NSDI, 2010.

[23] M. Reiter, V. Sekar, C. Spensky, and Z. Zhang. Making peer-assisted
content distribution robust to collusion using bandwidth puzzles. In
ICISS, 2009.

[24] S. Saroiu, P. Gummadi, and S. Gribble. Measuring and Analyzing the
Characteristics of Napster and Gnutella Hosts. Multimedia Systems

Journal, 9(2), 2003.

[25] N. Tran, J. Li, and L. Subramanian. Collusion-resilient Credit-based
Reputations for Peer-to-peer Content Distribution. In NetEcon, 2010.

[26] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer. Karma: A
secure economic framework for peer-to-peer resource sharing. In
P2P Econ, 2003.

[27] B. Yang and H. Garcia-Molina. PPay: Micropayments for
peer-to-peer systems. In CCS, 2003.

[28] H. Yu. Sybil defenses via social networks: A tutorial and survey.
ACM SIGACT News, 42(3), 2011.

[29] H. Yu, P. B. Gibbons, and C. Shi. Brief Announcement: Sustaining

Collaboration in Multicast despite Rational Collusion. In PODC,
2011.

[30] Z. Zhang, S. Chen, and M. Yoon. MARCH: A Distributed Incentive
Scheme for Peer-to-Peer Networks. In INFOCOM, 2007.

APPENDIX

This appendix proves Theorem 2 from Section 6. First, we want to
prove that a pareto-optimal collusion strategy must be non-damaging,
as defined in the following:

DEFINITION 3. A collusion strategy is called non-damaging if

for every non-deviator (all steps below refer to steps in Algorithm 1

in Section 5):

1. If the non-deviator issues a new doin, then for that doin it

successfully executes Step 19.

2. If it executes Step 19 for a doin (which may or may not cor-

respond to a doin that it has issued), then for that doin it suc-

cessfully executes Step 20-23.

3. If it issues a new doin, then for that doin it successfully exe-

cutes Step 25-26.

4. It never executes Step 27.

5. If it holds a doin that has expired, then for that doin it success-

fully executes Step 12-16 exactly once, and the corresponding

incoming debt-link will be freed.

6. If it relays a doin, then for that doin it successfully executes

Step 29-32, and the corresponding incoming debt-link will be

freed.

7. It never executes Step 33-37.

8. It never receives non-protocol messages (i.e., messages not

specified by the DCast protocol).

THEOREM 4. Under the setting and the assumptions for Theo-

rem 2, a pareto-optimal collusion strategy must be non-damaging.

Proof: We need to introduce some formal notions. An N-sequence

is a sequence of non-deviators that a doin traverses. An N-sequence
is maximal if it is not part of another N-sequence. A segment is an
N-sequence prepended by the deviator (if any) that sends the doin
to the first peer in the N-sequence, and appended by the deviator
(if any) that receives the doin from the last peer in the N-sequence.
The first peer (which can be either a deviator or a non-deviator) of
a segment is called the head of the segment, and the last peer is
called the tail. By definition of a segment, all non-deviators on a
segment see the same doin id, and that doin id is called the doin id
of the given segment. Now consider any given pareto-optimal col-
lusion strategy α, and we will show that it satisfies all the properties
needed to be non-damaging.

Property 8. Non-protocol messages will always be ignored by a
non-deviator, and thus their only effect is to reduce the utility of
both the sender and the receiver of the messages. We claim that in
α no deviators will send non-protocol messages to non-deviators,
because otherwise α will be dominated by some other collusion
strategy (which avoids sending these messages).

Property 1. Consider any non-deviator A that issues a doin, and
the corresponding segment starting from A with that doin id. (Since
a deviator might issue doins on other peers’ behalf, we have not yet
proved that there is exactly one segment with that doin id. However,
even if there were multiple segments with the given doin id, exactly
one of those will start from A.)

If the tail of the segment is a non-deviator, then obviously it will
initiate a payment and cause A to execute Step 19. If the tail is a

deviator D, let D’s predecessor on the segment be B (B can be A
itself), which must be a non-deviator by the definition of a segment.
Assume by contradiction that A never executes Step 19. Then A
will never mark the doin as “paid”. In turn, the debt-link from B
to D will never be freed. The reason is that to free the debt-link, B
must receive a Release message, and then must not receive a De-

nial message within the timeout. But because the Release message
will reach A, and A will generate a Denial message immediately,
Lemma 1 tells us that B will receive the Denial message before tim-
ing out and thus will not free the debt-link from B to D. Since
the debt-link will not be freed, D will need to establish another
new debt-link. On the other hand, if we consider a second collu-
sion strategy β where D simply makes the payment properly to A,
D’s utility will be better under β than under α, since Dpay<Dlink.
This contradicts with the fact the α is pareto-optimal.

