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Abstract—In a sybil attack, an adversary creates a large
number of fake identities/nodes and have them join the system.
Computational puzzles have long been investigated as a possible
sybil defense: If a node fails to solve the puzzle in a timely
fashion, it will no longer be accepted by other nodes. However, it
is still possible for a malicious node to behave in such a way that
it is accepted by some honest nodes but not other honest nodes.
This results in different honest nodes having different views on
which set of nodes should form the system. Such view divergence,
unfortunately, breaks the overarching assumption required by
many existing security protocols.

Partly spurred by the growing popularity of Bitcoin, re-
searchers have recently formalized the above view divergence
problem and proposed interesting solutions (which we call
view reconciliation protocols). For example, in CRYPTO 2015,
Andrychowicz and Dziembowski proposed a view reconciliation
protocol with Θ(N) time complexity, with N being the number
of honest nodes in the system. All existing view reconciliation
protocols so far have a similar Θ(N) time complexity. As this
paper’s main contribution, we propose a novel view reconciliation
protocol with a time complexity of only Θ( lnN

ln lnN
). To achieve

such an exponential improvement, we aggressively exploit ran-
domization.

I. INTRODUCTION

Sybil attack and computational puzzles. The sybil attack [1]
problem has attracted tremendous amount attention from re-
searchers over the past two decades. In a sybil attack, the
adversary creates a large number of fake identities/nodes and
have them join a system. The adversary can then leverage them
to effectively launch various follow-up attacks. Sybil attacks
exploit the fact that modern distributed systems are typically
permissionless and cannot rely on public key infrastructures,
in the sense that they allow nodes to join the system without
for example, going through an identity check based on credit
card numbers to get permission to join.
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Computational puzzles [2], [3] have long been investigated
as an approach to defend against sybil attacks. With compu-
tational puzzles, every node is asked to complete some non-
trivial computational task simultaneously. If a node fails to
complete such a task within some specific time constraint, then
the node’s identity will no longer be accepted by other nodes.
If the attacker has limited computational power per time unit
(e.g. only 10%) as compared to the aggregate computational
power per time unit of all the N honest nodes, then the
number of malicious nodes it can sustain in a sybil attack
will also be limited (e.g., at most 0.1N malicious nodes). The
developments of Bitcoin [4] in recent years have spurred much
renewed interest in this well-known approach.

View divergence. Using computational puzzles, by itself, is
yet not sufficient to offer a security basis for many per-
missionless distributed systems, for the following reason. In
permissionless distributed systems, there is often no trusted
central authority. Thus each honest node u will need to
determine itself whether another node v should be accepted
as part of the system. A malicious node v may then cooperate
with u for the verification of its solution to the computational
puzzle, but not with another honest node w. This results in
different honest nodes having different views on which set of
nodes should form the system. A further complication is that
v (which is malicious) will also have its own view, and v can
include many other sybil nodes in its view. At this point, we
end up dealing with a (potentially infinite) set of nodes each
with their own view about the membership of the system.

Such view divergence, unfortunately, breaks the basis of
many security protocols in distributed systems: For example
byzantine consensus protocols (e.g., [5]–[11]) and secure
multi-party computation protocols (e.g., [12]–[14]) typically
assume an agreed-upon set of nodes running the protocol. As
another example, protocols for building dynamic and robust
overlay networks [15], [16] typically have a bootstrapping



stage during which they also assume an agreed-upon set of
nodes running the protocol.

State-of-the-art protocols. Partly spurred by the growing
popularity of Bitcoin [4], researchers have recently formal-
ized [17], [18] the above view divergence problem, and
proposed interesting solutions. Specifically, in CRYPTO 2015,
Andrychowicz and Dziembowski [17] proposed a protocol
enabling the honest nodes to agree on a final view which
is guaranteed to contain all N honest nodes and no more
than a certain threshold number (f · N ) of malicious nodes.
Katz et al. [18] proposed another protocol offering similar
functionalities. For convenience, we refer to all such protocols
as view reconciliation protocols – namely protocols that enable
all the nodes, starting from divergent views, to obtain the same
final reconciled view. While the existing view reconciliation
protocols are quite different from each other in terms of
algorithmic techniques, all of them [17], [18] require Θ(N)
rounds of execution time. Here each round needs to be long
enough to accommodate message propagation delay in the
network as well as some amount of local processing.

