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Abstract

Motivated by recent emerging systems that can leverage par-

tially correct packets in wireless networks, this paper pro-

poses the novel concept of error estimating coding (EEC).

Without correcting the errors in the packet, EEC enables the

receiver of the packet to estimate the packet’s bit error rate,

which is perhaps the most important meta-information of a

partially correct packet. Our EEC design provides provable

estimation quality, with rather low redundancy and computa-

tional overhead. To demonstrate the utility of EEC, we ex-

ploit and implement EEC in two wireless network applica-

tions, Wi-Fi rate adaptation and real-time video streaming.

Our real-world experiments show that these applications can

significantly benefit from EEC.

1 Introduction

Error correcting coding [29] has long been playing a key role

in serving the performance and reliability needs in wireless

networks. Over the years, researchers have proposed numer-

ous interesting error correcting codes. The traditional philos-

ophy behind error correction is that the application/ network

can or should only use/relay completely correct packets.

Recent advances in wireless networking, however, have in-

validated this assumption. In particular, many designs [10,

11, 18, 25, 26, 28, 42, 47] can now use a packet that is par-

tially correct (i.e., some bits are correct but others are cor-

rupted). Such a partial packet can be useful when:

• The destination may be able to obtain incremental re-

dundancy from the source to recover the partial packet

(i.e., incremental redundancy ARQ) [28].

• The destination may collect and combine multiple par-

tial packets to obtain a correct copy [10, 18, 25].

• The packet has forward error correction (i.e., pre-

encoded with error correcting codes), and thus can po-

∗The first two authors of this paper are alphabetically ordered.

tentially fully recover the errors. For example, forward

error correction is often used in real-time video stream-

ing to tolerate errors in wireless networks [11, 47].

• The application may be able to directly use partial pack-

ets to some extent. For example, for image or video

packets, a partially correct packet can still carry some

useful information [26, 42].

These designs raise the natural question of whether there is

any benefit looking beyond error correcting codes.

This paper takes the first step in answering this question,

by proposing the novel concept of error estimating coding

(EEC). Without actually correcting the errors in the packet,

EEC enables the receiver to estimate the fraction of corrupted

bits in the packet, which is perhaps the most important meta-

information of a partial packet. We call such fraction as the

packet’s bit error rate or BER. Here the receiver of the packet

may or may not be the packet’s final destination. In partic-

ular, it can be a wireless router that is oblivious to how the

application will eventually use/recover the partial packet.

The utility of EEC depends on two key questions:

Feasibility Is it possible to construct highly efficient EEC?

In particular, EEC’s redundancy and computational

overhead must be substantially smaller than error cor-

recting codes, since otherwise one should just directly

use error correcting codes to correct the errors.

Applications Does the BER meta-information provided by

EEC significantly benefit upper-layer applications?

Affirmative answers to these two questions would imply that

EEC indeed achieves a new and interesting tradeoff point, on

the spectrum between overhead and functionality. Such trade-

off point was not previously available with error correcting

coding.

Efficient EEC: Feasibility. This paper provides affirmative

answers to both questions above, thus confirming the utility

of the novel concept of EEC. First for feasibility, our EEC

design only needs to add O(log n) extra bits to the packet (n
being the number of data bits) to estimate BER. As concrete
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numerical examples in the two EEC applications that we im-

plement (described later), the relative redundancy added to

each packet is only about 2%. In fact in cases where we only

need to estimate whether the BER exceeds a certain threshold,

the redundancy added by EEC is only 4 bytes (as in one of our

two applications). Such a small redundancy makes it possible

to even view EEC as generalized CRC. Namely, CRC tells us

whether the BER exceeds 0, while EEC can tell whether the

BER exceeds any given threshold. We also trivially show that

error correcting codes, in order to correct the errors, would

require much higher redundancy.

In addition to low redundancy, our EEC design also in-

curs rather smallO(n) computational overhead. Experiments

show that on a typical hardware platform (Soekris net5501-

701) for wireless mesh networks, our software implementa-

tion of EEC can process packets at maximum 802.11a/g data

rate. Again, we trivially show that software-implemented

error correcting codes (such as Reed-Solomon codes [29])

would be much slower (10 to 100 times slower), which pre-

vents today’s commercial 802.11 devices from using these

codes in software at Wi-Fi data rate.

In terms of estimation quality, our EEC design provides

formal and provable guarantee on the BER estimation accu-

racy. We do not make any assumption on the positions of the

corrupted bits in a packet, and in particular, does not assume

independent errors. The corrupted bits may be correlated in

an arbitrary and unknown way (e.g., fully clustered or widely

spread).

Efficient EEC: Applications. To see whether EEC helps

upper-layer applications, we first sketch out how the BER in-

formation provided by EEC can naturally be beneficial in a

number of scenarios [2, 8, 20, 22, 25, 27, 28, 30, 32, 48, 40].

Specifically, EEC can enable new techniques such as BER-

aware packet retransmission/scheduling/forwarding, BER-

aware routing, and wireless carrier selection based on per-

packet BER.

Out of these, we implement two representative applica-

tions (Wi-Fi rate adaptation and real-time video streaming)

and incorporate our EEC implementation into these two ap-

plications. In Wi-Fi rate adaptation, EEC enables the system

to adapt rate based on the fine-grained and direct per-packet

BER information provided by EEC. This helps to achieve

much better rate adaptation than previous schemes [2, 16, 48]

that rely on course-grained packet loss statistics or indirect

measures such as Signal-to-Noise Ratio. In multi-hop real-

time video streaming with forward error correction [11, 47],

EEC enables the intermediate forwarding wireless routers to

determine whether the packet’s BER exceeds the error correc-

tion threshold. A retransmission is requested if and only if the

BER exceeds the threshold. Such BER-aware retransmission

has clear advantage over schemes that simply forward all par-

tial packets (in the hope that the destination can recover the

packets with forward error correction) [40] or simply require

retransmission to correct all partial packets.

1http://www.soekris.com/net5501.htm

Our real-world evaluation of these two applications clearly

demonstrates EEC’s utility: When compared to state-of-

the-art approaches, our BER-guided Wi-Fi rate adaptation

scheme achieves up to 50% higher goodput in walking sce-

narios and up to 130% higher goodput in outdoor challenging

environments. For real-time video streaming, BER-aware re-

transmission achieves up to 5dB gains on the PSNR [33] of

the streamed video. PSNR difference that is above 0.5dB is

considered visually noticeable [39].

In the next, Section 2 explains how EEC can benefit various

applications. Our EEC design, implementation, and evalua-

tion are presented in Section 3, 4 and 5. Section 6 and Section

7 detail the implementation and evaluation of the two applica-

tions. Finally, Section 8 discusses related work, and Section 9

draws the conclusions.

2 EEC Applications

Given that many designs [10, 11, 18, 25, 26, 28, 42, 47] in

wireless networks can now use partial packets, this section

examines how the BER meta-information of partial packets

can benefit the application. The simplest usage example is

perhaps to use the BER to predict the amount of incremental

redundancy needed, in various incremental redundancy ARQ

schemes [28]. However as shown next, BER information can

benefit the applications in much more interesting ways.

In the next we will explain how the sender and the receiver

of a partial packet can leverage the packet’s BER informa-

tion, respectively. The receiver can obtain the BER informa-

tion from EEC, while the sender can obtain the information

via receiver feedback. The sender/receiver does not need to

be the source/destination of the message, and can be a for-

warding router in a multi-hop wireless network. While the

source and destination are able to use/recover partial packets,

we allow the sender/receiver to be oblivious to how the partial

packets will be used/recovered (e.g., oblivious to the specific

forward error correction scheme used). Allowing the routers

to be oblivious is critical to supporting various applications

with their different ways of using partial packets.

2.1 Using BER Information on Sender

The BER of the packets contains valuable information about

the current wireless carrier, where the carrier can include fac-

tors such as the modulation and coding scheme, frequency

band, transmission power setting, and routing path. For sys-

tems that can use partial packets, this fine-grained and direct

BER information enables the sender to better (and adaptively)

select a carrier with the best goodput. Here goodput is de-

fined as the number of recoverable (application-level) bits per

second that the system can transmit. The following presents

some concrete examples.

Wi-Fi rate adaptation. In Wi-Fi networks, a sender has the

choice over different data rates. Higher rate means larger
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number of bits transmitted per second, but also with higher

probability of error. Rate adaptation thus aims to select the

best data rate, dynamically based on the time-varying wire-

less channel condition. Previous rate adaptation schemes are

often based on coarse-grain information such as packet deliv-

ery ratio [2, 48] or indirect information such as SNR [4, 19].

In comparison, the fine-grained and direct BER information

provided by EEC enables the sender to better find a rate with

the best goodput. Section 6 will present our implementation

and evaluation of this application.

The above discussion can also be generalized to using

BER information for better selection of wireless channel [32],

transmission power [22], or directional antenna orienta-

tion [30].

BER-aware routing. In a multi-hop wireless network, a

source can often choose among different routes to send pack-

ets to the destination, which can be viewed as one kind of

carrier selection. Existing route selection schemes [8] usually

consider correct (full) packet delivery only, and thus optimize

for minimizing the expected number of transmissions (includ-

ing retransmission of partial packets) needed to deliver the

packet. For systems that can use partial packets, one would

imagine that the route selection process should instead op-

timize for maximizing the goodput of the end-to-end route.

Obviously, EEC can readily provide the BER information for

each wireless link to enable such route selection.

2.2 Using BER Information on Receiver

Instead of feeding back the BER information to the sender,

the receiver of a partial packet can also directly utilize such

information. We focus on scenarios where the receiver it-

self is an intermediate router in a multi-hop wireless network.

Following are some concrete examples showing how the re-

ceiver can use the BER information to make informed deci-

sions when processing a partial packet.

BER-aware packet retransmission. Today wireless mesh

networks have been widely deployed as a cost-effective way

to provide Internet access for both urban [1] and rural ar-

eas [5]. To enable services such as remote learning and re-

mote health-care, there are strong demands to support real-

time multimedia applications (e.g., video chatting, video con-

ferencing, and VoIP) in these networks [37]. Let us take real-

time video streaming as an example. To deal with errors in

wireless communication, the source often adds forward error

correction on the packets, to avoid the extra delay involved

in packet retransmission [11, 47]. With forward error correc-

tion, the receiver (router) will now simply forward all packets

(correct or partial) to the next hop [40], with the hope that

the final destination can recover the partial packets via error

correction. But with the time-varying quality of the wireless

links, it is impractical to add sufficient error correction redun-

dancy to ensure that all partial packets can be recovered.

The BER information provided by EEC conveniently en-

ables the receiver (router) to avoid this problem. Namely,

the source (knowing the details of the forward error correc-

tion applied to the packet) can easily include a threshold in

the packet header, indicating the maximum BER that the for-

ward error correction can tolerate. The router can now re-

quest retransmission of those packets whose BER exceeds

such threshold, instead of naively relaying the packets to the

next hop. Section 7 will present our implementation and eval-

uation of this application.

Of course, an alternative approach would be for the re-

ceiver to decode the error correcting code on the partial

packet, and request retransmission if decoding fails. But this

will require the router to be non-oblivious and to know the ex-

act error correcting mechanism employed by the application.

Furthermore, as we will show later, the computational over-

head of error correcting codes may prevent the router from

decoding (in software) at Wi-Fi data rate.

BER-aware packet scheduling. Consider a wireless im-

age sensor network for emergency response (e.g. forest fire,

flood, or earthquake). In such scenarios, the system needs

to send back as much information as possible and as fast as

possible [20]. For image data, a partially correct packet of-

ten still carries useful information, where the information can

be a function of the packet’s BER. As the data funneling to

the base station, the BER information on the packets enables

the sensors to prioritize the forwarding of packets with lower

BER. Doing so will maximize the amount of information col-

lected by the base station at any given time point.

BER-aware packet forwarding. In a typical setting of co-

operative relay [25], a dedicated relay node may help one

node A to better transmit packets to another node B (within

A’s radio range). The relay node, within the radio range of

both A and B, simply relays the packets that it overhears from

A to B. B will eventually combine these (potentially partial)

packets. When relaying, the relay node can choose between

amplify-and-forward (AAF) and decode-and-forward (DAF).

DAF can remove noise before forwarding, but suffers from

error propagation if the decoded packet contains many errors.

AAF has the opposite property. Researchers thus suggest [27]

that ideally the relay should adaptively choose between the

two depending on the error level of the packet. The quanti-

tative BER information provided by EEC naturally fits such

needs.

3 EEC Design

This section describes our EEC algorithm and its formal guar-

antees. We will focus on the intuition here and leave the rig-

orous arguments to the proofs in the appendix. Our EEC al-

gorithm is closely related to some prior algorithms in other

domains — namely, algorithms [17, 24] for nearest neigh-

bor search in high-dimensional spaces (mainly in computa-

tional geometry) and sketching algorithms [7, 6, 12, 13] for

hamming distance estimation (mainly between massive data

streams). We defer a detailed comparison to Section 8.

3



Table 1: Key notations in EEC algorithm.
n # of data bits in a packet

k # of EEC bits in a packet (i.e., s× l)
s # of EEC bits in one level

l # of EEC levels

g # of data bits in one group

p fraction of erroneous slots in a packet

p0 fraction of erroneous data bits in a packet

c1, c2 algorithm constants (c1 = 0.25, c2 = 0.4)

φ(x, y) the sum of all the odd terms in a binomial

distribution B(x, y), with a closed form of

φ(x, y) = 1
2 (1 − (1 − 2y)x), see [14] and

the appendix

3.1 Error Estimation Formal Framework

Let n denote the total number of data bits in a packet (see

Table 1 for a summary of notations in this section). From the

n data bits, the EEC encoding process will generate k EEC

bits for error estimation later. The sender will send these n+k
bits in a packet to the receiver. Here the notion of a packet is

logical: It can be an 802.11 packet, or a segment in an 802.11

packet, or multiple 802.11 packets, in which case EEC will

estimate the average BER over these multiple 802.11 packets.

We model a packet as n + k slots, with each slot holding

one bit. A slot may be erroneous and cause the bit in that slot

to be flipped during transmission, and that flipped bit is called

an error2. A slot that is not erroneous is called correct. Let

p denote the fraction of erroneous slots, or equivalently, the

BER of the packet3. Notice that p is a fraction instead of a

probability. We only aim to estimate p for p ∈ [0, 1/4] since

in practice, a packet with BER larger than 1/4 rarely has any

value. The (n + k)p errors may be in arbitrary positions in

the packet. In particular, the errors may be correlated in an

arbitrary and unknown way (e.g., fully clustered or widely

spread). The randomization used in the EEC algorithm ex-

actly serves to deal with such (arbitrary) correlation, and our

algorithm does not assume that the errors are independent.

