
Defragmenting DHT-based Distributed File Systems

Jeffrey Pang∗ Phillip B. Gibbons† Michael Kaminsky† Srinivasan Seshan∗ Haifeng Yu‡
∗Carnegie Mellon University †Intel Research Pittsburgh ‡National University of Singapore

Abstract

Existing DHT-based file systems use consistent hashing
to assign file blocks to random machines. As a result, a
user task accessing an entire file or multiple files needs to
retrieve blocks from many different machines. This paper
demonstrates that significant availability and performance
gains can be achieved if, instead, users are able to retrieve
all the data needed for a given task from only a few DHT
nodes. We explore the design and implications of such a
“defragmented” DHT-based distributed file system, called
D2, that also maintains important DHT properties like stor-
age load balance. We show using real-world file system
traces that a simple key encoding scheme is sufficient to
maintain good defragmentation for most user tasks. Us-
ing both simulation and an actual 1,000 node deployment,
we show that D2 increases availability by over an order
of magnitude and improves user-perceived latency by 30–
100% compared to a traditional design.

1. Introduction

Distributed Hash Tables (DHTs) enable self-managing
file systems that can aggregate the storage of thousands or
millions of nodes. In a DHT-based file system, an arbitrar-
ily large number of nodes can self-organize to provide effi-
cient data location, high data availability, and storage load
balance. There are many approaches that achieve efficient
data location and high availability for individual objects, but
nearly all DHTs [2, 7, 10, 27, 31] rely on consistent hash-
ing [20] or a close variant to balance storage load. In con-
sistent hashing, each node has a random ID, and each data
object is hashed to obtain a key. The object is assigned to
the node whose ID is the immediate successor of its key
(i.e., the smallest ID that is larger than its key). This pro-
cess ensures that objects are distributed close to uniformly
across all DHT nodes, hence balancing load.

Unfortunately, because assignment based on hashing is
random, an immediate result of this approach is that re-
lated objects are spread across many nodes. For example,
in CFS [7], where each file block has a distinct key, each
block accessed by a user or application task is most likely

assigned to a different node. Even if we treat entire files as
variable-size data objects, as in PAST [32], a user or appli-
cation may access multiple files to complete a task. This
“fragmentation” has two consequences. First, many tasks
will fail if any of the objects it requires is unavailable (e.g.,
compiling a large project). Therefore, the likelihood that a
task fails is greater than if the objects were less fragmented.
Second, a new DHT lookup must be performed to locate
each block accessed by the task since each block is likely
to be stored on a different node. Since the latency of a sin-
gle lookup can be several RTTs, these lookups can cause
a task’s completion time to be much larger than the time
it takes to download the objects alone. Hereafter, we re-
fer consistent hashing DHTs with block objects as tradi-
tional DHTs and consistent hashing DHTs with file objects
as traditional-file DHTs.

In this paper, we explore the design of a “defragmented”
DHT-based file system that preserves data locality when as-
signing objects to nodes. In this design, we address three
principle challenges:

1. Maintaining the locality of objects accessed by arbi-
trary tasks may not be possible without future knowl-
edge; for example, tasks may access objects randomly.
Is the structure inherent in file system tasks sufficient
to preserve locality in a DHT without foreknowledge
and undue complexity?

2. There is a trade-off between preserving data locality
and the amount of parallelism users can exploit when
fetching data. Data locality can be leveraged to re-
duce other overheads, but are these reductions enough
to offset this cost?

3. Object keys are no longer distributed uniformly in the
key space when data locality is maintained. Hence, if
nodes are responsible for roughly equal ranges of the
key space, as in a traditional DHT, storage load would
not be balanced. Can load still be balanced without
significant overhead?

To address these questions, we implement and evaluate a
prototype called D2 (Defragmented DHT) as a concrete
case study. We contribute three techniques that enable us

to answer each question affirmatively: locality preserving
keys, lookup caches, and block pointers with active load bal-
ancing. In addition to showing the value of these techniques
in a defragmented DHT-based file system, we conduct an
extensive evaluation on Emulab [33] with up to 1,000 in-
stances of our prototype and with long term simulations.
D2 decreases the failure rate of user tasks in a real file sys-
tem workload by over an order of magnitude. Moreover, D2
improves user-perceived latency by 30% to 100% in a 1,000
node system.

This paper is organized as follows: Section 2 describes
related work. Section 3 provides an overview of D2. Sec-
tions 4, 5, and 6 describe D2’s unique design aspects, and
Section 7 describes its implementation. Sections 8, 9, and
10 present evaluations of D2’s availability, performance,
and load balancing overhead. Section 11 concludes.

2. Related Work

Clustering and Defragmentation. Clustering related
data [9, 23, 24] and defragmentation [17] are well known
techniques for maintaining data locality on disks, which
improves the performance of local file systems. The idea
of clustering related blocks and files in distributed file sys-
tems is also not new — the Andrew File System [14] clus-
ters files into volumes to improve system operability and
Archipelago [18] clusters the files in a directory on the same
node to provide fault isolation. However, these file systems
require manual configuration and management. This paper
generalizes the clustering and defragmentation concepts to
DHT-based file systems to take advantage of their existing
self-management and scalability properties.

DHTs and Availability. Numerous DHT-based file systems
have been proposed, including CFS [7], Ivy [27], Pond [31],
PAST [32], Total Recall [2], and Glacier [10]. All of these
systems use consistent hashing (or a variant) to balance
load. Some of these systems are designed to improve the
availability of individual objects [2, 5, 10] (e.g., using era-
sure coding and active availability monitoring). However,
these techniques only work well when the the granularity
of object access (e.g., block, file, or directory) is known be-
forehand — for example, when applications only require
access to individual files to complete tasks. Often this gran-
ularity is not known when objects are created or is too cum-
bersome for users to specify. This is especially true for
legacy applications that access DHTs using a traditional file
system interface. Defragmentation does not preclude the
use of these techniques, so they can be used in conjunction
with D2’s locality preserving data assignment.