Our central result. As our main contribution, this paper
proposes and analyzes a novel randomized view reconciliation
protocol, called RandomizedViewReconciliation or RVR. We
prove that RVR only takes Θ( lnN

ln lnN ) rounds to terminate1.
Our novel result has two major implications. First, relatively
speaking, our protocol is an exponential improvement over
the state-of-the-art Θ(N) protocols [17], [18]. Second, many
security protocols (e.g., [15], [16]) for large-scale distributed
systems have sub-linear time complexity, since linear time
complexity is considered overly expensive. But since the
previous view reconciliation protocols [17], [18] take Θ(N)
rounds, their overhead often ends up being the dominating
term in the end-to-end solution. Namely, without alleviating
this Θ(N) bottleneck, additional research will not help to
further reduce the asymptotic complexity of many problems.
Our protocol with only Θ( lnN

ln lnN ) rounds fills up this critical
need.

Our RVR protocol has similar communication complexity
as previous protocols per round: Each honest node in our
protocol sends on expectation Θ(N lnN) bits per round2, as
compared to Θ(N) in previous protocols [17], [18]. But the
total number of bits sent by each honest node in our protocol
(i.e., Θ(N ln2N

ln lnN )) is much smaller than in previous protocols
(i.e., at least Θ(N2)).

Finally, our RVR protocol currently assumes that the ad-
versary’s computational power is no more than the aggregate
computational power of fN honest honest node, with f being
any constant smaller than 1

3 . In comparison, [18] can tolerate
all f < 1, while [17] can even tolerate f > 1 (though in
most cases, to provide useful functionality later on, f needs
to be below 1 anyway). Hence our protocol imposes a stronger

1If the error probability δ (see definition later) is not viewed as a constant,
then this will be Θ( lnN

ln lnN
ln 1
δ

).
2If the error probability δ (see definition later) is not viewed as a constant,

then this will be Θ(N ln N
δ

).

restriction on the adversary’s power than the existing protocols.
It is our future work to investigate how to generalize to f ≥ 1

3 .

Our approach. A key commonality among the existing view
reconciliation protocols [17], [18] is that they are all determin-
istic (excluding invocations to crypto primitives). To decrease
the time complexity, we aggressively exploit randomization
and to allow a positive and tunable error probability δ. On
the surface, having a positive error probability seems to be
rather unacceptable for a security protocol. But even basic
crypto primitives (such as public key crypto used in [17],
[18]) have a positive probability of error: For example, the
adversary might correctly guess the private key. This means
that strictly speaking, even those previous protocols [17], [18]
have positive error probability. The crux in our approach
thus is to ensure that i) our error probability δ is tunable,
and ii) δ decreases exponentially with the overhead of the
protocol (as in the case of crypto primitives). Specifically in
our RVR protocol, if δ were not viewed as a constant, then as
δ approached zero, the time complexity of our RVR protocol
would be Θ( lnN

ln lnN ln 1
δ ) rounds. Thus increasing the number

of rounds decreases δ exponentially.
Allowing randomization opens up a lot of possibilities for

better performance. For example, we will use computational
puzzles to elect leaders, probabilistically. This differs from
[17], [18] where the puzzles are used solely to challenge the
computational power of the nodes. Our protocol will also rely
on randomized gossiping and randomized sampling to achieve
its end goal. As a side benefit of aggressively exploiting
randomization, our protocol is rather elegant and conceptually
much simpler than the previous solutions [17], [18].

Roadmap. Section II discusses related work, while Section III
formalizes the view divergence problem. Section IV gives an
overview of our RVR protocol, and Section V through VII
elaborate on the key subroutines in RVR. Finally, Section VIII
puts everything together.

II. RELATED WORK

View reconciliation protocols. Computational puzzles [2], [3]
have been investigated extensively for defending against sybil
attacks in various contexts (e.g., [4], [19]–[21]). This work
focuses on the view divergence problem that stems from the
use of computational puzzles. Section I has already discussed
the key differences between our RVR protocol and the two
existing view reconciliation protocols [17], [18]. In addition,
none of [17], [18] use randomization or the leader-based
paradigm as we do, and none use any components similar
to our three key subroutines.

Byzantine consensus protocols. Byzantine consensus proto-
cols (e.g., [5]–[11]) are different but quite related to view
reconciliation protocols. Both kinds enable the honest nodes
to agree on something. But byzantine consensus protocols
typically have the implicit assumption that the protocols are
run over some given set of nodes. For example, a protocol
typically assumes that there are (1 + f)N nodes running the
protocol, where the identities of these (1 + f)N nodes are



agreed upon by every node prior to the protocol. In our context,
we do not have any given and agreed-upon set of nodes. In
fact, establishing some agreed-upon set of (1 + f)N nodes
is precisely the goal of the view reconciliation problem itself.
It is worth noting that [5] explicitly deals with sybil attacks.
But the work still assumes an agreed-upon set of nodes, and
explicitly leaves the implementation of such an assumption to
future work.