The goal of EEC is to use the EEC bits to output an es-

timation (p̂) for p, with certain estimation quality. We use

the standard (ǫ, δ) guarantee as the metric for quality. The

estimation p̂ is said to be an (ǫ, δ)-approximation of p if

Pr[(1 − ǫ)p ≤ p̂ ≤ (1 + ǫ)p] ≥ 1 − δ. Here the proba-

bility is taken over the random coin flips in the randomized

algorithm.

2Theoretically speaking, whether a bit in a slot is flipped not only depends

on the slot (i.e., transmission time), but also may depend on whether the bit

is 0 or 1. However, given the scrambling (randomization) and modulation

steps [38] in wireless communication systems today, this will not happen on

today’s wireless hardware.
3Here p does not necessarily equal the BER of the data bits in the packet,

since the packet contains both data bits and EEC bits. This is intentional since

the BER of the data bits is affected by how the coding algorithm places them

into the packet. For the elegance of the model, we want to avoid reasoning

about estimating a quantity that is itself affected by the algorithm. On the

other hand, since usually the EEC bits comprise a rather small fraction of

the packet (i.e., < 5%) and because the EEC bits are inserted into uniformly

random slots, the BER of the data bits and the BER of the whole packet make

no real difference in practice.

3.2 EEC Algorithm Overview

Our EEC algorithm has three procedures, for encoding at the

sender, decoding at the receiver, and estimating BER at the

receiver, respectively. These procedures are all randomized.

The sender and the receiver should use the same random seed

to initialize their pseudo-random number generators, so that

they generate the same random sequence.

Algorithm 1 EEC Encoding Procedure.

1: for i = 1 to ⌊log2 n⌋ do

2: for j = 1 to j = s do

3: Select 2i − 1 data bits where each bit is chosen in-

dependently and uniformly randomly (with replace-

ment) out of the n data bits;

4: Compute a parity bit (as an EEC bit) for them;

5: end for

6: end for /* Total k = s · ⌊log2 n⌋ = s · l EEC bits. */

7: Place the EEC bits (in arbitrary order) into k uniformly

random positions in the packet;

8: Place the data bits (in arbitrary order) into the remaining

n positions in the packet;

The encoding procedure (Algorithm 1) adds l = ⌊log2 n⌋
levels of EEC bits to the original data, with s EEC bits per

level. Thus the total redundancy introduced is k = l × s bits.

The value of s determines the estimation quality (i.e., ǫ and

δ). An EEC bit at level i (1 ≤ i ≤ l) is simply the parity bit

for 2i−1 randomly chosen data bits (Figure 1). Each of these

2i − 1 data bits is chosen uniformly randomly and indepen-

dently (with replacement) from the original n data bits. We

repeat such process independently to obtain s EEC bits for

each level. Since the encoding procedure does not modify the

data bits, decoding is trivial and thus we omit the decoding

pseudo-code.

Algorithm 2 EEC Estimating Procedure.

1: for i = 1 to i = ⌊log2 n⌋ do

2: Compute the fraction (qi) of parity bits at level i that

fail parity check;

3: if q1 ≥ c2 then

4: Output p̂ = 1/4 and exit;

5: end if

6: if c1 < qi < c2 then

7: Output p̂ = qi/2
i and exit;

8: end if

9: end for

10: Output p̂ = 0 and exit;

The estimating procedure (Algorithm 2) estimates the BER

of the packet. For each level i (1 ≤ i ≤ l) of the EEC bits,

the procedure computes the fraction (denoted as qi) of the s
parity bits that fail the parity check. Usually these qi’s will

be monotonically increasing. If the algorithm finds a qi that

falls within a range (c1, c2) where c1 and c2 are algorithm
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level 3
parity bits

level 1
parity bits

level 2
parity bits

data bits data bits data bits

Figure 1: The first three levels of EEC bits (s = 2).

constants, it will estimate p to be qi/2
i and then exits. The

algorithm also needs to handle two corner cases. First, at

the very first level, if the algorithm finds q1 ≥ c2, it directly

outputs 1/4. Second, if q1 < c2 and the algorithm fails to

find a qi ∈ (c1, c2), the algorithm simply outputs 0.

3.3 Using One Bit to Sample a Group of Bits

To better explain the intuition in the algorithm, this section

first assumes that all the EEC bits are in correct slots and we

aim to estimate the fraction p0 of errors among the data bits

(instead of the fraction p of errors among all bits). We will

then remove this key assumption in the second part of this

section.

Naive sampling. A trivial way to estimate p0 is to sample

some small number of data bits, uniformly randomly out of

the n data bits. If x fraction of the sampled bits are flipped,

we simply output x as an estimation for p0. To determine

whether a sampled data bit is flipped during transmission, we

can simply use an EEC bit (which is assumed to be in a cor-

rect slot) to replicate that data bit. We can tell whether the

data bit has been flipped by comparing the EEC bit with the

data bit. Equivalently, one can also insert known bits (typi-

cally called pilot bits) into the packet as samples.

The inefficiency in this naive sampling approach arises

however, when p0 is small. This is particularly relevant in

wireless error estimation context, since packet BER tends to

be a small value in most cases. For example when p0 = 0.02,

on expectation we only see 1 error out of every 50 data bits

sampled. Before seeing enough errors, the estimation quality

on p0 will be poor. To make it more concrete, in the two EEC

applications that we implement, the EEC redundancy added

is 36 bytes and 24 bytes per 1500-byte packet respectively.

The ratio of EEC bits to data bits is about 2%. We have also

performed simple experiments showing that if one were to

use naive sampling to achieve similar estimation quality, the

redundancy needed will be roughly 600 bytes and 450 bytes

per 1500-byte packet, respectively. This translates to a ratio

(of EEC bits to data bits) of above 40%.

Such drawback of naive sampling is fundamental. A well

known lower bound [9] shows that to obtain an (ǫ, δ) esti-

mation quality, the number of samples taken needs to reach

Ω( 1
p0

1
ǫ2

log 1
δ
). The 1

p0
term exactly shows that naive sam-

pling will incur prohibitive overhead when BER is small.

Use a parity bit to sample a group of data bits. The above

discussion already hints that it might help if we can sample

multiple data bits together. For example, consider groups of

data bits where each group has 50 randomly chosen data bits.

Imagine that we use a single parity bit for each group as an

EEC bit. Then even with a small number of EEC bits (i.e., a

small number of groups), we will encounter sufficient number

of parity check failures on the receiver side even for p0 =
0.02. However, how to translate the observed parity check

failures to an estimation on p0 is not obvious. Since a parity

bit can only tell whether the number of errors in the group is

odd or even, it cannot even distinguish 3 errors from 1 error.

It turns out that the limited information provided by these

parity bits over groups of data bits does suffice to estimate p0.

Such observation has also been previously made and lever-

aged in algorithms [7, 24] for nearest neighbor search and

hamming distance estimation, though those algorithms have

never been adopted/adapted to estimate packet BER in the

context of coding (see more discussion in Section 8). The

next describes how to properly use such parity information.

Properly using parity information. Consider a group with g
data bits. Regardless of the positions of the erroneous slots, if

we choose each of the g bits independently and uniformly ran-

domly (with replacement) out of the n data bits, then each of

them is flipped with probability p0 independently. The num-

ber of errors in the group thus follows a binomial distribution

B(g, p0).
When p0 is small enough, the probability mass will mostly

concentrate on having 0 or 1 error, since the chance of having

more than 1 error in the group is much smaller. This in turn

means that if the parity check succeeds (i.e., the number of

errors is even), then it is very likely that the number of errors

is actually 0. Similarly, if the parity check fails, it is very

likely that the number of errors is exactly 1.

To leverage the above fact, however, one needs to first

know whether p0 is small enough. Let us define φ(g, p0) to

be the sum of all the odd terms in the binomial distribution

B(g, p0). Notice that φ(g, p0) is essentially the probability of

parity check failure, which can be estimated by the receiver if

we use multiple independent groups (each with a parity bit)

of the same size g.

If p0 is not small enough, then φ(g, p0) will exceed a cer-

tain threshold. This is easy to understand since for example,

with p0 ≥ 1/g, the mean of the binomial distribution is away

from 0. This makes the sum of the odd terms and the sum

of the even terms in the binomial distribution comparable. In

fact, when the mean is above 1, the sum of the odd terms and

the sum of the even terms should both be roughly 0.5. This in-

dicates that the receiver can easily decide whether p0 is small

enough based on the (estimated) value of φ(g, p0).

Allowing erroneous EEC bits. So far our discussion has

been assuming that the EEC bits are always in correct slots

and we only estimate p0. To remove these restrictions, our

encoding algorithm (Step 7 and 8 in Algorithm 1) inserts the

k EEC bits into k uniformly random slots within the packet.

Then data bits will go into the remainingn slots in the packet.

Each EEC and data bit now has the same probability (p) of

being in an erroneous slot, though all these probabilities are
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correlated. Now the probability of parity failure on a group

with g data bits is roughly φ(g + 1, p). It is only “roughly”

because of correlation.

Properly reasoning about such correlation is non-trivial.

In particular, because the number of EEC bits can be small

(compared to the data bits), the fraction of EEC bits that are in

erroneous slots does not concentrate very well. In reasoning

about the previous correlation, our analysis in the appendix

derives a relatively weak concentration property, and shows

that this weak property is sufficient to provide the desirable

final guarantee.

Single-level EEC. Putting the above together gives what we

call the single-level EEC. Single-level EEC uses s indepen-

dent groups, where each group consists of g data bits and 1
EEC bit. The parameter g determines the range of p that the

receiver can estimate. The receiver first determines the frac-

tion q of parity failures among the s groups. This fraction q
can be viewed as an estimation of φ(g+1, p). If q ≥ c2 where

c2 being an algorithm constant, then p is probably too large

and the parity bits do not carry much information about p.

Thus the algorithm simply stops without outputting anything

(or simply outputs “BER too large”).

If q < c2, the algorithm will be able to estimate the total

number of errors among all the s · (g + 1) bits simply to be

the total number of parity failures s · q. For exactly the same

reason as in naive sampling, the above estimation is good only

when we see enough number of errors (i.e., when s · q is large

enough). Thus the algorithm only outputs a final estimation

of p̂ = (s · q)/(s · (g + 1)) = q/(g + 1) if q > c1 for

some algorithm constant c1 where c1 < c2. If q ≤ c1, the

algorithm again stops without outputting anything (or simply

outputs “BER too low”).

Roughly speaking, the single-level EEC algorithm will

successfully estimate p when q ∈ (c1, c2). E[q] is roughly

φ(g + 1, p), and φ(g + 1, p) can be shown to be monotoni-

cally increasing with p. Thus if we define p1 and p2 such that

φ(g + 1, p1) = c1 and φ(g + 1, p2) = c2, then the single-

level EEC algorithm will be able to produce an estimation for

p when p ∈ (p1, p2).

3.4 Multiple Levels of EEC Bits

Multi-level EEC. Extending the single-level EEC algorithm

to multi-level will enable us to estimate all p ∈ [1/n, 1/4].
All we need is to use l = ⌊log2 n⌋ levels of groups, where a

group at the ith level has g = 2i − 1 data bits and 1 parity

bit. Our goal is to ensure ∀p ∈ [1/n, 1/4], there always exists

some level i such that φ(2i, p) falls within (c1, c2). Figure 2

provides some numerical examples.

The fundamental reason why our goal can be achieved is

that φ(2i, p) monotonically increases with i, and the increase

rate is well bounded. Specifically, to achieve our goal, we first

set c2 such that φ(2, p) < c2 for all p ≤ 1/4. This guarantees

that regardless of how large p is, φ(2i, p) < c2 at least at the

first level. Second, we set c1 such that φ(2⌊log2 n⌋, p) > c1

φ(2i, p) i = 1 2 3 4 5 6

p = 0.25 0.38 0.47 0.50 0.50 0.50 0.50

p = 0.05 0.095 0.17 0.28 0.40 0.48 0.50

p = 0.01 0.020 0.039 0.075 0.14 0.24 0.36

Figure 2: φ(2i, p) for 1 ≤ i ≤ ⌊log2 n⌋, n = 100, and differ-

ent p values. We also highlight the φ(2i, p) that falls within

(c1 = 0.25, c2 = 0.4).

for all p ≥ 1/n. This guarantees that regardless of how small

p is, φ(2i, p) > c1 at least at the last level.

Finally, we ensure sufficient gap between c1 and c2, so that

some φ(2i, p) will fall between c1 and c2. Let j be the largest

i (1 ≤ i ≤ ⌊log2 n⌋ − 1) such that φ(2i, p) ≤ c1. If such

j does not exist, it already means that φ(2, p) ∈ (c1, c2). If

such j exists, we require c2 to be such that φ(2j+1, p) < c2,

which means level j+ 1 will be the level where φ(2j+1, p) ∈
(c1, c2). The constraints so far on c1 and c2 are summarized

below:

φ(2⌊log2 n⌋, p) > c1

φ(2, p) < c2

φ(2j+1, p) < c2, where j is the largest i

such that φ(2i, p) ≤ c1

One can show that the above constraints can be satisfied by

all c1 and c2 where c1 < 0.3, c2 > 0.375, and c2 > 2c1(1 −
c1). For better estimation quality, c1 should be as large as

possible (so that the number of errors we see when estimating

p is large), while c2 should be as small as possible (so that the

parity information can better estimate the exact number of

errors). Thus our EEC algorithm simply picks c1 = 0.25 and

c2 = 0.4.

Reasoning about multiple levels. Reasoning about the for-

mal guarantees of multi-level EEC is not as trivial as it ap-

pears. We have ensured that for any p, there exists some level

i that can properly estimate p. But the algorithm does not

know which level that is, and it needs to check level 1 through

i − 1 first. It is possible that under rare event, some level j
(j < i) may appear suitable for estimating p even though it

is actually not. While such probability for a given j is small,

there can be many (i.e., Θ(logn)) such j values. A naive

analysis may thus fail to produce our intended result using

only O(log n) EEC bits. In our analysis in the appendix, we

show that the sum of all these probabilities is actually well

bounded. This is true even though the EEC bits may be cor-

rupted themselves.

Flexible number of levels. Many applications (including

the two applications that we implement) need BER estima-

tion only when p is within some range [a, b]. For example,

in our Wi-Fi rate adaptation application, the application only

needs to estimate p when p ∈ [1/1000, 0.15]. For p > 0.15
(or p < 1/1000), all the application needs to know is that p is

close to or above 0.15 (or close to or below 1/1000). Our sec-

ond real-time video streaming application does not even need
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to estimate p— all it needs to know is that whether p exceeds

0.01. One can consider that this application only needs BER

estimation when p ∈ [(1 − ǫ) · 0.01, (1 + ǫ) · 0.01].

For these applications, it is possible to avoid using all

⌊log2 n⌋ levels, and further reduce the redundancy of EEC.

In real-time video streaming, the reduction enables us to use

only one EEC level with 32 bits, making the EEC redundancy

even comparable to typical CRC redundancy.