The availability of multi-object tasks is also studied by
Yu et al. [34]. However, Yu et al. mainly focus on the avail-
ability difference resulting from object correlation when the

store block
fetch block

Application

D2−FS

D2−Store

fetch/store/remove

open/close/read/write

D2−Store

Node 2

lookup

Node 1

DHT

Figure 1. D2 architecture.

fragmentation level is fixed. In comparison, we investigate
how to defragment related objects for better availability and
performance in the context of a decentralized file system.

Administrative Locality. Mislove et al. [26] and Harvey et
al. [12] propose DHTs that maintain administrative local-
ity — i.e., their systems can constrain the set of nodes on
which each object is placed. Although both these systems
can be used to preserve data locality, neither can automat-
ically maintain global load balance. Harvey et al.’s DHT
can balance load within a particular section of the DHT
(e.g., an administrative domain) using consistent hashing,
but does so at the cost of data locality. D2’s defragmen-
tation techniques can complement these systems by main-
taining data locality and load balance within each adminis-
trative domain.

Active Load Balancing. DHTs designed to support range
queries [3, 19] pioneered the dynamic load balancing algo-
rithm used in D2. Our primary contributions in this area
are the application of dynamic load balancing for preserv-
ing file system locality and the evaluation of the algorithm’s
stability and overhead under real file system workloads.

3. D2 Overview

To place our specific contributions in context, this sec-
tion provides an overview of D2’s architecture. Design de-
tails unique to D2 are discussed in the subsequent sections.

Usage Assumptions. Like other DHT storage systems, D2
uses the storage and bandwidth resources contributed by a
large community of nodes. We make the same usage as-
sumptions as CFS [7]. D2 exports an NFS-like interface
to users. Each volume in D2 is assumed to have a single
writer at any given time, but may have multiple readers.
Hence, D2 could be used for file system volumes containing
shared files (e.g., binaries and libraries), user home directo-
ries, email storage, or large scientific datasets.

Major Components of D2. Each node in D2 consists of
three primary components (Figure 1): a file system layer
(D2-FS), a data storage layer (D2-Store), and a dynamic
load balancing DHT component (DHT). D2-FS translates
file system operations into block reads and writes, which

are processed by D2-Store. D2-Store is responsible for data
creation, retrieval, deletion, redundancy maintenance, and
migration during load balancing. The dynamic load bal-
ancing DHT is used by D2-Store for block lookups. This
DHT has the same scalable lookup properties as traditional
DHTs, but it enables load balance of the non-uniform key
distribution that is necessary for maintaining data locality.

D2-FS. To isolate the effects of defragmentation over other
aspects of DHT-based file system design, D2-FS uses an
organization of files similar to CFS instead of a completely
new one. In this organization, each block is identified by
a distinct DHT key. D2 organizes these keys to preserve
locality. In CFS, keys are content-hashes and are used to
verify the integrity of blocks as well as to locate them. Keys
in D2-FS are no longer content hashes so each pointer in
D2-FS — such as a file pointer in a directory block — is
paired with the content hash of the block it points to, in
order to enable integrity verification.

To avoid excessive overhead on writes, D2-FS maintains
a 30-second write-back cache, which is also used as a buffer
cache for reads. Due to this cache, data seen by users may
be stale by up to 30 seconds, but a user will never see partial
or incomplete writes.

D2-Store. D2-Store uses 8KB blocks as storage units to
ensure reasonable storage load balance. Treating each file
as a storage unit would improve locality for blocks within
a file, but would not maintain locality across related files.
Since D2-FS already ensures data locality, there is no need
to treat files as units.

Each block is replicated on the r immediate successors
of its key. The first is the primary replica and the remain-
der are secondary replicas. Erasure coding (with r frag-
ments) could be used instead of whole block replication to
save storage space at the cost of read/write performance and
complexity. However, whether we use replication or era-
sure coding, defragmenting k objects so that they reside on
r nodes instead k · r nodes achieves a similar availability
improvement. Since we are interested in studying the ef-
fects of defragmentation and not replication techniques, D2-
Store uses replication for simplicity. The qualitative com-
parisons we make between D2 and traditional DHTs should
hold in either case.

4. Preserving Data Locality

Preserving locality in the assignment of data to nodes re-
duces the number of nodes a user must access to operate
on their data. This section describes D2’s approach for pre-
serving data locality.

4.1. Requirements of Real Workloads

Although data locality obviously implies that blocks of
the same file should be stored together, it is less clear how
files should be clustered. The ideal clustering of the files
depends on the groups of files are that are accessed together
in tasks. To handle completely arbitrary tasks, a cluster-
ing algorithm would need foreknowledge of future access
patterns. Even if the algorithm could learn from history,
it would require access pattern prediction and dynamic file
re-clustering.

To determine if there is a less complex design that would
maintain most data locality in real file systems, we analyze
three real workloads (Table 1). Harvard is the main work-
load we study. It contains timestamped accesses to an NFS
server used by a large Harvard research group. HP con-
tains timestamped accesses to blocks at the disk level. Each
block has a number that corresponds to its position on the
physical disk, though we do not know which blocks belong
to the same file. Finally, Web contains timestamped Web
accesses. Analyzing Web enables us to understand the data
locality of a less traditional file system.