Property 2. If a non-deviator A executes Step 19 for some doin,
then we claim that the sender B (regardless of whether it is a non-
deviator or deviator) of the “pay-request” message must enable A
to complete Step 20-23. The reason is that the only effect of Step 19
is to trigger A to send the message at Step 21, which is of no use
to B unless Step 23 is completed. If B does not enable A to com-
plete Step 22 (implying that B is a deviator), then not sending the
“pay-request” message would improve B’s utility, rendering α non-
pareto-optimal.

Property 3. Similar to the proof for Property 1.

Property 4. If a non-deviator A executes Step 27, then the cor-
responding segment must end with some deviator D. This Denial

message must have been triggered by some previous Release mes-
sage from D, since all other peers on the segment are non-deviators.
Notice that the only effect of a Release message is to free debt-
links. But because A executes Step 27, by Lemma 1 none of the
debt-links will be freed. We thus claim that D would never send
the original Release message in the first place, since otherwise not
sending the Release message would improve D’s utility and would
make α non-pareto-optimal.

Property 5. Consider any non-deviator A that holds an expired
doin. Notice that the doin issuer (as shown in the doin’s id) may be
different from the head of the corresponding segment. If the doin is-
suer is a non-deviator, then A can always complete the payment and
then propagate a Release message to its predecessor, causing the
debt-link to be freed. In particular, even if the head of the segment
is a deviator D, D would not send a Denial message. The reason
is that the only effect of sending a Denial message is to cause some
debt-links to be permanently occupied, as well as incurring some
overhead to every peer on the segment (including D itself). Since
A will never make a second payment, the only effect of causing
the debt-links to be occupied is to force the non-deviators to estab-
lish new debt-links and incur some extra debt-link establishment
overhead. This means that D’s sending the Denial message will
simply decrease the utility of some peers, including itself. Since α
is pareto-optimal, D will not do so.

If the doin issuer is a deviator D, we claim under α, D will
always accept the payment because it always improves D’s utility
if it does so. For the same reason as above, no Denial message
will be sent and A’s incoming debt-link will be freed. Finally, it
is possible for the doin issuer to be non-existent, when the head of
the segment is a deviator D. A doin has a non-existent issuer if
either the IP address in the doin’s id does not correspond to any
peer, or the peer at that IP address does not have the corresponding
private key for the public key in the doin’s id. Obviously, a doin
with a non-existent issuer cannot be paid. We claim that because
the collusion strategy α is pareto-optimal, the doin issuer will never

be non-existent. The reason is that if it were non-existent, then D
should just replace the doin issuer with itself, and accept payment
later. This must improve D’s utility, making α non-pareto-optimal.

Properties 6 and 7. Consider any non-deviator A that relays a doin,
and consider the corresponding segment. If the tail of the segment
is a non-deviator, then the tail will attempt to pay. By Property
5, the tail will successfully make the payment and propagate a Re-

lease message backward. We have also shown above (in the proof
for Property 5) that there will not be a Denial message. Next if the
head of the segment is a non-deviator, then we have shown earlier
(for Properties 1, 2, 3, and 4) that a Release message will be propa-
gated to the head (through A), and there will be no Denial message.

The only remaining case is when the head and the tail are two
deviators D1 and D2, respectively. We first prove that there will
not be a Denial message from D1, by enumerating two possibilities:

• If D2 did not previously propagate a Release message, then
obviously D1 would never send a Denial message. The reason
is that such message will simply be ignored, and its only effect
is to bring down the utility of D1 and D1’s successor on the
segment. Since α is pareto-optimal, D1 will not do so.

• If D2 did previously propagate a Release message on the seg-
ment, assume by contradiction that D1 sends a Denial mes-
sage to its successor B before B’s timer expires. Because all
peers on the segment, except D1 and D2, are non-deviators,
Lemma 1 tells us that all these peers will receive the Denial

message before their timers expire. Thus none of the debt-
links will be freed, and the only effect of this Denial message
is to cancel out the earlier Release message. We can now
construct a second collusion strategy β by modifying α so
that D2 does not send the initial Release message. Doing
so clearly reduces the cost bits sent/received by D1 and D2,
which would imply that α is not pareto-optimal.