To see which levels we should keep, we only need to check

which levels will be used at Step 7 of Algorithm 2 for p ∈
[a, b]. Let l1 be the level used when p = b, which means

that roughly φ(2l1 , b) ∈ (c1, c2). Solving the equation c1 <
φ(2l1 , b) < c2 for integer l1 will give us the value of l1.4

Similarly, we find l2 such that φ(2l2 , a) ∈ (c1, c2).
5 The

algorithm only needs to keep all levels from level l1 to level

l2 (both inclusive).

3.5 Optimizing Estimation Quality in Practice

We explained earlier that when qi falls within the proper re-

gion, if the parity check fails, then the number of errors in

the corresponding group is most likely to be 1. However,

the probability of having other odd number of errors is not

0. Thus to be more accurate, instead of simply estimating p
as qi/2

i at Step 7 of Algorithm 2, one can reason more care-

fully about qi’s relation with p. It can be shown (see proofs in

the appendix) that:

• The distribution of qi concentrates near φ(2i, p).

• The distribution of
qi+2qi−1(1−qi−1)

2 concentrates near

φ(2i, p).

Thus Step 7 can now directly solve the p from either of the

following two equations as the final estimation:

φ(2i, p̂) = qi

φ(2i, p̂) =
qi + 2qi−1(1 − qi−1)

2
, for i ≥ l1 + 1

Our formal asymptotic guarantees in the next section hold for

both estimation approaches. In practice however, solving the

second equation tends to give better quality, since it lever-

ages the information from both level i − 1 and level i. Thus

our implementation solves the second equation to estimate p
(whenever i ≥ l1 +1) at Step 7 of Algorithm 2. The equation

of φ(2i, p̂) = y has a closed-form solution (see appendix for

proof) of p̂ = (1 − (1 − 2y)2
−i

)/2.

Finally, in Algorithm 2, when failing to find an appropriate

level to estimate BER at Step 10, the algorithm currently sim-

ply outputs 0. Instead of doing so, we will estimate the BER

4Note that it is possible for the equation to have two solutions, in which

case the smaller solution should be used as l1. It is not possible for the

equation to have more than two solutions.
5Again, if the equation has two solutions, then the larger solution should

be used as l2.

based on ql2 (i.e., the information at the last level). This mod-

ification will slightly increase the estimation quality when

BER is small. Such modification has no effect on our formal

proofs.

3.6 Formal Guarantees

We will prove that in order to produce an (ǫ, δ) approximation

for p with constant ǫ and δ, EEC only needs to add O(log n)
EEC bits (or more specifically,O(log n) levels withO(1) bits

per level) to the original n data bits.

Theorem 1 Consider any given positive constants ǫ and δ.

For sufficiently large n, there exists constant s = O(1) such

that using s in our EEC algorithm (together with input a and

b where 1/(n+k) ≤ a < b ≤ 1/4) will provide the following

guarantee: With probability at least 1 − δ,

• If p ∈ [a, b], output p̂ where p̂ ∈ [(1 − ǫ)p, (1 + ǫ)p].

• If p < a, output p̂ where p̂ ≤ (1 + ǫ)a.

• If p > b, output p̂ where p̂ ≥ (1 − ǫ)b.

The theorem’s proof is available in the appendix. The next

theorem is about EEC’s computational overhead, whose proof

is trivial:

Theorem 2 The EEC encoding, decoding, and estimating

time complexity are all O(n).

4 EEC Implementation

This section describes how we apply standard optimizations

to minimize EEC’s computational overhead. We will only

discuss optimizations for EEC’s encoding procedure, since

the exactly same optimizations apply to decoding and esti-

mating. EEC’s encoding procedure involves first calculating

the k = s × l EEC bits, and then placing the k EEC bits and

n data bits into the n+ k slots in a randomized way.

To make it concrete, our discussion below will be based on

the Wi-Fi rate adaptation application, which uses 9 EEC lev-

els (i.e., level 1 through level 9) with s = 32 bits per level.

By default, we consider a packet containing 1536 bytes of

data and 9 × 32/8 = 36 bytes of EEC bits. The EEC im-

plementation in the real-time video streaming application is

more straightforward as it only uses a single EEC level.

4.1 Calculating EEC Bits for Level 1 through

Level 6

To calculate an EEC bit, the algorithm needs to select a cer-

tain number of data bits uniformly randomly and then com-

pute their XOR. Selecting a uniformly random bit involves

using a random index between 1 and n. Instead of generating

this random index on the fly, we pre-compute all the random

indices and store them in an array. Each array element will
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be 2-byte long since n = 1536 × 8 = 12288 in our case. An

EEC bit at level i will need 2i − 1 indices.

For level 2 through level 6, we do not compute each EEC

bit from scratch. Rather, to obtain the jth EEC bit in level i,
we XOR the jth EEC bit in level i−1 and 2i−1 additional ran-

dom data bits. This will reduce the computational overhead as

well as the number of random indices needed roughly by half.

Altogether, the total number of random indices needed for all

levels from 1 to 6 will be (1 + 2 + . . .+ 25)s = 2016, which

translates to roughly 4KBytes. Note that this optimization

clearly introduces correlation across different levels. How-

ever, our formal proof does not require that different levels

are independent, and thus the proof continues to hold under

this optimization.

4.2 Calculating EEC Bits for Level 7 through

Level 9

For level 7 through 9, we could also potentially apply the

same optimizations as for level 1 through 6. But given the

large group sizes on these levels, these optimizations are no

longer effective enough simply because the number of data

bits to be XORed is too large.

Calculating EEC bits in parallel. To reduce the compu-

tational overhead for computing the EEC bits for level 7
through 9, notice that there are total 3s EEC bits on level 7,

8, and 9. We can maintain a bit vector of length 3s for each

data bit. The ith entry in the bit vector denotes whether the

current data bit is selected for the ith EEC bit, for 1 ≤ i ≤ 3s.
Again, one can pre-compute all these bit vectors to reduce the

computational overhead. To compute the 3s EEC bits, we can

simply scan all the data bits sequentially. If a data bit is 1, we

will XOR the corresponding bit vector to the result. On our

target platform, Soekris net5501-70 with 32-bit Geode LX

CPU, XORing 3s-bit vectors can be done in three machine

instructions (for s = 32).

Operating on bytes instead of bits. Our actual implementa-

tion further extends the above design. Instead of scanning the

data bits one by one, we scan entire data bytes. We maintain

a table which maps each possible byte value to a bit vector

of 3s bits. The bit vector can be viewed as the pre-computed

result for the 8 bits in the corresponding byte. Directly apply-

ing this optimization, however, will result in large tables and

poor cache behavior. For example when s = 32, each data

byte will require a table with 28 × (3 × 32/8) = 3072 bytes.

For a packet with 1536 data bytes, the 1536 tables will take

about 4.7MBytes.

To reduce memory consumption, we observe that the 1536
tables serve to allow perfect randomness in the selection of

data bits for each group. In practice, we may not need such

perfect randomness (in fact, we cannot obtain perfect ran-

domness anyway with pseudo-random number generators).

Thus we divide the packet into multiple segments such that

different segments use the same set of tables. Our implemen-

tation divides the packet into 12-byte long segments, and a

packet with 1536 data bytes will have 128 segments. We only

maintain 12 tables for the 12 bytes in a segment. As each table

consumes 3072 bytes, the 12 tables only requires 36KBytes

memory. These tables are computed when the EEC module

is initialized.

Implications. There are two subtle implications worth dis-

cussion regarding our implementation. Firstly, as all seg-

ments use the same set of tables, each segment will contribute

the same number of data bits to each group. This means that

the total number of data bits selected in a group can only be a

multiple of the number of segments (128 in our default packet

size). As a result, we cannot have exactly 2i − 1 data bits for

a group in level i (for i ≥ 7), instead, our implementation

selects 2i data bits, increasing the group size by one. As the

group size on level 7 through 9 is over 100, the difference is

negligible in practice.

Secondly, since we reuse the same tables across multiple

segments, the indices of data bits selected to form a group are

no longer mutually independent. Our experiments show that

such reduced randomness does not result in any noticeable

impact. It is possible to improve the randomness by shifting

the offset by some constant for each segment – but that does

not seem to be needed from our results.

4.3 Placing EEC Bits and Data Bits into the

Slots

The EEC algorithm requires that the EEC bits be placed into

uniformly random slots (out of all slots). Our implementation

achieves this by first placing all the n data bits into the first

n slots within the packet (which has total n + k slots). The

last k slots are initially unoccupied. We then select k uni-

formly random slots out of the n + k slots in the packet to

place the EEC bits. These k slots are selected one by one and

without replacement. Each selection requires a random index

between 1 and (n + k). For each slot selected, if it already

contains a data bit, the data bit is removed from the slot and

kept in a temporary buffer. (Notice that it is not possible for

the slot to contain an EEC bit since we did the selection with-

out replacement.) After all EEC bits have been placed into

the packet, we place all data bits in the temporary buffer to all

the unoccupied slots in the packet.

We again pre-generate k random indices to avoid creating

them on the fly. For 288 EEC bits, the total memory con-

sumption will be less than 1KByte.

4.4 Dealing with Variable Packet Sizes

Our optimizations so far all require maintaining certain data

structures of non-trivial sizes. So far these data structures

all depend on the packet size n + k. If the application uses

variable packet sizes, it is clearly not possible to maintain one

version of these data structures for each possible packet size.

We next discuss how variable packet sizes can be supported.

Without loss of generality, we assume that the number of data
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bits in a packet is no larger than M bits, where M is a power

of 2.

Calculating EEC bits for level 1 through 6. Here the only

data structure we used is the array containing random indices

for selecting data bits for each group. We will still maintain

this array only for the maximum data size of M bits, which

means that each array element is an integer between 0 and

M − 1.

If the packet containsM/2i data bits for some integer i, we

can still use the random indices in the array, by setting the top

i most significant bits of each index to be 0. This effectively

gives a random index between 0 andM/2i−1. If the number

of data bits in the packet is not in the form of M/2i, we must

be able to find an i such that n falls between M/2i+1 and

M/2i. We will simply use random indices between 0 and

M/2i − 1, except that if the index exceeds the number of

data bits in the packet, we discard that index and use the next

one in the array. One can easily show that we will at most

discard (i.e., waste) about half of the random indices in the

array. Simply tripling the size of the array will be sufficient

to compensate.

Placing EEC bits and data bits into the slots. Here the

only data structure we used is the array containing random

indices for placing the EEC bits into uniformly random slots.

We will still maintain this array only for the maximum packet

size, and then use the same technique as above to get random

indices in different ranges.

Calculating EEC bits for level 7 through 9. The data struc-

ture that we use to facilitate the calculation of these EEC bits

is a set of tables. Each table maps a byte value to a vector

of 3s bits. Below we briefly sketch a possible way to deal

with variable packet sizes while still using this optimization

technique.

To achieve this, one can create different sets of tables for

data size of M , M/2, M/4, and so on. If the data size n is

not in the form of M/2i, we must be able to find an i such

that n ∈ (M/2i,M/2i−1). We will do EEC encoding on the

last M/2i data bits only, and then place those data bits into

uniformly randomly slots (out of the n slots that belong to

the data bits). Notice that strictly speaking, the BER of those

M/2i data bits can be different from the BER of the whole

packet, and EEC’s formal guarantee may no longer hold. But

since the M/2i data bits constitute a majority out of the n
bits, we expect the difference to be negligible.

Naively inserting the M/2i data bits into uniformly ran-

domly slots will incur significant overhead. One can apply

the same trick for placing EEC bits into uniformly random

slots here. Specifically, we initially place the first n −M/2i

data bits into the first n−M/2i slots in the packet. Then we

insert the remaining M/2i data bits into uniformly random

slots out of the first n slots, in a similar way of inserting EEC

bits.

Finally, to further optimize for performance, instead of

placing each of the M/2i data bits into a random slot, one

could place each of the (M/2i)/8 data bytes into a random

byte position. While theoretically this means the positions of

the data bits are now correlated, we do not expect the differ-

ence to be noticeable in practice.

5 EEC’s Redundancy and

Computational Overhead

This section quantifies the redundancy and computational

overhead of EEC in practical scenarios, and further com-

pares against error correcting codes. Since error correcting

codes provide stronger functionality than EEC, any compari-

son here will be an apple to orange comparison. Rather, our

comparison intends to show that EEC provides a new inter-

esting point on the tradeoff spectrum between overhead and

functionality.

Obviously, the overhead of the codes depends on the rel-

evant parameters (e.g., EEC overhead will be close to zero

when s = 1). To be meaningful, we quantify EEC’s redun-

dancy and computational overhead under the EEC parame-

ters that we use later in our two applications. Conveniently,

the EEC parameters in those two applications happen to dif-

fer substantially (due to different application needs), allowing

a more comprehensive comparison. See Section 6 and 7 for

why the two applications use these particular EEC parame-

ters.

For error correcting codes, we use Reed-Solomon codes

(RS codes) [29] and Low Density Parity Check codes (LDPC

codes) [29] as examples. We use the RS codes software

implementation from DSP and FEC Library v3.0.16, and

use the LDPC codes software implementation from [43]7

with the default column weight of 3. There are other er-

ror correcting codes commonly used in wireless communi-

cations, such as convolutional codes and turbo codes. Con-

volutional codes have been shown to be computationally

expensive for software implementation on general purpose

CPU [44]. Specifically, software-based Viterbi decoding for

convolutional codes at the data rate of 24Mbps requires 1.4G

cycles/second computational power, even after careful opti-

mization. A classic turbo code decoder, which uses convolu-

tional code decoders as its components, tends to incur even

higher computational overhead. As a result, most these er-

ror correcting codes need to be implemented in hardware.

Since we need to deal with general flipping errors, erasure

codes [3, 31, 34, 41] are not applicable.

6http://www.ka9q.net/code/fec/
7Note that 802.11n chipsets now implement LDPC in hardware. But the

hardware is usually dedicated to coding/decoding needed by 802.11n, to meet

the hard processing deadlines. The hardware usually cannot be time-shared

by the upper layer to do LDPC encoding/decoding (e.g., as the end-to-end

forward error correction used in our real-time video streaming application).

In fact, typically the hardware does not even export such interface to the

upper layer.
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(a) Under parameters in Wi-Fi rate adaptation (b) Under parameters in video streaming

Figure 3: EEC’s computational overhead for BER ranging from 1/20000 to 1/2, with both axes in log-scale. Notice that with

1500-byte packet size, the smallest possible non-zero BER is 1/12000. The grey area corresponds to the time available for

processing a packet under 802.11a/g data rates (6Mbps to 54Mbps). Since RS codes need 10p relative redundancy to recover

a packet with p BER (see text), here RS codes cannot correct BER above 0.1. Similarly, under the LDPC code parameters

used in these experiments (optimized for lower computational overhead), the LDPC codes cannot correct BER above 0.08.