To estimate the data locality preserved by several de-
signs, we analyze the number of nodes each user (or appli-
cation, in HP) needs to access each hour, on average, for that
design. We consider three scenarios: traditional, lower-
bound, and ordered. Each scenario assigns 250MB of data
to each node. The traditional scenario corresponds to a tra-
ditional DHT-based file system that assigns uniformly ran-
dom keys to data blocks. lower-bound is a lower bound
on the number of nodes that a user needs to access, com-
puted as the ratio of the total number of blocks accessed
per user and the number of blocks stored on each node.
This lower bound may not actually be achievable since a
block placement corresponding to the lower bound could
require a block to be on two different nodes (e.g., if two
users access intersecting but non-identical sets of blocks
that can not fit on a single node). In ordered, we assign
keys that are consistent with the alphabetical ordering of
block names. For Harvard, the name of each block is
the file’s full path (including file name) and block number
within the file. As a result, blocks of files in the same di-
rectory will have contiguous keys. In HP, the name of a
block is simply its disk block number. Since local file sys-
tems tend to place blocks created at the same time near each
other in the file system, blocks with close block numbers
are more likely to belong to the same file or to files in the
same directory. Finally, for Web, the name of each Web
object is its URL with the domain name tuples reversed
(e.g., the name for www.yahoo.com/index.html is
com.yahoo.www/index.html). For this initial anal-
ysis, we make the simplifying assumption that each node
stores the same number of blocks. Section 8 and 9 demon-

Table 1. Workloads analyzed.

Workload Duration Accesses Active Data Description
HP (1999) [15] 1 week 238M 40GB A block-level trace from a multi-disk research server.
Harvard (2003) [11] 1 week 60M 83GB Research and email NFS trace. (EECS workload from [8].)
Web (2003) [16] 1 week 47M 93GB Accesses to web sites seen by NLANR Web caches.

 0.001

 0.01

 0.1

 1

 10

WebHarvardHP

no
de

s
ac

ce
ss

ed
 p

er
 h

ou
r

(n
or

m
al

iz
ed

)

Filesystem Trace

Traditional
Ordered

Lower-bound

Figure 2. Mean nodes accessed per user
each hour, normalized against Traditional.

... block #H(path remainder)...

2 2 2 8 8 4

hash of the first 12 path levels

20#bytes:
version hashvol id

Figure 3. Key encoding for blocks in D2-FS.

strate D2’s effectiveness despite the small load imbalance
and temporary fragmentation that occurs when using D2’s
actual load balancing algorithm.

Figure 2 shows the results from this analysis. There are
nearly two orders of magnitude difference between tradi-
tional and lower-bound, so there is significant potential for
improving data locality. Compared to traditional, ordered
reduces the number of nodes contacted by about 10 times.
The difference between ordered and lower-bound, on the
other hand, is less than an order of magnitude in both file
system traces (though it is slightly larger in Web). Since the
lower bound may not actually be achievable, we believe that
the locality achieved by ordered is sufficiently close to the
maximum possible to warrant further investigation.

4.2. Practical Locality Preserving Keys

The preceding analysis indicates that assigning keys that
are consistent with the ordering of full path names (i.e.,
name-space locality) will likely achieve near-optimal data
locality in file systems. We could use path names directly
as keys. However, DHTs usually use fixed sized keys, so
every lookup message would have to contain a key that is
as large as the longest path. Thus, we use a more compact
key encoding, shown in Figure 3, to limit message overhead
without modifying DHT routing and maintenance logic.

The first 20 bytes encode the ID of the volume that a
block belongs to. The next 24 bytes encode the file’s path,
with each directory in the path encoded with 2 bytes. When
a file is added to a directory, an unused 2-byte value in that

directory is assigned to the file; an unused value is found
by examining the existing file list in the directory block.1

Since 24 bytes is only enough space for 12 directories, for
longer paths, the next 8 bytes are a hash of the remainder of
path. Although locality for files in such long paths will not
be preserved, they make up less than 1% of the files in both
the Harvard and Web workloads and an even smaller per-
centage of the accesses. The next 8 bytes are allocated for
file inode and data block numbers. Finally, the last 4 bytes
are used to distinguish different versions of an overwritten
block, so that slightly stale views can still access the old
versions, as in CFS. We choose this key representation for
simplicity; namespace flattening schemes [13] can be used
to make it more compact.

This key encoding enables naming of new files and direc-
tories, but a file in D2-FS may also be moved to a different
directory. If the keys of this file’s blocks are also changed to
reflect the new path, the blocks will need to be moved to the
new corresponding locations in the DHT, causing signifi-
cant churn in the key distribution if the moved file is large or
is a directory containing a lot of data. Instead, D2-FS keeps
the original keys for renamed files; the file’s new parent di-
rectory simply points to the file’s original location. Except-
ing file moves immediately after creation, which are stored
in D2-Store only after the move due to D2-FS’s writeback
cache, file moves are rare (only 0.05% of the operations in
the Harvard workload), so their impact on data locality
should be minimal.

5. Caching DHT Lookups

D2 maintains locality in data placement, so each user
should not usually require data from many nodes. This ob-
servation alone, however, does not reduce the number of
DHT lookups users must perform. D2-Store avoids lookups
using a lookup cache. The cache stores the IP addresses
and key ranges of nodes in recent lookup results. Future
requests that access keys in cached key ranges circumvent
the lookup step entirely. Clients could also use a lookup
cache in a traditional DHT, but it would be much less effec-
tive since future requests are not as likely to access keys in
recently accessed key ranges.

1An application that encodes a file’s path without knowledge of its par-
ent directory, such as a Web cache, can use a 2-byte hash of each directory
name instead, losing a small amount of locality when there are collisions.

objs
on A

objs
on B

B

A

1/2 of objs
previously on A

1/2 of objs
previously on A

objs
previously on B A

B

Figure 4. Load balancing example.