Next we prove that there is a Release message from D2 to its
predecessor C on the segment, via a contradiction. If there is no
Release message, it means that D2’s incoming debt-link cannot
be freed, and D2 needs to establish a new debt-link. Consider a
second collusion strategy β where D2 makes a payment to D1 and
then propagates a Release. Compared to α, β improves the utility
of both D1 and D2, which would make α non-pareto-optimal. 2

Now we are ready to prove Theorem 2.

Proof for Theorem 2: By the definition of safety-net guarantee, we
only need to consider pareto-optimal collusion strategies. Consider
any given pareto-optimal collusion strategy α. We need to show
that a non-deviator will achieve at least as good utility under α in
the DCast execution as it would in the reference execution. We
set the reference execution such that in each round, the root sends
multicast blocks to exactly the same set of peers as in the DCast
execution. We can do this because the reference execution allows
this set of peers to be arbitrarily chosen.

We will first prove that at the end of any round, each peer (either
non-deviator or deviator) in the DCast execution gets at least those
multicast blocks that it gets in the reference execution. We prove
via an induction on the number of deviators in the DCast execution.
The induction base for zero deviator obviously holds. Now assume
that the statement holds when the number of deviators is k. We con-
sider the scenario with k + 1 deviators, and prove the statement by
contradiction. Let r be the first round at the end of which some peer
does not get all those blocks that it gets in the reference execution.
This peer is either a deviator or a non-deviator:

• If it is a deviator D, by the last assumption in Theorem 2, D
must get at least those multicast blocks that D would get if

D did not deviate. Thus let us consider a second DCast exe-
cution where D does not deviate and is a non-deviator. This
second execution has only k deviators. By inductive hypothe-
sis, every peer (including D) in this second DCast execution
gets at least those multicast blocks that it gets in the reference
execution. Thus in the original DCast execution with k + 1
deviators where D is a deviator, D must also get at least those
multicast blocks.

• If it is a non-deviator A, we will prove that A must have pulled
from a deviator in round r, via a simple contradiction: If A
pulled from another non-deviator B in round r, by the defi-
nition of r, at the end of round r − 1, B has all those blocks
that B has in the reference execution. Thus during round r, B
must be able to propagate to A all those blocks that B propa-
gates to A in the reference execution. This would contradict
with the fact that at the end of round r, A does not get all the
blocks that A gets in the reference execution.

Thus A must have pulled from a deviator D in round r. Again
by the definition of r, at the end of round r−1, D has all those
blocks that D has in the reference execution. A always estab-
lishes enough debt-links to pull from D. Next we show that
D will always choose to propagate as many multicast blocks
as possible, via those debt-links. Consider a debt-link from D
to A, and let x denote the total number of times that this debt-
link will be used during the multicast session, if D issues or
relays doins using the debt-link whenever possible. The total
cost to D, related to this debt-link, will be the same as sending
x + Dlink multicast blocks. The corresponding total reward
will be receiving x1Dpay multicast blocks and eliminating
x2Dpay blocks of debts, where x1 and x2 are non-negative
integers and x1 + x2 = x. Next because D’s utility function
is such that it benefits from sending one multicast block and
then receiving σ multicast blocks, the reward exceeds the cost
as long as (x+Dlink) ·max(1, σ) < xDpay. For sufficiently
large x, this inequality is guaranteed by max(1, σ) < Dpay
as in Equation 1 in the theorem. Thus propagating multicast
blocks (and issuing doins) using the debt-link will increase
D’s utility. Since the collusion strategy α is pareto-optimal,
D must issue doins on the debt-link — otherwise α will be
dominated by some “better” collusion strategy.

We have now proved that at the end of any round, each peer
in the DCast execution gets at least those multicast blocks as it
would get in the reference execution. We next would like to reason
about the cost bits that a non-deviator sends/receives in the DCast
execution. First consider those multicast bits received by this non-
deviator, either directly from the root or pulled by this non-deviator
from other peers (in which case the non-deviator will pay for or
relay the corresponding doin later). Because α is pareto-optimal,
Theorem 4 tells us that it must be non-damaging. By definition
of non-damaging collusion strategies, we know that the number of
cost bits that a non-deviator sends/receives in the DCast execution
is at most Droot for each such multicast bit received (since 1 <
Dpay < Droot). Next, a non-deviator may incur further cost bits
when it issues new doins. Under a non-damaging collusion strat-
egy, every doin is paid. Thus if a non-deviator manages to issue
new doins, it will receive Dpay multicast bits for each cost bit in-
curred, or equivalently, incur 1/Dpay cost bit for each multicast
bit received. Since 1/Dpay < 1 < Dpay < Droot, this can only
increase the utility of the peer above the safety-net utility. 2