5.1 Redundancy Overhead

EEC redundancy. Our first application, Wi-Fi rate adap-

tation, is concerned with estimating packet BER within the

range of [1/1000, 0.15]. Thus we use 9 EEC levels with 32
bits per level. The relative redundancy added to a 1500-byte

packet is thus (9×32)/(1500×8) = 2.4%. Our second appli-

cation, real-time video streaming, needs to determine whether

the BER of individual 240-byte block within a packet is above

a certain threshold. Thus we use a single EEC level with 32
bits. This adds extra 4 bytes to each block, with a relative

redundancy of around 2.0%.

RS codes redundancy. It is easy to imagine that the redun-

dancy needed by error correcting codes is much larger. For

RS codes, the redundancy needed to recover a packet depends

on the packet BER and the size of the RS symbols. Each RS

symbol is simply a certain number of bits. Let symbol er-

ror rate (SER) be the fraction of corrupted symbols. Given a

packet BER p, the SER of the packet is almost never below

2p (since even if we randomly set each bit to 0 or 1, half of

the bits in a symbol remains correct).

Depending on the RS symbol size, a 1500-byte packet may

need to hold multiple RS codewords. Different codewords

may have different SER (some above 2p and some below 2p),

and we usually need to add sufficient redundancy to recover

the codeword with the most error. We capture such factor us-

ing the results from [28]. Their results characterize the ratio ρ
between the largest SER of a codeword in a packet to the SER

of that packet, in real-world scenarios. Under symbol size of

8, 6, and 4, this ratio ρ is 2.5, 7.4, and 35.1, respectively. We

have also independently confirmed these results with our own

wireless traces. For symbol size ≥ 11, a 1500-byte packet

only holds one codeword, thus the ratio is 1. However, such

large symbol size also incurs substantially higher computa-

tional overhead (see below).

RS codes can recover one corrupted symbol with two re-

dundancy symbols. Given that the largest SER of a code-

word in a packet is 2ρp, the relative redundancy needed for

RS codes to recover a packet with BER p is 4ρp. Even for

symbol size of 8, this will be 10p. If one were to use the

2.4% EEC redundancy for error correction via RS codes, it

would only recover packets with BER below 0.24% in such a

case.

LDPC codes redundancy. We use experiments to quantify

the redundancy overhead of LDPC codes. Given a target

packet BER to recover, using larger LDPC codewords will

incur less redundancy overhead (though at the cost of larger

computational overhead). To make our results pessimistic,

we treat the entire packet as a single LDPC codeword. Our

results show that LDPC codes can hardly recover a packet

with BER as low as 1% even with 10% relative redundancy.

5.2 Computational Overhead

EEC computational overhead. Figure 3 presents EEC’s

computational overhead under the two settings in the two ap-

plications, when processing 1500-byte packets. For the sec-

ond setting, it is for processing all EECs on all blocks in a

packet. These results are obtained on Soekris Net5501-70

platform with a 500MHz Geode LX single chip processor,

which is a typical platform for wireless mesh networks.

EEC encoding and decoding overheads are independent

of the packet BER. Estimating BER involves verifying the

EEC bits. This overhead is independent of BER in the video

streaming setting (Figure 3(b)), since we only use a single

level EEC there. In the Wi-Fi rate adaptation setting (Fig-

ure 3(a)), the algorithm verifies the 9 EEC levels sequentially

from the first to the last. For large BER, the algorithm may

be able to exit before verifying all levels and thus the compu-

tational overhead decreases with BER.

To put these overheads into context, Figure 3 also plots the

time available for processing a packet under the 802.11a/g

10



data rates. The results show that the computational over-

heads of our pure software implementation of EEC are small

enough to support even the highest data rate.

RS codes computational overhead. Figure 3 further in-

cludes the computational overhead of RS codes (with symbol

size 8) for correcting a packet with a given BER p (i.e., using

redundancy 4ρp). The decrease of RS encoding time when

BER exceeds 5% (or relative redundancy exceeds 50%) is due

to RS codes’ inherent properties. The results show that on

our platform, RS codes overheads are too large to support the

54Mbps data rate. Even for 6Mbps, the overhead can keep up

with the data rate only when BER is rather small. These ob-

servations are consistent with previous work that needs to use

a PC with 3.0GHz CPU (instead of typical wireless routers)

to perform RS encoding/decoding at 802.11 data rates [28].

Thus we believe that EEC, with its 10 to 100 times lower

computational overhead, is an interesting approach that can

provide useful meta-information about the packets at Wi-Fi

data rate.

Finally, we have also experimented with other RS symbol

sizes (results not included in Figure 3 for clarity). Our results

show that smaller RS symbol sizes result in similar computa-

tional overhead as symbol size of 8, because the increased ρ
factor roughly offsets the computational overhead reduction

from smaller symbol sizes. Larger symbol size (e.g., 11) will

incur much higher overhead (up to 4 times), except in corner

cases where BER is below 0.04%.

LDPC codes computational overhead. Figure 3 also in-

cludes the computational overhead of LDPC codes, using our

packet trace collected from an 802.11g link with intermedi-

ate link quality. To make our results pessimistic, we carefully

choose the parameters of the LDPC code to minimize its over-

all computational overhead for processing a packet (even at

the cost of increasing redundancy overhead). Specifically, we

set LDPC codeword size to 648 bits, which is the smallest

LDPC codeword size suggested by the 802.11n standard. We

further set the relative redundancy to 90% — such a high rel-

ative redundancy allows LDPC codes to take fewer number of

iterations to decode. This in turn can often reduce the overall

decoding time for packets with BER above 1%. For pack-

ets with smaller BER (e.g., 0.01%), our experiments show

that using 90% relative redundancy only increases the decod-

ing time by less than 15% compared to using lower relative

redundancy (such as 1/6). Note that there are no parame-

ters that can consistently minimize computational overhead

of LDPC codes in all settings. Nevertheless, the parameters

we choose ensure that our results are close to the optimal for

packets with different BER values. As shown in Figure 3,

even under such parameters, LDPC codes still tend to incur

even larger computational overhead than RS codes.

6 EEC Application:

Wi-Fi Rate Adaptation

This section presents the implementation and evaluation re-

sults of EEC-Rate. EEC-Rate is a rate adaptation scheme that

uses EEC to guide Wi-Fi rate change decisions. It is designed

for systems that can use partial packets. A concrete exam-

ple of such a system would be large unicast transfers over

wireless network [21], where partial packets are recovered

via end-to-end error correction. For these systems, packet-

level throughput (which only counts correct packets) fails to

capture the system goodput.8 Thus we will directly use good-

put as the measure of goodness. For a packet with BER p,

we assume that the fraction of application-level bits that can

be recovered is (1 − γp), where the constant γ depends on

how the application utilizes partial packets. For example, if

the application uses forward error correction with RS codes

with symbol size of 8, then to correct a BER of p, the relative

redundancy needs to be about 10p (as explained in Section 5).

In such a case, γ = 10, since only (1 − 10p) fraction of the

packet is application-level bits. We assume that the source of

each packet includes γ in the packet header, to expose this

information to the wireless routers for better rate adaptation.

Except that, we allow the routers to be oblivious to how the

application uses partial packets.

6.1 EEC-Rate Design and Implementation

Existing approaches. Over the years, researchers have pro-

posed many different rate adaptation schemes, and we do

not intend to provide a complete survey here. For com-

parison purpose, we consider three representative prior rate

adaptation schemes: SampleRate [2], Robust Rate Adapta-

tion Algorithm (RRAA) [48], and Receiver-Based AutoRate

(RBAR) [16]. We do not consider SoftRate [45], which uses

SoftPHY [18] and thus requires special hardware not com-

mercially available today.

SampleRate and RRAA both adjust rates based on packet

loss statistics. SampleRate sends packets at different data

rates periodically to obtain packet loss statistics on those

rates, while RRAA adjusts rate purely based on the statis-

tics from the current rate. In RBAR, the receiver measures

the SNR of the RTS packet received. This information is then

piggybacked on the CTS packet to the sender for it to adjust

rate.

EEC-Rate overview. We design EEC-Rate by combining

key ideas from RRAA and SoftRate. As in SoftRate, we mod-

ify RRAA to use packet BER information instead of packet

loss statistics. Different from SoftRate, EEC-Rate obtains the

BER information from EEC instead of from SoftPHY. Also,

EEC-Rate does not use the BER under one rate to predict the

8As defined in Section 2, goodput refers to the number of useful recover-

able application-level bits that the system can transmit per second.
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BER under other rates (since we are not clear about the pre-

diction accuracy).

Fundamentally, EEC-Rate is able to achieve better good-

put than the other schemes [2, 16, 48] for similar reasons why

SoftRate outperforms them [45]. Namely, SoftRate and EEC-

Rate can leverage the fine-grained and direct BER informa-

tion, while other schemes only use coarse-grained packet loss

statistics [2, 48] or indirect SNR information [16].

EEC-Rate design details. In EEC-Rate, each packet comes

with EEC which allows the receiver to estimate the packet

BER. EEC-Rate maintains a moving BER average p̄ of the

recent (both correct and partial) packets, with a weighting

factor of 0.2 for the most recent packet. Given two con-

secutive packets sent at the same rate, if the second packet’s

BER minus the first packet’s BER is larger than 0.1, then the

second packet is considered as being interfered and will not

be included in the moving average. This is similar to Soft-

Rate [18], which also excludes interfered packets.

Similar to RRAA and SoftRate, EEC-Rate maintains two

constants (αi and βi) and one variable (wi) for each rate Ri.
If p̄ > βi, then the sender will decrease rate from the cur-

rent rate Ri to the next lower rate Ri−1. The value of βi is

obtained by solving Ri × (1 − γβi) = Ri−1. This means

that when p̄ > βi, the goodput at Ri is likely to be smaller

than the goodput at rate Ri−1, if the BER will be zero at rate

Ri−1. Thus it may be better to decrease rate. The current

rate Ri is increased if p̄ < αi and if the number of pack-

ets received at rate Ri exceeds wi. Here wi (initialized to

2) is a dynamic window size to limit excessive rate-increase

attempts. A rate-increase attempt fails if after rate increase,

the protocol immediately decreases rate due to the high BER

at the higher rate. Each failed rate-increase attempt from Ri
doubles wi (with a cap of 32). Any successful rate-increase

attempt brings wi back to 2. Notice that here the fine-grained

BER information enables EEC-Rate to use a smaller window

than RRAA. Following [48], we set the rate-increase thresh-

old αi−1 = βi/3 for all i.

For 802.11a/g data rates and γ = 10 (i.e., a packet

with BER of p contains (1 − 10p) fraction of recoverable

application-level bits), the previous two formulas yieldαi and

βi values ranging from 0.2% to nearly 5% (for different i).
Together with the need to detect interference, EEC-Rate thus

needs to estimate BER ranging from 0.1% to 15%. EEC-Rate

uses 9 levels of EEC bits to do so, where each level has 32

bits. This is sufficient to provide an average relative estima-

tion error (i.e., average over |p̂− p|/p) of roughly 30%.

Finally, the receiver in EEC-Rate feeds back the BER to

the sender in a way that balances timeliness and overhead.

First in normal cases, the receiver feeds back the BER if 4ms

has passed and if it has received a partial packet since the last

feedback. The 4ms interval is chosen such that the feedback

overhead is below 5%. Second, the receiver also feeds back

the BER when i) a partial packet is received at a new rate

(in which case prompt positive feedback helps to retain the

sender at this new rate), or ii) the feedback will trigger a rate

change, or iii) a packet is received at an unexpected rate (im-

plying a loss of synchronization between the sender and the

receiver). Notice that since the receiver has the BER informa-

tion, it can track the expected sending rate of the sender.

Implementation. We have implemented EEC-Rate in Mad-

Wifi 0.9.49. We disable the default MAC-layer auto retrans-

mission for failed packets. For comparison, we have also im-

plemented RRAA [48] and an SNR-based scheme following

the design of RBAR [16]. Since we cannot modify firmware

to feedback SNR at MAC layer as in RBAR (which is a limi-

tation of RBAR itself), we feedback the SNR asynchronously

as in EEC-Rate. Our SNR-based protocol also incorporates a

key salient feature from CHARM [19] and uses the weighted

moving average of SNR across multiple packets. Since we

already have low overhead asynchronous feedback, we do

not need to rely on the channel reciprocity assumption in

CHARM. When evaluating the SNR-based scheme, we al-

ways carefully train the data-rate-to-SNR-threshold mapping

before our experiments. Finally for SampleRate, we directly

use the implementation from the MadWifi driver, except that

we use one second as the interval over which transmission

time averages are computed, since it gives SampleRate a bet-

ter performance [46].

The original versions of SampleRate and RRAA equate

partial packets to lost packets. In our evaluation, to make

our results pessimistic, we also consider simple optimiza-

tions to the original versions so that partial packets are not

treated as lost packets. We call these optimized versions

as pSampleRate and pRRAA, respectively. Specifically, the

sender in pSampleRate and pRRAA is informed (through

asynchronous feedback as in EEC-Rate) of the delivery of

partial packets. The BER of the partial packets, however, is

not fed back since they do not use EEC.

6.2 Evaluation Results

We compare the goodput achieved by EEC-Rate, RRAA,

SampleRate, pRRAA, pSampleRate, and the SNR-based

scheme, under γ = 10 (see earlier discussion for the ratio-

nale behind this γ value). All experiments are performed

using Soekris net5501-70 routers with 802.11a/b/g Mini-PCI

(Wistron CM9) cards. The bit errors that we observe in our

experiments are often bursty.

Indoor scenario. Our first set of results are obtained on 6 dif-

ferent wireless links in our indoor mesh network testbed. We

experiment with each link under three different transmission

power levels (5dBm, 10dBm, and 15dBm). In experiment,

the sender continuously sends 1500-byte packets for 30 sec-

onds. For a given link and transmission power, we evaluate

each rate adaptation scheme in 10 independent experiments

(in round-robin fashion), and then compute the average good-

put.

Figure 4(a) presents the goodput when the links operate on

9http://madwifi-project.org
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Figure 4: Goodput of different rate adaptation schemes under various environments.

802.11g channel. These experiments are subject to strong in-

terference from an overlapping campus Wi-Fi network and

a dozen of other access points nearby. For clarity, the 18
different settings (link × transmission power) in the figure

are sorted in increasing order of their goodput under EEC-

Rate. Among the 6 schemes, EEC-Rate achieves the high-

est goodput, while the SNR-based scheme and pSampleRate

achieve similarly high goodput as well. RRAA and Sam-

pleRate have the lowest goodput since they are unaware of

the delivery of partial packets, and thus often operate on in-

appropriate rates. In all our later experiments, their perfor-

mance is still always worse than pRRAA and pSampleRate,

respectively. Thus for clarity, we will not report their re-

sults further. pRRAA’s goodput is significantly below EEC-

Rate’s goodput, because the interference triggers pRRAA to

decrease rate frequently. Our experiments also show that en-

abling RRAA’s adaptive RTS/CTS mechanism [48] does not

improve RRAA’s or pRRAA’s goodput in our setting. Similar

conclusions have been made elsewhere [45] as well. The in-

door interference-free results for 802.11a channel are shown

in Figure 4(b). There all the schemes have similar relative

performance as in Figure 4(a), except that pRRAA’s perfor-

mance becomes better (though still not as good as EEC-Rate).