When nodes join and leave the system, cache entries can
become stale. Since D2-Store will fall back to a normal
lookup when a block is not found, using a stale cache en-
try does not affect correctness, but it does hurt retrieval la-
tency. Therefore, D2-Store evicts cache entries after 1.25
hours, based on the leave/join rate of PlanetLab nodes dur-
ing the week used in our evaluation [4] (Section 8.1). In
other environments, the cache entry TTL could be changed
dynamically based on measured cache invalidation rates.

6. Load Balancing

Load Balancing Algorithm. Since D2’s key distribution
is no longer uniform, consistent hashing cannot be used to
preserve load balance. D2 instead uses a dynamic load bal-
ancing DHT [3, 19]. These DHTs were originally designed
to support range queries, but D2 uses their load balancing
mechanisms specifically to preserve locality in data place-
ment. These load balancing algorithms are simple, fully
distributed, and converge quickly.

We present a brief description of the basic algorithm here
(refer to Figure 4). Each node B periodically contacts an-
other random node A in the system (once every probe in-
terval). If the load on A is greater than t times the load
on B, B changes its ID to become the predecessor of A,
effectively taking half of A’s load. The ID change is imple-
mented by having B leave the DHT and then rejoin with the
new ID. We leave some details to [19]. For t ≥ 4, all the
nodes achieve a load that is a constant multiplicative factor
away from the average in O(log n) steps with high prob-
ability [19]; we use t = 4 so that node loads differ by at
most a factor of 4 in steady state. Our D2 prototype uses
the Mercury DHT [3], which implements a version of this
algorithm using an efficient random sampling technique and
maintains O(log n)-hop routes in the DHT.

Each node stores both primary and secondary replicas,
but only the primary replica count is used as the load value
for the purpose of this algorithm because ID changes only
directly affect the primary replica count. To maintain the
invariant that the a block will be stored on the r nodes suc-
ceeding its key after a load balancing operation that moves
node B, the r nodes succeeding B’s old and new posi-
tions fetch required replicas that are not already present
and delete unnecessary replicas. When primary load on all

A

B

C

D2

3
1

Figure 5. Example of unnecessary data trans-
fers during load balancing (see text).

nodes is balanced, then total load, including both primary
and secondary replicas, will be balanced as well.2

D2 uses Mercury to balance storage load, but request
load (i.e., the number of block downloads serviced by a
node) is also important because some files may be accessed
more than others. D2’s use of Mercury to balance storage
load is orthogonal to traditional caching techniques to bal-
ance request load, so D2 alleviates temporary hot spots us-
ing retrieval caches like traditional DHTs [32], thereby bal-
ancing both storage and request load.

Reducing Load Balancing Overhead. During load bal-
ancing, a block can be moved multiple times. Suppose that
node A is heavily loaded, and node B changes its own ID to
become A’s predecessor, taking half of A’s load (Figure 5,
1). A may still be heavily loaded (and now B as well), so
later C (Figure 5, 2) and D (Figure 5, 3) change their IDs
to become the predecessors of A and B, respectively. Now
B must transfer half of its blocks to D; these blocks orig-
inated from A. Thus, these blocks move twice. This often
occurs when a large file is inserted, since it will initially be
assigned to a single node.

To minimize duplicate data movement D2-Store uses
block pointers during load balancing. Instead of having
A immediately transfer half of its blocks to B when B
becomes A’s predecessor, B will initially maintain block
pointers to A. Later B will transfer the pointers to D, and D
will ultimately retrieve the actual blocks from A and delete
the pointers. A node will retrieve the block for a pointer
when it has held the pointer for longer than the pointer sta-
bilization time.

7. Prototype Implementation

D2 is implemented in C++ and uses libasync [22] for
asynchronous event processing. D2-Store stores data blocks
in BerkeleyDB [1] and uses Mercury [25] for load balanc-
ing and DHT lookups. D2-Store uses TCP for communica-
tion while Mercury uses UDP. Mercury performs recursive
DHT lookups but D2-Store downloads blocks directly from
the responsible nodes once they are located. The implemen-
tation consists of about 13K lines of code.

2Suppose the ratio of maximum primary load max to minimum pri-
mary load min in the system is c. Then the ratio of maximum total load
to minimum total load is also at most r·max

r·min
= c.

 1e−04

 0.001

 0.01

 0.1

1min15sec5sec1sec

un
av

ai
la

bi
lit

y

inter

Traditional
Traditional−File

D2

Figure 6. Task unavailability under each sys-
tem while varying inter.

8. Availability

As discussed in Section 1, user and application tasks may
access multiple objects and will fail if any one of these ob-
jects is unavailable. We evaluate the availability (i.e., suc-
cess rate) of tasks instead of the availability of individual
objects because the former metric more accurately reflects
how often users will perceive the system to have failed to
complete a unit of work.

8.1. Experimental Setup

Testbed. In order to make evaluation of task availability
over long periods of time tractable, we developed a detailed
event-driven simulator. The simulator models a 750kbps
per-node bandwidth limit on load balancing traffic (i.e., data
migration). Network latency is ignored since RTTs are or-
ders of magnitude smaller than the time scale of events that
affect availability (e.g., MTTF, MTTR, and data-transfer
time). Each user writes data into the system at 1500kbps.
The load balancing probe interval is 10 minutes and the
pointer stabilization time is 1 hour. Each object has 3 repli-
cas.

The simulator captures all facets of D2 except DHT rout-
ing. Although a routing failure can cause a request to fail
even when the replicas that satisfy the request are available,
this failure is transient and can be resolved by retrying af-
ter a delay comparable to the DHT link repair time, which
is usually short. Moreover, because the churn rate is low
in the failure model we use (see below), the duration of all
link inconsistencies would be orders of magnitude smaller
than node down times.Therefore, replica availability is the
primary factor for task availability.