Overall, in indoor environments, the channel coherence

time tends to be large (i.e., multiple seconds) and the best

rate is often quite stable, making it relatively easy to choose

the best rate. Because of this, simple schemes (e.g., pSam-

pleRate) can already obtain close to optimal performance [2],

and more advanced techniques will not bring significant extra

improvement.

Walking scenario. In our second set of experiments, the

sender (operating on 802.11a channel) is moved at walking

speed along a straight corridor. Each walk lasts for around 90
seconds, with the sender moving away from and then moving

back to the receiver. The total walking distance is 90 meters.

We perform 5 walks for each scheme (in round-robin fash-

ion). Each 90-second walk for a given scheme is considered

as nine 10-second experiments for that scheme, and we mea-

sure the goodput in each experiment.

Figure 4(c) plots the goodput measured. For clarity, the 45
goodput values (from the 45 experiments) for each scheme

are plotted in increasing order. The figure shows that EEC-

Rate and the SNR-based scheme achieve similarly high good-

put, and outperform pRRAA and pSampleRate. The average

relative goodput (across all the experiments) of EEC-Rate, as

compared to pRRAA and pSampleRate, reaches 130% and

150% respectively. pSampleRate performs the worst since it

allows only one rate change per second, for the purpose of

stability. This prevents it from adapting promptly enough.

EEC-Rate performs better than pRRAA, because per-packet

BER information allows it to i) use a smaller rate adaptation

window and ii) be more robust to random packet losses.

Outdoor challenging scenario. In our last set of experi-

ments, the sender and receiver (operating on 802.11a chan-

nel) are placed on the opposite sides of a busy road and are

30 meters apart. The pedestrian speed is around 3kmph, and

the vehicular speed is less than 20kmph. Our setting is simi-

lar to the residential urban outdoor environment in [4], where

the average coherence time between a pair of static nodes is

usually 100 ms, but passing cars can drive the coherence time
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down to 15 ms. Notice that Section 5 showed that evaluating

a packet’s BER using EEC takes less than 0.3 ms. Such pro-

cessing delay is over an order of magnitude smaller than the

coherence time even in such challenging environments.

For each scheme, we do 80 experiments of 10 seconds

each (in round-robin fashion), and measure the goodput in

each experiment. Figure 4(d) plots the goodput achieved.

Again, we plot the goodput values in increasing order for

clarity. Here EEC-Rate significantly outperforms the other

three schemes. Its average relative goodput is about 230%
when compared to pRRAA and pSampleRate, and is about

180% when compared to the SNR-based scheme. pRRAA

suffers from frequent and unnecessary rate reduction caused

by the large number of random packet losses in this envi-

ronment. pSampleRate, on the other hand, is not able to

adapt promptly enough to the fast-varying channel quality.

Finally, even though we trained the rate-to-SNR-threshold

mapping for the SNR-based scheme, during our experiments,

the changing traffic pattern quickly renders the mapping in-

accurate. This causes the goodput of the SNR-based scheme

to decline, as compared to EEC-Rate.

7 EEC Application:

Real-time Video Streaming

This section presents the implementation and evaluation re-

sults of applying EEC in real-time video streaming over

wireless mesh networks. Section 2 explained how EEC en-

ables the routers in this application to perform BER-aware

packet retransmission (denoted as BER-aware). We use

no-retran to denote the existing approach [40] described

in Section 2, where a partial packet is always directly for-

warded to the next hop10, in the hope that forward error

correction will take care of the errors. For comparison, we

further consider two other schemes, packet-retran and

frag-retran, where the routers always request the re-

transmission of a partial packet (and forward error correction

is thus not needed). packet-retran uses whole packet re-

transmission, while frag-retran splits a packet into mul-

tiple fragments, uses CRC on each fragment, and only re-

transmits corrupted fragments. We set the fragment size to

240 bytes, which gives the best results for frag-retrans

in our experiments.

Quantify the potential gain. We want to first gain some in-

sight into whether BER-awarewill likely lead to significant

improvements. Figure 5 presents the complementary CDF

for packet BER as measured on an 802.11a link with inter-

mediate quality in our indoor mesh network testbed. Results

from other researchers [28] are similar. The figure shows that

most of the partial packets have BER below 2%, confirming

the utility of using forward error correction. However, the

distribution also has a long tail, and 5% of the packets even

10Note that if a packet is entirely lost or if its header is corrupted, the

packet will still be retransmitted.
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Figure 5: Complementary CDF for packet BER on an

intermediate-quality link.

have BER over 10%. This implies that no-retran may

greatly suffer from unrecoverable packets. The figure also

implies that packet-retran and frag-retran will re-

quest retransmission for over 70% of the packets. Doing so

can potentially cause more packets to miss deadline, espe-

cially when there is no idle bandwidth. Leveraging EEC,

BER-aware will only need to retransmit much fewer pack-

ets, while ensuring that the packets can be recovered.

7.1 Implementation and Experimental Setting

We implement the four schemes on Soekris net5501-70

routers as a Linux kernel module to interface with MadWifi

0.9.4. We configure all wireless interfaces in monitor mode,

and implement a glue layer to expose the wireless interface

as an Ethernet interface to the native Linux kernel network

stack. We disable the default MAC-layer auto retransmission

for failed packets. Packets are transmitted in increasing order

of their deadlines.

For our experiments, we set up real-time video streaming

over two wireless links and three dual-radio routers (A →
B → C), in an office environment. Following common prac-

tice, we let the two wireless links operate on 802.11g and

802.11a channel respectively to avoid self-interference. Both

wireless links use the fixed (lowest) data rate of 802.11a/g

(i.e., 6Mbps). Same as before, the bit errors in these real-

world experiments are often bursty. The source (connected

to A) uses EvalVid [23] to stream video to the destination

(connected to C). We generate the test video at 30 frames

per second from the 300-frame Foreman sequence11, which

is commonly used for such purpose. The test video is en-

coded using the x264 encoder under MPEG4 baseline profile

setting, with one I-frame every 30 video frames.

We use RS codes (with symbol size of 8 and code-

word/block size of 240 bytes) to add forward error correc-

tion to the video packets, so that the destination can recover a

codeword with 2% BER. This 2% value is roughly at the knee

of the BER distribution in Figure 5. The figure also shows

that given the long tail, further increasing the redundancy will

not likely provide significant benefit. For BER-aware, the

router applies a single level EEC with 32 EEC bits to each

240-byte block in the packet. We intentionally use 32 EEC

11http://www.cipr.rpi.edu/resource/sequences/sif.html
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Figure 6: Performance of different retransmission schemes under various link conditions.

bits to demonstrate that EEC’s overhead can be as low as a

typical CRC while still be able to significantly benefit the end

application.

7.2 Evaluation Results

Measure of goodness. We use the standard Peak Signal-

to-Noise Ratio (PSNR) [33] to measure the quality of the

streamed video. PSNR is defined on log-scale in terms of

dB, and thus a small difference in PSNR values can be signif-

icant visually. PSNR difference above 0.5dB is usually con-

sidered visually noticeable, and the MPEG committee uses

an informal threshold of 0.5dB to decide whether to incorpo-

rate a coding optimization [39]. Usually the video quality is

considered “Excellent” if PSNR is above 37dB, and “Bad” if

PSNR is below 20dB [23].

Results without interference. In each of our first set of

experiments, we stream the test video under one specific

scheme. We evaluate the different schemes in a round-robin

fashion. We adjust the transmission power of the router B so

that the link between B and C is often of intermediate qual-

ity due to weak signal. Because of human movements in our

office environment, the link quality here can still vary non-

trivially over time. On the other hand, video streaming qual-

ity as measured by PSNR can be highly sensitive to wireless

channel conditions. To compare the schemes under similar

channel conditions, we group the experiments into four quar-

tiles based on the packet reception ratio (PRR)12 of the link

in each experiment.

When the channel condition is bad (i.e., PRR ∈ [0, 1
4 ] or

[ 14 ,
2
4 ]), all the schemes achieve similarly low PSNR (most

experiments below 20dB), though BER-aware slightly out-

performs all other schemes by around 0.5dB. Here PSNR is

largely determined by whether the link can provide enough

raw bandwidth to stream the video, and retransmission

schemes have little effect. The poor PSNR in most of the

experiments are due to the fact the link is fundamentally not

able to deliver certain I-frames on time.

Figure 6(a) and (b) present the PSNR of the different

schemes under the remaining two PRR quartiles. We only

12We count both correct and partial packets as received packets when cal-

culating PRR.

plot PSNR below 40dB because video quality is considered

“Excellent” for PSNR above 37dB. The difference between

two PSNR values that are above 40dB bears little practical

relevance.13 For similar reasons, we focus on PSNR values

above 15dB. For clarity, the PSNR values in different experi-

ments of each scheme are plotted in increasing order.

Figure 6(a) shows that for channel condition with PRR

∈ [ 24 ,
3
4 ], BER-aware achieves on average about 5dB higher

PSNR over other schemes. As expected, frag-retran

suffers from congestion due to its higher bandwidth consump-

tion, while no-retran suffers from many unrecoverable

packets. Such a trend continues in Figure 6(b), though all

schemes in Figure 6(b) perform fairly well. This is simply

because with the good link quality (PRR ∈ [ 34 , 1]), there are

few errors and even naive schemes can achieve near-optimal

results.

Effects of interference. For these experiments with inter-

ference, we set up a hidden terminal to router B. To iso-

late the effect of interference from that of weak signal, we

set B to transmit at its maximum power. Also because

of this, we no longer need to categorize the experiments

based on PRR. Figure 6(c) presents the PSNR results un-

der such setting. The results show BER-aware easily out-

performs no-retran and packet-retran by over 5-

10dB. This is simply because no-retran relays many un-

recoverable packets, while packet-retran’s aggressive

retransmission causes many packets to miss their deadlines.

frag-retran performs similarly well as BER-aware.

Compared to the earlier results under weak signal, here the

errors in a packet are much more clustered. This enables

frag-retran to effectively correct the errors by retrans-

mitting only a rather small number of fragments.

8 Related Work

Error estimating codes. While error correcting codes have

been extensively studied, we are not aware of any prior rig-

orous study on codes for estimating BER of wireless pack-

ets. The need for error estimation has been discussed in some

13Including those PSNR values above 40dB actually would make our re-

sults better.
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prior work in different contexts (e.g., [36], [35] and [45]).

The general technique of inserting known bits (called pilot

bits) into a packet can be viewed as a naive form of EEC, and

Section 3.3 already explained why pilot bits are poorly suited

for estimating BER. Fragmented CRC can be applied to de-

termine the fraction of corrupted fragments in a packet [36].

This fraction can be a poor estimation for packet BER, es-

pecially under bursty errors. Error correcting codes can ob-

viously also determine packet BER as a side benefit [36],

though with substantially higher overhead than EEC.

Computing parity bits over groups of data bits is a com-

mon technique in coding. However, because our goal is to

estimate instead of to correct errors, EEC’s specific way of

forming groups and using the parity information is different

from other coding algorithms. For example, LDPC codes [29]

also compute parity bits over groups of data bits and are per-

haps the most relevant codes to EEC. Each data bit in LDPC

codes needs to belong to multiple groups to enable error cor-

rection. In comparison in EEC, data bits in one group may or

may not be in other groups. This helps to keep redundancy

overhead low, while still allowing error estimation if the par-

ity information is used properly. The second difference is

that the group sizes in LDPC codes are by definition small

on average, since the codes are low density. In comparison in

EEC, the group sizes can reach n and the average is as large as

Θ(n/ logn). Similarly, EEC also differs from many other er-

ror correcting codes (such as Tornado code [3], LT codes [31],

Raptor codes [41], Online codes [34], and Growth codes [20])

in terms of the group sizes and in terms of how the parity bits

are actually used.

In our prior work [50] on secure aggregation queries in sen-

sor networks, we address a similar theoretical problem of effi-

ciently estimating a small value (i.e., the fraction of “errors”,

in EEC terms). There the algorithm defines groups of dif-

ferent sizes and then relies on knowing whether a group has

any error (in EEC terms), despite adversarial interference. In

comparison, our EEC algorithm relies on knowing whether

the number of errors in a group is even or odd. A second

key difference is that the algorithm in [50] is interactive and

requires multiple rounds.

Finally, given a channel model such as binary symmet-

ric channel or Gaussian noise channel, researchers have also

studied how to estimate the average output BER of LDPC de-

coders [49]. This is largely not related to EEC, since the BER

here is simply the average BER (after LDPC decoding) under

the given channel model, instead of the BER of a given packet

under unknown channel conditions.

SoftPHY. Coding is certainly not the only way of estimating

BER. Recently, some researchers propose the SoftPHY [18]

physical layer design, which exposes a confidence level for

each bit received. Such information can of course, be used

to estimate BER. Today’s commercial Wi-Fi hardware does

not yet provide SoftPHY functionality. Furthermore, it does

not seem possible to provide SoftPHY by only modifying

the Hardware Abstraction Layer or firmware, without chang-

ing the hardware. Fundamentally, this is because today’s

Wi-Fi chips implement physical layer functionality in non-

programmable application-specific integrated circuit, and the

confidence level information is internal to the physical layer.

Compared to SoftPHY, our EEC design provides a pure

software based alternative. A software based approach is usu-

ally easier for adoption or for upgrading existing systems. In

particular, the computational overhead of our software based

approach is small enough to run at maximum 802.11a/g data

rate. Even if SoftPHY becomes available on future Wi-Fi

hardware (especially for application scenarios where cost is

not a major concern), EEC will continue to be useful on

lower-end wireless devices such as wireless sensors. For

these lower-end devices, the additional hardware cost in Soft-

PHY (such as more output pins or wider system bus) may

not justify the benefit. Finally, we also note that SoftPHY

provides strictly more information than just packet BER. For

applications that need the confidence level information for in-

dividual bits, EEC will not be suitable. Also, even when the

packet is entirely correct, SoftPHY can still provide quantita-

tive confidence information while EEC can only output BER

being zero. In summary, with all these differences between

EEC and SoftPHY, we believe that EEC and SoftPHY will

always have their respective suitable application domains.

Using SNR in place of BER. Another alternative ap-

proach [4, 15, 19, 51] is to use Signal-Noise Ratio (SNR)

in place of packet BER, since the theoretical relationship be-

tween SNR and BER is well-understood. SNR (either over-

all channel SNR [4, 19, 51] or SNR values of individual

sub-carriers [15]) is fundamentally an indirect measure and

needs to be (explicitly or implicitly) mapped to packet BER.

The mapping is affected by various real-world factors such

as hardware calibration, interference, and mobility. As a re-

sult, using SNR to estimate BER is not able to provide hard

guarantees. EEC, on the other hand, provides mathematically

provable estimation quality that is independent of the hard-

ware or deployment environment. For example, EEC can pro-

vide the same provable guarantee even in non-WiFi settings.