Workload and Failure Model. Our experiments simulate
247 nodes based on the observed failure behaviors of the
same number of nodes on PlanetLab [4] from February 22
to 28, 2003, a week with a particularly large number of fail-
ures (see [30] for details). By using an empirical trace with
large failure events, failure correlation is captured more re-
alistically, which is the most likely factor to reduce avail-
ability in practice due to its unpredictability.

We evaluate D2 using the Harvard workload (see Ta-
ble 1) because it is the only trace that has file path informa-

Table 2. The mean number of blocks and files
accessed per task, and the mean number of
nodes accessed per task in the traditional
DHT (block), traditional-file DHT (file), and D2.

mean objects mean nodes
inter block file block file D2
1sec 63 10 10 6 2
5sec 91 15 11 8 2

15sec 128 22 14 10 3
1min 237 38 23 16 4

tion and file writes (i.e., modifications, creations, and dele-
tions). The former is needed to use D2-FS’s key encoding,
and without the later, dynamic load balancing would not be
needed. Each simulation is initialized by inserting all files
that exist at the beginning of the trace into the DHT. The
load balancing process is then simulated for 3 days so that
node positions stabilize with respect to the initial key distri-
bution.

Tasks. The Harvard trace does not contain any infor-
mation that would allow us to definitively correlate the ac-
cesses in each task. Thus, we approximate a task as a se-
quence of accesses by the same user where the time between
any two consecutive accesses is less than an inter-arrival
threshold inter. We limit task duration to 5 minutes. Tasks
defined with short inter values represent application opera-
tions that do not include human interaction, while tasks de-
fined with longer inter values represent several consecutive
user actions that may be correlated.

8.2. Task Availability

Figure 6 plots the task unavailability (i.e., the fraction
of tasks that fail) of D2 versus that of a traditional and a
traditional-file DHT. Each bar corresponds to one of 5 trials
(each initialized with random node IDs). The 3 missing bars
for D2 indicate trials with no unavailability. D2 decreases
unavailability by an order of magnitude for all inter values,
in terms of the average, maximum, and minimum of the
5 trials. The traditional-file DHT achieves lower average
unavailability than the traditional DHT by storing blocks of
the same file on a single node, but it does not preserve as
much locality as D2 for tasks that access many files.

For insight into this result, consider the average number
of nodes accessed per task in a traditional DHT. Table 2
shows the mean number of blocks and files required by a
task and the mean number of nodes accessed by a task in
each system. Suppose p is the probability that at least one
node in a replica group (3 consecutive nodes in the DHT)
is available. A traditional DHT requires the availability of
about 10 to 23 replica groups per task, so the success rate

is approximately p10 to p23.3 In contrast, the average task
accesses only 2–4 replica groups in D2, so the task success
rate is at least p4. Hence, the expected failure rate of the
former (1−p10 to 1−p23) is much larger than the failure rate
of the later (1 − p2 to 1 − p4). Since tasks access multiple
objects, whether data is stored as block or file units in a
traditional DHT, the availability of more nodes are likely to
be required to complete a task when compared to D2.

9. Performance

This section evaluates how defragmentation affects end-
to-end latency with our implementation and a real file sys-
tem workload.

9.1. Experimental Setup

Testbed. We evaluated our implementation of D2 on 50
“PC 3000” machines in the Emulab testbed [33] running
Linux 2.4.31, with each physical machine hosting multiple
instances, effectively yielding systems of 200 to 1,000 vir-
tual nodes. Kernel-level packet queues (based on a modi-
fied Linux version of WaspNet [28]) are used to emulate the
wide-area network topology connecting these nodes. The
topology accurately models pairwise end-to-end latencies
between all virtual nodes, which we base on measured la-
tencies between several thousand local DNS servers around
the world [21]. In addition, the topology models per-node
access link capacity limitations of 1500kbps or 384kbps.
The first capacity captures service limits on infrastructures
such as PlanetLab [4], while the second models scenar-
ios where nodes are more constrained. Since both these
speeds are much smaller than speeds in the Internet’s core
and our workload does not exhibit much contention, we do
not model cross traffic. Finally, user-perceived performance
will only be affected when the DHT is the bottleneck, so we
do not limit the download bandwidth of clients.

We compare D2 with a traditional and a traditional-file
DHT implemented with the same codebase but using con-
sistent hashing for block/file assignment. We allow the
traditional-file DHT to do partial reads and writes on files,
so all three systems read and write the same volume of data.
All systems have 4 replicas per object.

Workload. For the reasons discussed in Section 8, we use
the Harvard workload (see Table 1) in evaluating perfor-
mance. Moreover, because D2-FS uses a write-back cache,
we only evaluate end-to-end read performance (as was done
in [6, 7]). To make our experiments tractable, we evaluate
system performance during 8 representative 15-minute peri-
ods of the trace, comprising the access patterns of 83 users.

3The actual probability is slightly higher since every r replica groups
overlap, but the number of groups accessed is much less than n/r so this
difference is negligible.

Further details about our Emulab setup can be found in an
associated technical report [29].

Access Groups. One limitation of the Harvard trace is
that it does not contain inter-access dependencies, which
directly impact the amount of exploitable parallelism. A
request R2 that is dependent on an request R1, cannot be
submitted until R1 completes. For example, a file cannot be
fetched before the directory that contains it, since we will
not know its key. However, if R1 and R2 are not dependent,
such as when a read covers two consecutive blocks of the
same file, they can both be submitted in parallel.

Instead of trying to recover inter-access dependencies,
our evaluation considers two extremes. For a given user, we
consider any period between two consecutive accesses that
is larger than 1 second to be think time. Accesses with think
times between them cannot be parallelized, so we leave
think times unchanged. We define an access group to be
the set of accesses that fall between two consecutive think
times. At one extreme, denoted by seq, we assume that all
accesses in a group are dependent and hence must be issued
sequentially (i.e., one must complete before the next is sub-
mitted). At the other extreme, denoted by para, we assume
that no accesses in a group are dependent and, hence, all
can be issued in parallel. The actual amount of exploitable
parallelism will be between these extremes.

In practice, we found that a large number of active par-
allel lookups and TCP downloads initiated by the same
node interfered with each other enough to incur 10 second
application-level timeouts, primarily due to the low band-
width of DHT nodes in our evaluation scenarios. Based
on empirical measurements, we limit the number of si-
multaneous transfers each client can initiate to 15 in order
to minimize the impact of these timeouts on performance.
Although this limitation restricts the maximum number of
nodes a client can download from, the number is still 3.75
times more than can be exploited from a single replica
group, which has only 4 nodes.

9.2. End-to-end Performance

Speedup. Each access group represents a unit of work be-
tween user think times. Hence the completion time of ac-
cess groups is the latency that users will perceive. We com-
pare the end-to-end performance of D2 to a traditional DHT
using the speedup of each access group, or the ratio between
the access group’s completion time under a traditional sys-
tem and its completion time under D2. Speedup is greater
than 1 when D2 is faster and less than 1 when it is slower.
For each user, we compute the geometric mean speedup
across all access groups of that user. The overall speedup of
the system is the geometric mean speedup across all users.

Sequential Performance. Figure 7 shows the average
speedup of D2 over a traditional DHT with different sys-

1500 kbps
384 kbps

 0.0

 0.4

 0.8

 1.2

 1.6

 2.0

para
1,000

para
500

para
200

seq
1,000

seq
500

seq
200

sp
ee

du
p

workload, number of nodes

Figure 7. Speedup over a traditional DHT.

1500 kbps
384 kbps

 0.0

 0.4

 0.8

 1.2

 1.6

 2.0

para
1,000

para
500

para
200

seq
1,000

seq
500

seq
200

sp
ee

du
p

workload, number of nodes

Figure 8. Speedup over a traditional-file DHT.

D2
Traditional−File
Traditional

 0

 20

 40

 60

 80

para
1,000

para
500

para
200

seq
1,000

seq
500

seq
200

av
g

ca
ch

e
m

is
s

ra
te

 %

workload, number of nodes

Figure 9. Mean lookup cache miss rate.

tem sizes and DHT node access bandwidths. As expected,
in the seq case, D2 always achieves noticeable speedups
over a traditional design. For example, in a system size of
1000, the performance improvement is at least 90%. Fig-
ure 8 shows the average speedup of D2 over a traditional-file
DHT. Since access groups often require multiple files (see
Table 2), the sequential speed up is similar in a 200 node
system. However, in contrast with the traditional DHT com-
parison, the speedup does not grow appreciably with system
size (see the cache discussion below).

The lookup cache miss rate is primarily responsible for
the speedups we observe. Figure 9 shows the average per-
user lookup cache miss rates of each system in each of Fig-
ure 7’s scenarios. In the seq cases, D2 has miss rates of
13% while the traditional design has miss rates of more than
47%. Moreover, the miss rate for D2 is independent of sys-
tem size, while the miss rate in a traditional DHT grows
with system size. D2’s effective utilization of the cache
also reduces the number of lookup messages by an order of
magnitude when compared to a traditional DHT [29]. The
traditional-file DHT maintains some locality by storing all
a file’s blocks on one node, so its cache miss rate also does
not grow appreciably with system size.

 0.01

 1

 100

 0.01 1 100

T
ra

di
tio

na
l l

at
en

cy
(s

ec
)

D2 latency (sec)

 0.01

 1

 100

 0.01 1 100

T
ra

di
tio

na
l l

at
en

cy
(s

ec
)

D2 latency (sec)

(a) sequential (b) parallel

Figure 10. Comparison of access group laten-
cies for D2 and the traditional DHT. Note the
logarithmic scales.

Finally, Figure 10(a) compares the latency of access
groups under D2 and the traditional DHT in the 1000
node, 1500kbps scenario. Results comparing D2 with a
traditional-file DHT are similar [29]. Points above the di-
agonal complete faster in D2, while points below complete
slower. The weight of the distribution is above the diago-
nal. Most points below are access groups that take between
0 and 2 seconds in both systems and, since inter-node la-
tencies vary by several 100 milliseconds, can mostly be at-
tributed to blocks being assigned to nodes closer in the net-
work when using the traditional DHT. More importantly,
most access groups that take more than 5 seconds to com-
plete in either system complete faster in D2, sometimes by
almost an order of magnitude.

Parallel Performance. Figure 7 shows that the average
speedup in the para case is greater than 1 in all system sizes
when nodes have access bandwidths of 1500kbps. Hence,
D2 still out-performs the traditional DHT, though not by as
large a margin as in the seq case.

However, when the access bandwidth is reduced to
384kbps, D2 performs worse than the traditional DHT when
the system size is 200 or 500 nodes. In a traditional DHT,
the requests in an access group will likely be serviced by
more nodes than in D2, since blocks are assigned to nodes
randomly. Thus, although each individual access may take
longer due to lookup cache misses, different accesses in the
same group can simultaneously leverage the upload band-
width of more nodes in a traditional DHT. When per-node
access bandwidth is low, as in these two scenarios, the
throughput gain outweighs the additional lookup latency.
Nonetheless, when the system size increases to 1000 nodes,
the lookup latency, which grows with system size, again
dominates and the speedup is greater than 1.