Furthermore, SNR-based approaches [15, 19, 51] often only

measure SNR at the beginning of the packet, and the SNR

may become different later in the packet. In comparison, EEC

continues to provide its provable guarantee regardless of how

the error are distributed within the packet.

Nearest neighbor and hamming distance estimation. Af-

ter the initial conference version of this paper had been pub-

lished, some existing nearest neighbor search algorithms and

hamming distance sketching algorithms (which we had not

been aware of) were brought to our attention. Nearest neigh-

bor search in high dimensional spaces [17] is a key topic

in computational geometry. The search asks for the nearest

point (out of all candidate points in the database) to a given

query point, according to some metric such as hamming dis-

tance. Many nearest neighbor search algorithms [17] (con-

ceptually) first compute a sketch for each of the candidate

point and the query point. A pair of sketches can provide use-
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ful information on (sometimes allow a direct estimation of)

the distance between the corresponding pair of points. Sim-

ilar sketching techniques/algorithms [7, 6, 12, 13] have been

further developed for hamming distance estimation, usually

in the context of streaming databases. Here the algorithms

compute a short sketch for each of the data streams, and then

use the sketches to estimate the hamming distance between

data streams.

In hindsight for the EEC problem, it is clear that since we

do not make assumptions on error independence/correlation,

the packet received can be arbitrarily different from the packet

sent, and thus we might just as well view them as two un-

related packets. Further if we restrict to considering only

“systematic codes” (i.e., the data bits are not changed during

encoding), then packet BER directly corresponds to the ham-

ming distance between these two unrelated packets. In partic-

ular, the EEC bits in our algorithm can be viewed as a sketch,

and the BER is estimated based on the (potentially corrupted)

sketch of the packet sent and the sketch of the packet received.

Despite the above connection, to the best of our knowledge,

those sketching algorithms [7, 6, 12, 13, 17, 24] have never

been adopted/adapted to estimate packet BER in the context

of coding. Furthermore, the EEC problem imposes an addi-

tional requirement that these previous algorithms do not need

to address in their corresponding contexts. Namely, the EEC

bits may be corrupted during transmission as well. It turns

out that reasoning about potentially corrupted EEC bits is a

key technical difficulty in our analysis and proof in this work.

None of those sketching algorithms (need to) consider poten-

tially corrupted sketches, and there has been no existing anal-

ysis on their robustness in our context. One could potentially

use error correcting coding to protect the sketches, which un-

fortunately would add both complexity and extra overhead.

Relationship to specific sketching algorithms. The above

has discussed the overall difference between our work and

existing sketching algorithms. Since our EEC algorithm does

use some rather similar techniques to some of the sketching

algorithms, the following provides a comparison with several

specific sketching algorithms.

Among the various existing nearest neighbor search algo-

rithms, Kushilevitz et al.’s algorithm [24] for the hamming

distance metric is perhaps the most related. Here the points

considered are n-bit binary vectors. Their algorithm concep-

tually computes n levels of parity bits as the sketch, for all

the points in the database collectively. The parity bits in the

ith level each correspond to a group of data bits with the ex-

pected group size being n/(4i), and serve (conceptually) to

test whether the hamming distance exceeds i. Notice that our

single-level EEC algorithm is very similar to their algorithm,

except that we further reason about and prove the effects of

corrupted EEC bits. On the other hand, given their target ap-

plication, their algorithm does not optimize for the total size

of the sketch (e.g., the total number of levels). Thus directly

using their algorithm for multi-level EEC purpose is not fea-

sible.

The large sketch size in Kushilevitz et al.’s algorithm is not

fundamental. Later, Cormode et al. [7] adapt that algorithm

explicitly for hamming distance estimation between two doc-

uments. Cormode et al.’s algorithm uses total logβ n parity

bits as the sketch for each document. The logβ n parity bits

are conceptually from logβ n levels, with 1 bit per level. The

ith level parity bit corresponds to a group of βi data bits (i.e.,

geometrically distributed group sizes as in our algorithm). To

increase estimation quality, the algorithm will use more levels

(i.e., with a β closer to 1). In comparison, our EEC algorithm

fixes the number of levels (i.e., log2 n) and uses more bits

on each level for better estimation quality. Cormode et al. [7]

only show that their algorithm works for ǫ above some thresh-

old, while we prove that our algorithm works for all ǫ > 0.

But as hinted in [12], we suspect that a better analysis (e.g.,

as ours) should be able to remove this limitation of Cormode

et al.’s algorithm.

There are also many other sketching algorithms (mainly

in the context of streaming databases) [6, 13] for hamming

distance estimation. These algorithms are less similar to our

EEC algorithm, and use more complex quantities (instead of

parity bits) as sketches. It is worth noting that [13] requires

a sketch size of only O(log n) bits to achieve an (ǫ, δ) ap-

proximation for any constant ǫ and δ. Such sketch size is

asymptotically the same as the redundancy added by our EEC

algorithm.

9 Conclusion

This paper is motivated by recent emerging systems that can

leverage partial packets in wireless networks. We observe

that such systems would significantly benefit from the BER

information of the partial packets. This paper thus proposes

the novel concept of error estimating coding (EEC). Without

correcting the errors, EEC enables the receiver of a partial

packet to estimate the packet’s BER. Our EEC design pro-

vides provable estimation quality, with rather low redundancy

and computational overhead. We have exploited and imple-

mented EEC in two wireless network applications, Wi-Fi rate

adaptation and real-time video streaming. Our real-world ex-

periments have demonstrated that these applications can sig-

nificantly benefit from EEC.

While we have only focused on applying EEC to wire-

less networking in this paper, the utility of EEC can be

much broader. For example, EEC’s functionality can also

help data storage recovery from multiple partially correct

copies [35]. Generally speaking, EEC may find potential ap-

plication wherever partially correct data can be utilized.
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Table 2: Key notations used in our proof. Extended from Table 1.

n number of data bits in a packet

k number of EEC bits in a packet (i.e., s× l)
s number of EEC bits in one level

l number of EEC levels (i.e., l2 − l1 + 1)

g number of data bits in one group

p fraction of erroneous slots in the given packet (between 0 and 1/4)

p̂ estimated value of p as returned by the algorithm

a algorithm parameter

b algorithm parameter (no larger than 1/4)

qi the fraction of parity check failures at level i (which is a random variable)

φ(x, y) sum of odd terms in the binomial distribution B(x, y)
ψ(x) ψ(x) = 2x(1 − x)
c1 constant of 0.25
c2 constant of 0.4
d0 constant of 0.26 (i.e., slightly larger than c1)

d1 constant of ψ(d0) (roughly 0.385)

d2 constant of ψ(2)(d0) (roughly 0.474)

d−1 constant of ψ(−1)(d0) (roughly 0.154)

d−2 constant of ψ(−2)(d0) (roughly 0.084)

d−3 constant of ψ(−3)(d0) (roughly 0.044)

d−4 constant of ψ(−4)(d0) (roughly 0.022)

log base 2, i.e log = log2

l1, l2 selected levels are from level l1 to l2 (both inclusive)

P1 fraction of erroneous data bits among all data bits (which is a random variable since placement is randomized)

P2 fraction of erroneous EEC bits among all EEC bits (which is a random variable since placement is randomized)

A Formal Proof for Theorem 1

This appendix provides a formal proof for Theorem 1. Note that we have not optimized for the constants used in our proof.

It is possible that the same results can be proved with better constants, though that will not affect our final asymptotic claims.

Table 2 summarizes the notations used in our proof.

A.1 Technical Lemmas

This section first proves some useful technical lemmas regarding the two functions φ(x, y) and ψ(x). For positive integer

x and real number y ∈ [0, 1], φ(x, y) is defined to be the sum of all the odd terms in a binomial distribution B(x, y), or

formally:

φ(x, y) =
∑

1 ≤ j ≤ x and j is odd

(

x

j

)

yj(1 − y)x−j

Lemma 3 Consider any positive integer x and any real number y ∈ [0, 1
2 ]. We have:

1. φ(x, y) = 1
2 (1 − (1 − 2y)x). (Note that this equation is actually well-known from the study on LDPC codes [14], but

we still include a proof here for completeness.)

2. φ(x, y) ∈ [y, 1
2 ].

3. φ(x, y) ≤ xy.

4. Given y, φ(x, y) is monotonically increasing with x.

5. Given x, φ(x, y) is monotonically increasing with y.

6. For any c ≥ 1 and cy ≤ 1
2 , φ(x, cy) ≤ cφ(x, y).
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7. For any c ∈ [0, 1], φ(x, cy) ≥ cφ(x, y).

8. Let φ(−1)(x, z) denote the inverse function of φ(x, y) with respect to y. Then y = φ(−1)(x, z) = 1
2 (1 − (1 − 2z)

1
x ).

9. Given x, φ(−1)(x, z) is monotonically increasing with z (within its domain of [0, 1
2 ]).

Proof:

1. Use induction on x. Obviously φ(1, y) = y and the equation holds for x = 1. For x ≥ 2, we have:

φ(x, y) = (1 − y)φ(x− 1, y) + y(1 − φ(x − 1, y))

=
1

2
(1 − y)(1 − (1 − 2y)x−1) +

y(1 − 1

2
(1 − (1 − 2y)x−1))

=
1

2
(1 − (1 − 2y)x)

2. Use induction on x. Obviously, φ(1, y) = y ∈ [y, 1
2 ]. For x ≥ 2, we have:

φ(x, y) = (1 − y)φ(x− 1, y) + y(1 − φ(x − 1, y))

= y + (1 − 2y)φ(x− 1, y) ≥ y

Furthermore:

y + (1 − 2y)φ(x− 1, y)

= φ(x − 1, y) + y(1 − 2φ(x− 1, y))

≤ φ(x − 1, y) + φ(x − 1, y)(1 − 2φ(x− 1, y))

= 2φ(x − 1, y)(1 − φ(x − 1, y)) ≤ 1

2

3. Notice that 1 − φ(x, y) is the sum of all the even terms in the binomial distribution. This sum is clearly larger than or

equal to the term of
(

x
0

)

(1 − y)x ≥ 1 − xy. Thus we have 1 − φ(x, y) ≥ 1 − xy and φ(x, y) ≤ xy.

4. For all x ≥ 2, we have φ(x, y) = φ(x− 1, y) + y(1 − 2φ(x− 1, y)) ≥ φ(x− 1, y).

5. It suffices to show that ∂φ
∂y

(x, y) ≥ 0. Consider a given x, we have

∂φ

∂y
(x, y) = −1

2
x(1 − 2y)x−1(−2)

= x(1 − 2y)x−1 ≥ 0

6. Use induction on x. For x = 1, we have φ(1, cy) = cy = cφ(1, y). For x ≥ 2, we have:

φ(x, cy)

φ(x, y)
=

cy + (1 − 2cy)φ(x− 1, cy)

y + (1 − 2y)φ(x− 1, y)

≤ cy + (1 − 2y)φ(x− 1, cy)

y + (1 − 2y)φ(x− 1, y)

≤ cy + c(1 − 2y)φ(x− 1, y)

y + (1 − 2y)φ(x− 1, y)
= c

7. Use induction on x. For x = 1, we have φ(1, cy) = cy = cφ(1, y). For x ≥ 2, we have:

φ(x, cy)

φ(x, y)
=

cy + (1 − 2cy)φ(x− 1, cy)

y + (1 − 2y)φ(x− 1, y)

≥ cy + (1 − 2y)φ(x− 1, cy)

y + (1 − 2y)φ(x− 1, y)

≥ cy + c(1 − 2y)φ(x− 1, y)

y + (1 − 2y)φ(x− 1, y)
= c
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8. Since z = φ(x, y), we have 1 − 2z = (1 − 2y)x. For a given z ∈ (0, 1
2 ], there is only root y satisfying the equation in

the domain of (0, 1
2 ]. This root is exactly y = 1

2 (1 − (1 − 2z)
1
x ).

9. It suffices to show that ∂φ
(−1)

∂z
(x, z) ≥ 0 for all z ∈ (0, 1

2 ]. Consider a given x, we have

∂φ(−1)

∂z
(x, z) = −1

2

1

x
(1 − 2z)

1
x
−1(−2)

=
1

x
(1 − 2z)

1
x
−1 ≥ 0

2

For convenience later, we define functionψ : [0, 1] → [0, 1
2 ], where ψ(x) = 2x(1−x). It is easy to verify that ψ is bijective

and monotonically increasing in [0, 1
2 ]. Thus, we define function ψ(−1) : [0, 1

2 ] → [0, 1
2 ], where ψ(−1)(x) = 1

2 (1−
√

1 − 2x).

It is easy to verify that ψ(−1) is the inverse function of ψ in [0, 1
2 ]. Define universal constant d0 = 0.26 > c1. Define

d1 = ψ(d0) (roughly 0.385) and d2 = ψ(d1) (roughly 0.474). Define d−1 (roughly 0.154), d−2 (roughly 0.084), d−3

(roughly 0.044), and d−4 (roughly 0.022) to be constants such that ψ(d−1) = d0, ψ(d−2) = d−1, ψ(d−3) = d−2, and

ψ(d−4) = d−3.

Lemma 4 For any positive integer i and real number y ∈ [0, 1], we have φ(2i, y) = ψ(i)(y) where “ψ(i)” means applying

ψ for i times.

Proof: Use induction on i. For i = 1, we have φ(2, y) = 2y(1 − y) = ψ(y). For i ≥ 2, we have:

φ(2i, y) = 2φ(2i−1, y)(1 − φ(2i−1, y))

= 2ψ(i−1)(y)(1 − ψ(i−1)(y))

= ψ(ψ(i−1)(y)) = ψ(i)(y)

2

Lemma 5 For any y ∈ (0, d0]:

• There is exactly one positive integer h such that φ(2h, y) ∈ (d0, d1]. Furthermore, h ≤ ⌊log 1
y
⌋.

• For the above h, any y′ where 0.6y < y′ < 1.4y, and any i where h− 2 ≤ i ≤ h, we have φ(2i, y′) ∈ (d−4, d2).

• For the above h, any y′ where 0.6y < y′ < 1.4y, and any i where 1 ≤ i ≤ h− 2, we have φ(2i, y′) < 1.4d−1.