Figure 8 shows that D2’s parallel speedup over a
traditional-file DHT is greater than that over a traditional
DHT when there are 200 nodes in the system. This is be-
cause, unlike D2, access groups that require multiple re-
lated files still access multiple nodes in a traditional-file
DHT, while access groups that read very large files can not
take advantage as much parallelism as a traditional DHT be-

cause all the blocks of a file are stored on the same set of
nodes. Since most access groups that require more than one
block fall into one of these two categories, the traditional-
file DHT’s average parallel performance is the poorest when
there are few nodes. However, unlike the traditional DHT,
the traditional-file DHT’s cache miss rate does not grow
appreciably with system size (see Figure 9), so its paral-
lel performance does not degrade with system size as with
a traditional DHT. Nonetheless, D2 still out performs the
traditional-file DHT consistently.

Figure 10(b) shows that there are many access groups
that take longer to complete in D2 when compared to a tra-
ditional DHT. However, the weight of the distribution is still
above the diagonal. Moreover, no access group that takes
more than 5 seconds to complete in D2 complete much
faster in the traditional DHT — they all lie close to the
diagonal. Although we expect these access groups to per-
form much better in the traditional DHT because they con-
tain many parallelizable requests, a subtle limitation of the
TCP transport prevents the full upload bandwidth from each
node from being utilized.

When a TCP connection is idle for more than one re-
transmit timeout (RTO) it reduces its window size and re-
enters the slow start mode of operation. Consider a tra-
ditional DHT in the 1000 node, 1500kbps scenario. The
first 15 requests in flight each require the downloading TCP
connection to enter slow start; with 8KB blocks and 1500
byte packets, this means that at least 2 RTTs are required
to fetch a block. The mean RTT in our network is 90ms,
so the average node effectively only transfers at a rate less
than 309kbps. In addition, the expected time between ac-
cesses to the same node is at least 14 seconds [29], much
longer than one RTO. Thus, the average block download
will always require the TCP connection to enter slow start
and, hence, will never be able to utilize the DHT node’s full
bandwidth. In D2, since most requests are likely to go to the
same 4 replica nodes due to locality, each TCP connection
can usually ramp up to the full 1500kbps.

Custom DHT transfer protocols like STP [6] are de-
signed to avoid this adverse interaction between large par-
allel downloads and TCP by avoiding per-flow slow-start.
However, 86% of access groups in our workload access at
most 15 blocks and would not benefit from STP because our
traditional DHT already fetches 15 blocks at once. There-
fore, even using proposed custom transfer protocols would
not substantially improve the traditional DHT’s overall par-
allel download performance in this scenario.

10. Load Balance and Overhead

The primary cost of D2’s availability and performance
gains is the need for active load balancing. As files are
added, removed, and modified, the key distribution of

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1 2 3 4 5 6 7

S
td

 D
ev

 /
M

ea
n

Lo
ad

Time (days)

Traditional-File
Traditional

D2
Traditional+Merc

Figure 11. Load imbalance over time.

Table 3. Mean write traffic Wi vs. mean load
balancing traffic Li on each day i (in MB).

Day 1 2 3 4 5 6 Total
Wi 61 71 142 114 109 123 620
Li 0 18 65 60 71 93 307

blocks in the system changes, and D2 may have to migrate
blocks in order to maintain load balance. This requirement
poses two questions: (1) Can D2 maintain storage balance
over time? (2) How much network traffic is required to
maintain this balance?

Workloads. We seek answers to these questions by per-
forming long term simulations using a setup like that de-
scribed in Section 8.1 with the Harvard workload. In an
associated technical report [29], we also show that D2 can
maintain load balance and limit overhead under the extreme
conditions imposed by a web cache workload, which has
much more churn in its data distribution.

Load Balance. Figure 11 plots how load imbalance fluctu-
ates over time in a traditional-file DHT, a traditional DHT,
D2, and a traditional DHT that also uses Mercury’s ac-
tive load balancing (Traditional+Merc). We measure load
imbalance with the normalized standard deviation of total
node storage load (i.e., the standard deviation divided by
the mean). This metric captures the deviation of node loads
from the mean load (the per-node load in a perfectly bal-
anced system).

For the Harvard workload, D2 is able to keep imbal-
ance even lower than that achieved by the traditional DHT.
The traditional-file DHT has the worst load balance because
nodes that store larger files have higher load and the differ-
ence between the mean and maximum file size in this work-
load is over 4 orders of magnitude. The Traditional+Merc
line shows the load balance achievable in a system using
both consistent hashing and the active load balancing al-
gorithm described in Section 6. D2’s load balance is very
close to that of the Traditional+Merc system most of the
time. Thus, D2 sacrifices little in terms of load balance by
giving up consistent hashing. Even when too much data is
inserted into a few nodes, as exemplified by the spikes on
days 4, 5, and 6, the distribution of blocks is quickly rebal-
anced in D2.

Overhead. Table 10 compares the average amount of load
balancing traffic (i.e., data migrated) per node with the av-
erage amount of data written to each node by users. File
creations, modifications, and removals change the distribu-
tion of data in the system, so in the worst case, every time
data is added or removed from the system, D2 might have
to migrate some data to balance load. Table 10 shows that
with Harvard, load balancing traffic is only about 50% of
the total write traffic over the week. This means that for
every 2 bytes written, 1 byte is migrated later. Since read
traffic tends to dominate write traffic in most file systems,
we expect load balancing traffic to be insubstantial.