Proof:

• We first prove that φ(2, y) ≤ d1 and φ(2⌊log
1
y
⌋, y) > d0. Since y ≤ d0, we have φ(2, y) ≤ φ(2, d0) = d1. To prove the

second inequality, let w = 2⌊log
1
y
⌋−1 ≥ max( 1

4y , 1). Furthermore,w ≤ 2log 1
y
−1 = 1

2y . We have:

φ(w, y) =
∑

1≤j≤w,j is odd

(

w

j

)

yj(1 − y)w−j

≥ wy(1 − y)w−1 ≥ wy(1 − wy + y)

> wy(1 − wy) ≥ 1

4
(1 − 1

4
) =

3

16

φ(2⌊log
1
y
⌋, y) = ψ(φ(w, y)) > ψ(

3

16
) > d0

Let h ≤ ⌊log 1
y
⌋ be the smallest integer such that φ(2h, y) > d0. Such h is guaranteed to exist. We want to show

that φ(2h, y) ≤ d1. If h = 1, we already proved that φ(2, y) ≤ d1. If h > 1, then by definition of h, we have

φ(2h−1, y) ≤ d0 and:

φ(2h, y) = ψ(φ(2h−1, y)) ≤ ψ(d0) = d1

We have shown the existence of such h, and we still need to prove that φ(2h
′

, y) ∈ (d0, d1] only for h′ = h. Since h is

the smallest integer such that φ(2h, y) > d0, we only need to consider h′ > h. For any h′ ≥ h+ 1, we have:

φ(2h
′

, y) ≥ φ(2h+1, y) = ψ(φ(2h, y)) > ψ(d0) = d1

22



• It is easy to show that ψ(−2)(y) < 0.6y < y′ < 1.4y < ψ(y). We have:

φ(2h−2, y′) < φ(2h−1, y′) < φ(2h, y′) < φ(2h, ψ(y))

= ψ(h+1)(y) = ψ(φ(2h, y))

≤ ψ(d1) = d2

φ(2h, y′) > φ(2h−1, y′) > φ(2h−2, y′)

> φ(2h−2, ψ(−2)(y)) = ψ(h−4)(y)

= ψ(−4)(φ(2h, y)) > ψ(−4)(d0) = d−4

• Lemma 3 and 4 tell us that:

φ(2i, y′) ≤ φ(2h−2, y′) < φ(2h−2, 1.4y)

≤ 1.4φ(2h−2, y) = 1.4ψ(−2)(φ(2h, y))

≤ 1.4ψ(−2)(d1) = 1.4d−1

2

Lemma 6 For any integer i ≥ 2 and real number x, y, z, ǫ ∈ [0, 0.5] where

|φ(−1)(2i, x) − z| ≤ ǫz

|φ(−1)(2i−1, y) − z| ≤ ǫz,

we have
∣

∣

∣

∣

φ(−1)

(

2i,
x+ ψ(y)

2

)

− z

∣

∣

∣

∣

≤ ǫz

Proof: Since φ(−1)(2i−1, y) = φ(−1)(2i, ψ(y)), we have:

|φ(−1)(2i, ψ(y)) − z| ≤ ǫz

Without loss of generality, assume x ≤ ψ(y). We have:

x ≤ x+ ψ(y)

2
≤ ψ(y)

⇒ φ(−1)(2i, x) ≤ φ(−1)

(

2i,
x+ ψ(y)

2

)

≤ φ(−1)(2i, ψ(y))

⇒
∣

∣

∣

∣

φ(−1)

(

2i,
x+ ψ(y)

2

)

− z

∣

∣

∣

∣

≤ ǫz

2

A.2 Concentration Properties of P1 and P2

The EEC algorithm has two randomization components. The first component is the randomized placement of the EEC bits

into the slots of a packet. The second component is choosing random data bits to form the groups. We will first focus on the

effects of the first randomization component. Let random variable P1 be the fraction of erroneous data bits among all data

bits, after the randomized placement. Similarly, let P2 be the fraction of erroneous EEC bits among all EEC bits. This section

shows that P1 and P2 concentrate near p under proper n and s. Notice that for sufficiently large n and s = O(1), P1 will

concentrate better than P2.

Lemma 7 For any given ǫ, δ > 0, there exists constant s′ such that ∀s ≥ s′ and ∀n ≥ s′:

Pr[|P1 − p| > ǫ] < δ and Pr[|P1 − p| > 1

log 1
p

] < δ

Pr[|P2 − p| > ǫ] < δ and Pr[|P2 − p| > 1

log 1
p

] < δ
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Proof: Recall the concept of hypergeometric distribution, which describes the number of hits in a finite sequence of draws

from a finite set without replacement. (Binomial distribution is the version with replacement.) The distribution of kP2 is

exactly a hypergeometric distribution with parameters (k + n, (k + n)p, k). Thus we have:

VAR[kP2] =
p(1 − p)nk

(k + n− 1)
and VAR[P2] =

p(1 − p)n

k(k + n− 1)

Apply Chebyshev’s inequality and we have:

Pr[|P2 − p| > ǫ] <
p(1 − p)n

k(k + n− 1)

1

ǫ2
<

1

sǫ2

Pr[|P2 − p| > 1

log 1
p

] <
p(1 − p)n

k(k + n− 1)
log2 1

p

<
p log2 1

p

s
<

2

s

The last step holds because p log2 1
p
< 2 for all p ∈ [0, 1]. Let s′ = max( 1

δǫ2
, 2
δ
) completes the proof for P2. Finally, similar

arguments on P1 hold for ∀n ≥ s′. 2

Lemma 8 For any given ǫ, δ, s > 0, there exists constant n′ such that ∀n ≥ n′:

Pr[|P1 − p| > ǫp] < δ

Proof: Here nP1 follows a hypergeometric distribution with parameters (k + n, (k + n)p, n). Notice that p > 0 implies

p ≥ 1
k+n . We have:

VAR[P1] =
p(1 − p)k

n(k + n− 1)
≤ kp

n(k + n)

Apply Chebyshev’s inequality and we have:

Pr[|P1 − p| > ǫp] <
k

n(k + n)pǫ2
≤ k

nǫ2
≤ s logn

nǫ2

When n is sufficiently large, the above quantity is clearly smaller than any given δ. 2

Overarching conditions. Our proof so far has shown that for any ǫ1 ∈ (0, 0.5], ǫ2 ∈ (0, 0.4], under proper s and n, with

probability at least 1 − δ, we have P1 = p1 and P2 = p2 where p1 and p2 satisfy the following 5 overarching conditions:

|p1 − p| ≤ d−4

200
ǫ1 and |p2 − p| ≤ d−4

200
ǫ1

|p1 − p| ≤ 1

log 1
p

and |p2 − p| ≤ 1

log 1
p

|p1 − p| ≤ ǫ2p

The above fact enables us to analyze the two randomization components in the EEC algorithm in a clean way. Specifically,

Section C through E below will analyze the effects of second randomization component (i.e., choosing random data bits for

the groups), conditioned upon the above 5 overarching conditions being met. In other words, all the probabilities in those

sections will be only with respect to the random coin flips for choosing random data bits for the groups.

A.3 Concentration Properties of qi

Define random variable qi to be the fraction of parity check failures at the ith level. The value of qi can be observed by

the receiver of the packet. This section reasons about qi’s concentration property. We first show that qi’s variance can be

made arbitrarily small by increasing s, implying that qi concentrates near its expectation E[qi]. Next we show that E[qi] is

close to φ(2i, p1). Combining these results eventually leads to a proof showing that qi concentrates near φ(2i, p1). Such

concentration property of qi will enable later reasoning regarding on which level the EEC algorithm will stop, as well as

reasoning regarding the estimation quality from that level (if we do not use the optimization from Section 3.5 of using two

adjacent levels to estimate p).
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Lemma 9 For any positive integer i, we have:

E[qi] = p2(1 − φ(2i − 1, p1)) + (1 − p2)φ(2i − 1, p1)

VAR[qi] ≤ E[qi]/s

Proof: Let Xj (1 ≤ j ≤ s) denote the event of parity check failure for the jth parity bit at the given level i. We have

qi = 1
s

∑s

j=1Xj , and:

E[qi] =
1

s

s
∑

j=1

E[Xj] = E[X1]

= p2(1 − φ(2i − 1, p1)) + (1 − p2)φ(2i − 1, p1)

Next to reason about the variance of qi, we first show that Cov(Xj , Xj′ ) ≤ 0 for any j 6= j′. For clarity, in the following,

φ(2i − 1, p1) is abbreviated as φ. We have:

E[XjXj′ ] = p2(
kp2 − 1

k − 1
)(1 − φ)2 +

2p2(1 − kp2 − 1

k − 1
)φ(1 − φ) +

(1 − p2)(1 − kp2

k − 1
)φ2

E
2[Xj] = E

2[Xj′ ] = (p2(1 − φ) + (1 − p2)φ)2

= p2
2(1 − φ)2 + 2p2(1 − p2)φ(1 − φ) +

(1 − p2)
2φ2

Cov(Xj , Xj′) = E[XjXj′ ] − E
2[Xj ]

= −p2(1 − p2)

k − 1
(1 − φ)2 +

2p2(1 − p2)

k − 1
φ(1 − φ) − p2(1 − p2)

k − 1
φ2

= −p2(1 − p2)

k − 1
(1 − 2φ)2 ≤ 0

We can now calculate the variance of qi:

VAR[qi] = VAR[
1

s

s
∑

j=1

Xj]

=
1

s2
(

s
∑

j=1

VAR[Xj ] +

s
∑

j=1

s
∑

j′=1,j′ 6=j

Cov(Xj , Xj′))

≤ 1

s
VAR[X1] =

E[X1](1 − E[X1])

s

=
E[qi](1 − E[qi])

s
≤ E[qi]

s
2

Lemma 10 For any positive integer i, we have:

|E[qi] − φ(2i, p1)| ≤ |p1 − p2| ≤
d−4

100
ǫ1

Proof:

|E[qi] − φ(2i, p1)|
= |p2(1 − φ(2i − 1, p1)) + (1 − p2)φ(2i − 1, p1) −

p1(1 − φ(2i − 1, p1)) − (1 − p1)φ(2i − 1, p1)|
= |(p1 − p2)(1 − 2φ(2i − 1, p1))|

≤ |p1 − p2| ≤ |p1 − p| + |p2 − p| ≤ d−4

100
ǫ1
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2

Lemma 11 For any given δ > 0, there exists constant s′ such that for any s ≥ s′ and any positive integer i where φ(2i, p1) >
d−4, we have:

Pr[|qi − φ(2i, p1)| ≤
1

50
ǫ1φ(2i, p1)] > 1 − δ

Proof: Take s′ = 10000
d2
−4ǫ

2
1δ

+ 1, then for any s ≥ s′, Lemma 9 tells us that:

VAR[qi] ≤
1

s
<
d2
−4ǫ

2
1δ

10000

By Chebyshev’s inequality:

Pr[|qi − E[qi]| ≥
d−4

100
ǫ1] ≤ VAR[qi] ·

10000

d2
−4ǫ

2
1

< δ

Lemma 10 tells us that:

|E[qi] − φ(2i, p1)| ≤
d−4

100
ǫ1

Combining the above two equations yields:

Pr[|qi − φ(2i, p1)| ≥
1

50
d−4ǫ1] < δ

Finally, given φ(2i, p1) > d−4, we can conclude:

Pr[|qi − φ(2i, p1)| ≤
1

50
ǫ1φ(2i, p1)] > 1 − δ

2

A.4 Translating qi to p̂

The EEC algorithm will eventually output p̂ by solving φ(2i, p̂) = x for some x, where x is close to φ(2i, p1) for some i.
This section intends to establish that such p̂ will be close to p1. Since p1 is close to p, this will help to eventually show that p̂
is close to p itself. The key step in the following proof is to show that the small error in x will not be amplified excessively

when we translate x to p̂.

Lemma 12 For any positive integer i and any real number x where φ(2i, p1) < d2 and |x− φ(2i, p1)| ≤ 1
50ǫ1φ(2i, p1), we

have (deterministically):

|p̂− p1| ≤ ǫ1p1 where p̂ = φ(−1)(2i, x)

Proof: This lemma is trivial when p1 = 0, since it implies φ(2i, p1) = 0. Thus we only need to consider p1 > 0. Define:

x1 = φ(2i, p1) < d2 < 0.5

x2 = x ≤ (1 +
1

50
ǫ1)φ(2i, p1) ≤ 1.01d2 < 0.49

We have:

|p̂− p1|
p1

=
|φ−1(2i, x2) − φ−1(2i, x1)|

φ−1(2i, x1)

Recall the mean value theorem: If f : [x1, x2] → R is continuous and differentiable over [x1, x2], then there exists x3 ∈
[x1, x2] such that f(x2) − f(x1) = f ′(x3)(x2 − x1). Let f(x) = φ−1(2i, x) = (1 − 2x)2

−i

, and we have f ′(x) =

−2 × 2−i(1 − 2x)2
−i−1. Mean value theorem tells us that there exists x3 ∈ [x1, x2] and x4 ∈ [0, x1] such that:

(1−2x2)
2−i−(1−2x1)

2−i

= −2 × 2−i(1−2x3)
2−i−1(x2−x1)

(1−0)2
−i−(1−2x1)

2−i

= −2 × 2−i(1−2x4)
2−i−1(0−x1)
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Therefore:

|p̂− p1|
p1

=

∣

∣

∣

∣

∣

−2 × 2−i(1 − 2x3)
2−i−1(x2 − x1)

−2 × 2−i(1 − 2x4)2
−i−1(0 − x1)

∣

∣

∣

∣

∣

=
(1 − 2x3)

2−i−1

(1 − 2x4)2
−i−1

|x2 − x1|
x1

≤ 1

50
ǫ1(

1 − 2x4

1 − 2x3
)1−2−i ≤ 1

50
ǫ1(

1

1 − 2x3
)1−2−i

≤ 1

50
ǫ1(

1

1 − 2x3
) ≤ ǫ1

The last step holds because x3 ≤ x2 < 0.49. 2

A.5 Multiple Levels

The EEC algorithm may use up to logn EEC levels, and the algorithm should ideally stop at some “appropriate” level h.

However, it is possible that the algorithm stops and outputs p̂ before level h, or does not stop at level h and outputs p̂ from

later levels. This section thus aims to analyze such stopping behavior. Recall that the algorithm stops and outputs p̂ at the

smallest i where qi ∈ (c1, c2). For any given p ∈ (0, d0], let h be the unique integer (as shown in Lemma 5) such that

φ(2h, p) ∈ (d0, d1] ⊂ (c1, c2). We will show that it is rather unlikely for the algorithm to stop at or before level h−2, despite

that h may reach logn = ω(1). We will also show that qh ∈ (c1, c2) is satisfied with 1 − δ probability. Combining these

results shows that the algorithm will stop at either level h− 1 or level h with probability close to 1.

Lemma 13 For any given δ > 0, there exists constant s′ such that for any given s ≥ s′, any given p ∈ (0, d0], and any given

h where φ(2h, p) ∈ (d0, d1], we have:
h−2
∑

i=1

Pr[qi > c1] < δ

Proof: First, Lemma 5 assures the existence and uniqueness of h. For any given i ∈ [1, h − 2], Lemma 5 tells us that

φ(2i, p1) < 1.4d−1. From Lemma 10, we have:

E[qi] ≤ φ(2i, p1) +
d−4

100
ǫ1 < 1.4d−1 +

d−4

200
< 0.22

E[qi] ≤ φ(2i, p1) + |p2 − p1| < 1.4φ(2i, p) + |p2 − p1|
≤ 1.4 × 2ip+ |p2 − p1|

Applying Chebyshev’s inequality and Lemma 9 yields:

Pr[qi > c1] ≤ Pr[|qi − E[qi]| > |c1 − E[qi]|]
≤ Pr[|qi − E[qi]| > c1 − 0.22]

≤ VAR[qi]

(0.03)2
≤ 10000E[qi]/(9s)

< 10000(1.4× 2ip+ |p2 − p1|)/(9s)

< 10000(1.4× 2ip+
2

log 1
p

)/(9s)

Since h ≤ ⌊log 1
p
⌋ ≤ log 1

p
, we have

h−2
∑

i=1

Pr[qi > c1] <
10000

9s

(

2(h− 2)

log 1
p

+

h−2
∑

i=1

1.4 × 2ip

)

< 10000× (2 + 0.7)/(9s) = 3000/s

Thus for s ≥ s′ = 3000/δ, we have
∑h−2

i=1 Pr[qi > c1] < δ. 2
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Lemma 14 For any given ǫ2 < 0.01 and any given δ > 0, there exists constant s′ such that for ∀s ≥ s′, any given p ∈ (0, d0],
and any given h where φ(2h, p) ∈ (d0, d1], we have:

Pr[qh ∈ (c1, c2)] > 1 − δ

Proof: First, Lemma 5 assures the existence and uniqueness of h. By Lemma 3 and since p1 ∈ [(1 − ǫ2)p, (1 + ǫ2)p], we

have:

φ(2h, p1) ∈ [φ(2h, 0.99p), φ(2h, 1.01p)]

⊂ [0.99φ(2h, p), 1.01φ(2h, p)] ⊂ (0.99d0, 1.01d1)

Since φ(2h, p1) > 0.99d0 > d−4, we can apply Lemma 11 to find constant s′ such that for all s ≥ s′:

Pr[qh ∈ (c1, c2)]

> Pr[qh ∈ [(1 − 0.01)0.99d0, (1 + 0.01)1.01d1]]

> Pr[qh ∈ [(1 − 0.01)φ(2h, p1), (1 + 0.01)φ(2h, p1)]]

≥ Pr[|qh − φ(2h, p1)| ≤
1

50
ǫ1φ(2h, p1)]]

> 1 − δ

2

The following lemma helps us to later reason about the algorithm’s behavior when p > d0.

Lemma 15 For any given ǫ2 < 0.01 and any given δ > 0, there exists constant s′ such that for all s ≥ s′, any p ∈ (0, 1
2 ],

and any positive integer i where φ(2i, p) > d1, we have:

Pr[qi > ψ(c1)] > 1 − δ

Proof: We first show that φ(2i, p1) > 0.99d1.

• If p1 ≤ 1
2 , we have:

φ(2i, p1) > φ(2i, (1 − ǫ2)p) > φ(2i, 0.99p)

≥ 0.99φ(2i, p) > 0.99d1

• If p1 >
1
2 , notice that we have p1 < (1 + ǫ2)p < 0.505. We will prove 0.99d1 < φ(2i, p1) < 0.5 via an induction on i.

For i = 1, we have φ(2i, p1) = 2p1(1 − p1) and 0.99d1 < 2 × 0.505 × 0.495 < 2p1(1 − p1) < 0.5. For i ≥ 2, since

φ(2i−1, p1) ∈ (0, 1
2 ), we have

0.99d1 < φ(2i−1, p1) < ψ(φ(2i−1, p1)) < 0.5

Since φ(2i, p1) = ψ(φ(2i−1, p1)), we have 0.99d1 < φ(2i, p1) < 0.5.

Since φ(2i, p1) > 0.99d1 > d−4, Lemma 11 shows that there exists constant s′ such that for all s ≥ s′, with probability at

least 1 − δ:

qi ≥ (1 − 1

50
ǫ1)φ(2i, p1) > 0.99 × 0.99d1 > ψ(c1)

2

A.6 Proving Theorem 1

As explained in Section 3.5, our EEC algorithm can use either of the following two approaches to output a final p̂:

φ(2i, p̂) = qi (1)

φ(2i, p̂) =
qi + ψ(qi−1)

2
(2)

Our proof for Theorem 1 holds for both cases.
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Theorem 1 Consider any given positive constants ǫ and δ. For sufficiently large n, there exists constant s = O(1) such that

using s in our EEC algorithm (together with input a and b where 1/(n + k) ≤ a < b ≤ 1/4) will provide the following

guarantee: With probability at least 1 − δ,

• If p ∈ [a, b], output p̂ where p̂ ∈ [(1 − ǫ)p, (1 + ǫ)p].

• If p < a, output p̂ where p̂ ≤ (1 + ǫ)a.

• If p > b, output p̂ where p̂ ≥ (1 − ǫ)b.

Proof: It is obvious that the algorithm will return 0 when p = 0. Thus we only need to consider p > 0, or equivalently

p ≥ 1
n+k . Without loss of generality, assume ǫ ≤ 1. For any given ǫ ∈ (0, 1] and δ > 0, we can trivially find ǫ1 ∈ (0, 0.5],

ǫ2 ∈ (0, 0.01), and δ1 > 0, such that ǫ = 2ǫ1 + ǫ2 and δ = 6δ1.

Lemma 7 shows that for any δ1, there exists constant s′ such that if s ≥ s′1 and n ≥ s′1, then with probability at least 1−δ1:

|P1 − p| ≤ d−4

200
ǫ1 and |P2 − p| ≤ d−4

200
ǫ1

|P1 − p| ≤ 1

log 1
p

and |P2 − p| ≤ 1

log 1
p

Lemma 8 shows that for any δ1 and any s, there exists constant n′ such that if n ≥ n′, then Pr[|P1 − p| ≤ ǫ2p] ≥ 1 − δ1.

Thus for s ≥ s′1 and sufficiently large n, with probability at least 1 − 2δ1, we have P1 = p1 and P2 = p2 where p1 and p2

satisfy:

|p1 − p| ≤ d−4

200
ǫ1 and |p2 − p| ≤ d−4

200
ǫ1

|p1 − p| ≤ 1

log 1
p

and |p2 − p| ≤ 1

log 1
p

|p1 − p| ≤ ǫ2p

All discussions below are conditioned upon the above 5 overarching conditions being met. For p ≤ d0, let h be the unique

integer (as shown by Lemma 5) such that φ(2h, p) ∈ (d0, d1].

Case 1: p ∈ [a, b]. Given how we determined the values for l1 and l2, and given (d0, d1] ⊂ (c1, c2), we know that h ∈ [l1, l2].
By Lemma 13 and Lemma 14, for any given δ1, there exists constant s′2 such that ∀s ≥ s′2, we have

h−2
∑

i=1

Pr[qi > c1] < δ1

Pr[qh ∈ (c1, c2)] > 1 − δ1

This means that for s ≥ s′2, with probability at least 1− 2δ1, the algorithm will stop at level h or h− 1 and output p̂. (For the

boundary case of h = l1, the algorithm will only stop at level h.)

Now consider level i for h− 2 ≤ i ≤ h. Lemma 5 tells us that φ(2i, p1) ∈ (d−4, d2). Apply Lemma 11, Lemma 12, and a

trivial union bound for h− 2 ≤ i ≤ h. We have for any δ1, there exists constant s′3 such that for any s ≥ s′3, with probability

at least 1 − δ1 all the following 3 equations hold:

|p̂− p1| ≤ ǫ1p1 where p̂ = φ(−1)(2h, qh)

|p̂− p1| ≤ ǫ1p1 where p̂ = φ(−1)(2h−1, qh−1)

|p̂− p1| ≤ ǫ1p1 where p̂ = φ(−1)(2h−2, qh−2)

Applying Lemma 6 further yields:

|p̂− p1| ≤ ǫ1p1 where p̂ = φ(−1)
(

2h, qh+ψ(qh−1)
2

)

|p̂− p1| ≤ ǫ1p1 where p̂ = φ(−1)
(

2h−1, qh−1+ψ(qh−2)
2

)

This means that regardless of whether the algorithm stops at level h or h − 1, and regardless of whether the algorithm uses

Equation 1 or 2 for generating p̂, we always have |p̂− p1| ≤ ǫ1p1.
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Since |p1 − p| ≤ ǫ2p, we can now conclude that for s ≥ max(s′2, s
′
3), with probability at least 1 − 4δ1:

∣

∣

∣

∣

p̂− p

p

∣

∣

∣

∣

≤
∣

∣

∣

∣

p̂− p1

p1

∣

∣

∣

∣

·
∣

∣

∣

∣

p1

p

∣

∣

∣

∣

+

∣

∣

∣

∣

p1 − p

p

∣

∣

∣

∣

≤ ǫ1(1 + ǫ2) + ǫ2 < 2ǫ1 + ǫ2 = ǫ

Finally, the probability that the 5 overarching conditions are not met is at most 2δ1. Thus with probability at least 1 − 6δ1,

we have p̂ ∈ [(1 − ǫ)p, (1 + ǫ)p].

Case 2: 1
n+k ≤ p < a. Imagine an alternative algorithm A using infinite number of levels, from level l1 through level ∞.

Case 1 already shows that with probability at least 1 − δ, algorithm A would output p̂ where p̂ ≤ (1 + ǫ)p < (1 + ǫ)a.

The only difference between algorithmA and the actual EEC algorithm is that the EEC algorithm only has levels l1 through

l2. It is thus possible for the EEC algorithm to fail to estimate p from any level between l1 and l2, and to directly output 0.

However, even in such a case, we still have p̂ = 0 < (1 + ǫ)a.

Case 3: b < p ≤ d0. First, since φ(2l1 , b) > c1, we have

φ(2l1+1, p) > φ(2l1+1, b) = ψ(φ(2l1 , b)) > ψ(c1) > d0

This implies that h ≤ l1 + 1. For h = l1 + 1, we have c1 < φ(2l1 , b) < φ(2l1+1, b) < φ(2h, p) ≤ d1 < c2, and thus

φ(2l1+1, b) ∈ (c1, c2) and l2 ≥ l1 + 1. This means that h ∈ [l1, l2], and Case 1 already shows that with probability at least

1 − δ, the algorithms will stop at level h− 1 or h and output an estimate p̂ where p̂ ≥ (1 − ǫ)p > (1 − ǫ)b. For h = l1, the

same arguments apply. For h ≤ l1 − 1, we have φ(2l1 , p) > d1. Thus for any given δ1, Lemma 15 tells us that there exists s′4
such that for s ≥ s′4:

Pr[ql1 > ψ(c1)] > 1 − δ1

If ql1 ≥ c2, the algorithm will output p̂ = 1/4 > (1 − ǫ)b. If ψ(c1) < ql1 < c2, the algorithm will output (notice that here

the algorithm will only use Equation 1 to produce p̂):

p̂ = φ(−1)(2l1 , ql1) > φ(−1)(2l1 , ψ(c1))

⇒ φ(2l1 , p̂) > ψ(c1)

We claim that ψ(c1) ≥ φ(2l1 , b), which in turn will imply that p̂ > b > (1 − ǫ)b. For l1 = 1, we trivially have ψ(c1) =
φ(2, 0.25) ≥ φ(2, b). For l1 ≥ 2, if ψ(c1) < φ(2l1 , b), then we would have c1 < φ(2l1−1, b). This means that even level

l1 − 1 should have been used in the algorithm, leading to a contradiction.

Case 4: d0 < p ≤ 0.5. Since φ(2l1 , p) ≥ φ(2, p) > φ(2, d0) = d1, Lemma 15 shows that for any given δ1, there exists s′5
such that for s ≥ s′5:

Pr[ql1 > ψ(c1)] > 1 − δ1

Same as in Case 3, it can be shown that (deterministically):

ql1 > ψ(c1) ⇒ p̂ > (1 − ǫ)b

Finally, combing the 4 cases and taking s = max(s′1, s
′
2, s

′
3, s

′
4, s

′
5) complete the proof. 2

A.7 Removing the Assumption on n Being Sufficiently Large

This section is mainly for theoretical interests and aims to show that the requirement on n being sufficient large as in Theo-

rem 1 is not necessary. Our discussion here has limited practical relevance since our experiments have already show that the

algorithm provides good guarantee in practice.

To remove this assumption on n, notice that the theorem already holds for n ≥ n′ where n′ is some constant. All we

need to worry about is where n < n′. On the other hand, if we already know that n is upper bounded by some constant, the

following extremely trivial algorithm will suffice for proper error estimation: We simply insert r known bits into the packet,

where r is a function of ǫ, δ, and n′, and thus is a constantO(1) with respect to n. Same as before, these r bits are placed into

uniformly random slots, while the data bits go into the remaining slots. The receiver simply examines what fraction among

these r bits are flipped and then estimate p to be this fraction. It is trivial to show that doing so provides good estimation

quality:
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Lemma 16 For any given ǫ > 0, δ > 0, n′ > 0, there exists constant r such that for any p ∈ [0, 1] and for any n ≤ n′, using

r known bits in the above trivial algorithm will output p̂ with the following guarantee: With probability at least 1 − δ:

p̂ ∈ [(1 − ǫ)p, (1 + ǫ)p]

Proof: The lemma trivially holds for p = 0. For p > 0, it necessarily means that p ≥ 1
n+r . Obviously, rp̂ is a random

variable follows hypergeometric distribution with parameter (n+ r, (n+ r)p, r). We have

VAR[p̂] =
p(1 − p)n

r(r + n− 1)
≤ np

r(r + n)
≤ n′p2

r(r + n)p
≤ n′p2

r

Invoke Chebyshev’s inequality and we have:

Pr[|p̂− p| < ǫp] > 1 − VAR[p̂]

ǫ2p2
≥ 1 − n′

rǫ2

Thus for r = n′

δǫ2
, with probability at least 1 − δ, we have p̂ ∈ [(1 − ǫ)p, (1 + ǫ)p] 2

Combining Theorem 1 and the above lemma directly gives us the following:

Theorem 17 Consider any given positive constants ǫ and δ. There exists constant n′ such that:

• If n ≥ n′, then there exists constant s = O(1) such that using s in our EEC algorithm (together with input a and b where

1/(n+ k) ≤ a < b ≤ 1/4) will provide the following guarantee: With probability at least 1 − δ,

– If p ∈ [a, b], output p̂ where p̂ ∈ [(1 − ǫ)p, (1 + ǫ)p].

– If p < a, output p̂ where p̂ ≤ (1 + ǫ)a.

– If p > b, output p̂ where p̂ ≥ (1 − ǫ)b.

• If n < n′, then there exists constant r = O(1) such that using r known bits in the earlier trivial algorithm will provide

the following guarantee: With probability at least 1 − δ, output p̂ where p̂ ∈ [(1 − ǫ)p, (1 + ǫ)p].

Finally, the same trivial algorithm (i.e., inserting known bits) can also be used to remove the assumption on b ≤ 1/4 under

any n (see discussion in Section 3 on pilot bits).
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