11. Conclusion and Future Work

This paper demonstrated the significant availability and
performance benefits of a “defragmented” DHT-based file
system. Our design of such a system, D2, contributes three
key techniques: locality preserving keys, lookup caches,
and low overhead load balancing. Our evaluation of D2
shows that, compared to traditional designs, D2 decreases
unavailability by over an order of magnitude and improves
user-perceived latency by 30–100% in a 1,000 node system.

Two issues that may hinder D2 in certain environments
are the subject of future work. First, when the infrastruc-
ture is not trusted, malicious nodes can take over arbitrary
regions of the ID space by joining at those locations be-
cause node IDs in D2 are not secure hashes. Second, D2
would not perform as well with workloads that do not re-
semble traditional filesystems, such as those that mostly ac-
cess very large files. We believe that a combination of lo-
cality preserving and consistent hashing replica placement
could safeguard data and enable high performance opera-
tions on small and large files in these scenarios.

12. Acknowledgments

We thank our shepherd Y. Charlie Hu, Mukesh Agrawal,
David Andersen, Peter Steenkiste, and the anonymous re-
viewers for their suggestions, Daniel Ellard, HP Labs,
and NLANR (supported by NSF grants NCR-9616602 and
NCR-9521745) for providing traces, and Emulab for pro-
viding resources used in our experiments. This work is sup-
ported by NSF grant CNS-0435382 and NUS grants R-252-
050-284-101 and R-252-050-284-133.

References

[1] Berkeley DB. http://www.sleepycat.com/.
[2] R. Bhagwan et al. Total Recall: System support for auto-

mated availability management. In NSDI, 2004.
[3] A. Bharambe, M. Agrawal, and S. Seshan. Mercury: Sup-

porting Scalable Multi-Attribute Range Queries. In SIG-
COMM, 2004.

[4] B. Chun et al. PlanetLab: An Overlay Testbed for Broad-
Coverage Services. SIGCOMM CCR, 33(3), 2003.

[5] B.-G. Chun et al. Efficient replica maintenance for dis-
tributed storage systems. In NSDI, 2006.

[6] F. Dabek, et al. Designing a DHT for low latency and high
throughput. In NSDI, 2004.

[7] F. Dabek et al. Wide-area Cooperative Storage with CFS. In
SOSP, 2001.

[8] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive NFS
tracing of email and research workloads. In FAST, 2003.

[9] G. R. Ganger and M. F. Kaashoek. Embedded inodes and
explicit grouping: Exploiting disk bandwidth for small files.
In USENIX Annual Technical Conference, pages 1–17, 1997.

[10] A. Haeberlen, A. Mislove, and P. Druschel. Glacier: Highly
durable, decentralized storage despite massive correlated
failures. In NSDI, 2005.

[11] Harvard trace. http://www.eecs.harvard.edu/sos/traces.html.
[12] N. Harvey et al. Skipnet: A scalable overlay network with

practical locality properties. In USITS, 2003.
[13] J. Hendricks et al. Improving small file performance in

object-based storage. Technical Report CMU-PDL-06-104,
Carnegie Mellon PDL, 2006.

[14] J. H. Howard et al. Scale and performance in a distributed
file system. ACM TCS, 6(1):51–81, 1988.

[15] HP trace. http://www.hpl.hp.com/research/ssp/software/.
[16] IRCache. http://www.ircache.net/.
[17] C. Jensen. Fragmentation: the Condition, the Cause, the

Cure. Executive Software International, Glendale, CA, 1994.
[18] M. Ji et al. Archipelago: An island-based file system for

highly available and scalable internet services. In USENIX
Windows Systems Symposium, 2000.

[19] D. Karger and M. Ruhl. Simple Efficient Load Balancing
Algorithms for Peer-to-Peer Systems. In ACM SPAA, 2004.

[20] D. Karger et al. Consistent Hashing and Random Trees: Dis-
tributed Caching Protocols for Relieving Hot Spots on the
World Wide Web. In STOC, 1997.

[21] Latencies. http://www.pdos.lcs.mit.edu/p2psim/kingdata.
[22] D. Mazieres. A toolkit for user-level file systems. In USENIX

Technical Conference, 2001.
[23] M. K. McKusick et al. A fast file system for UNIX. Com-

puter Systems, 2(3):181–197, 1984.
[24] L. W. McVoy and S. R. Kleiman. Extent-like performance

from a UNIX file system. In Proceedings of the USENIX
Winter Technical Conference, 1991.

[25] Mercury. http://www.cs.cmu.edu/∼ashu/gamearch.html.
[26] A. Mislove and P. Druschel. Providing administrative con-

trol and autonomy in peer-to-peer overlays. In IPTPS, San
Diego, CA, Feb. 2004.

[27] A. Muthitacharoen, R. Morris, T. Gil, and B. Chen. Ivy: A
Read/Write Peer-to-peer File System. In OSDI, 2002.

[28] E. M. Nahum, M. Rosu, S. Seshan, and J. Almeida. The
effects of wide-area conditions on www server performance.
In SIGMETRICS, Cambridge, MA, June 2001.

[29] J. Pang et al. Defragmenting DHT-based Distributed File
Systems. Technical Report CMU-CS-07-115, Carnegie Mel-
lon, 2007.

[30] PlanetLab Data. http://www.pdos.lcs.mit.edu/∼strib/pl app/.
[31] S. Rhea et al. Pond: the OceanStore Prototype. In USENIX

FAST, March 2003.
[32] A. Rowstron and P. Druschel. Storage management and

caching in PAST, a large-scale persistent peer-to-peer storge
utility. In SOSP, 2001.

[33] B. White et al. An integrated experimental environment for
distributed systems and networks. In OSDI, 2002.

[34] H. Yu, P. B. Gibbons, and S. K. Nath. Availability of Multi-
Object Operations. In NSDI, 2006.