While byzantine consensus protocols cannot solve the view
divergence problem, one can nevertheless build upon ideas
from them. For example, the two existing view reconcili-
ation protocols [17], [18] both build upon ideas from [8].
Our RVR protocol also builds upon a well-known leader-
based paradigm [6], [11] widely used in byzantine consensus
protocols. While this general paradigm has been well-known
for decades, the key novel aspects in our protocol are the
specifics of how we implement such a paradigm i) using only
total O( lnN

ln lnN ) rounds, ii) with each honest node sending on
expectation only O(N lnN) bits per round, and iii) under a
setting where there is no agreed-upon set of nodes to start
with. Note that even with an agreed-upon set of nodes, a
direct application of the protocol in [6], [11] to our setting
would result in a deterministic algorithm with O(N) rounds
and requiring each node to send O(N2) bits per round.

Bitcoin. While Bitcoin [4] is an excellent example of per-
missionless large-scale distributed system, Bitcoin itself does
not solve the view divergence problem. In fact, the recently
discovered network-level eclipse attack [22] on Bitcoin is
one ultimate consequence of view divergence. Using a view
reconciliation protocol to bootstrap, and then dynamically
maintaining a robust overlay [15], [16] will offer a provable
defense against such eclipse attacks in Bitcoin.

Recently, researchers have used the Bitcoin protocol (or its
variants) as a building block to solve other problems in the
permissionless settings, such as for achieving consensus and
electing a committee (e.g., [23]). Solving these problems in
the permissionless settings, in turn, would enable one to solve
the view divergence problem. However, such an approach
necessarily inherits all the assumptions needed by the Bitcoin
protocol. In particular, the Bitcoin protocol assumes the exis-
tence of a genesis block, which is unpredictable, agreed upon
by all honest nodes, and released to all nodes simultaneously.
As a direct contrast, our RVR protocol, as well as the previous
view reconciliation protocols [17], [18], avoids such a critical
assumption, by solving the view divergence problem directly
rather than indirectly via Bitcoin.

III. PROBLEM FORMULATION

Since the view divergence problem has already been pre-
vious formulated in [17], [18], this section will follow the
existing formulation in [17], to the extent possible.

System model and attack model. The system has N honest
nodes that always follows the protocol. The honest nodes do
not know N , and the lack of such knowledge will be one
technical difficulty that we overcome. Each honest node holds

a (locally and randomly generated) public/private key pair, and
the public key is the unique identity of the node. To simplify
discussion, we will often simply use “node” to refer the public
key of that node. Whenever a node sends a message, it includes
its public key (as the sender’s “identity”) and then append
a digital signature. Each node also has an IP address and a
port number. Each honest node has one unit of computational
power.

The adversary can have an unlimited number of malicious
nodes, public/private key pairs, IP addresses and port numbers.
Malicious nodes are byzantine and colluding. Independent
of the number of malicious nodes, the adversary has total
fN units of computational power, for some constant f . The
adversary may spoof the IP addresses of the honest nodes, and
can inject arbitrary messages into the network. It also sees all
messages in the network. But the adversary cannot corrupt or
remove a message from the network. The adversary cannot
break crypto primitives such as digital signatures.

To allow a direct comparison, we follow [17], [18] and
assume that the honest nodes are synchronized. Time is
divided into rounds, where each round is sufficiently long
for every honest node to do some local processing and for
all messages sent at the beginning of the round to reach the
corresponding receivers by the end of that round. Our protocol
actually works even if the honest nodes are “out-of-synch”
with each other when starting the protocol (see Section IV).
Hash functions and security parameter. We will use hash
functions for various purposes in our protocol. When proving
the formal guarantees, we follow [17] and model all our
hash functions as random oracles [24]. The outputs of the
hash functions will be viewed as integers in the range of
[0, max hash). We use m to denote the number of hash
operations that one unit of computational power can perform
in one round. For simplicity, all asymptotic complexities in
this paper treat the length of security keys, hashes, nonces,
and so on, as O(1).3

View reconciliation. In the view reconciliation problem, each
node u has an initial view initviewu, which is a set of
nodes (i.e., the public keys of the nodes). The initial views
are established using computational puzzles, via some ex-
isting approach (which we will review later). For all hon-
est node u, initviewu contains all the N honest nodes
(since each honest node can properly solve one puzzle). Let
union honest initview be the union of the initial views of
all the honest nodes. Then union honest initview contains
at most fN malicious nodes. This constraints come from the
adversary being able to solve only fN puzzles. Note that
each puzzle solution corresponds to a single malicious node
v, since the puzzle is tied to the public key of v. For a
given malicious node v, the adversary can cause v to only be
included in initviewu and not in initvieww, thus causing
view divergence.

3If needed, one could use a security parameter λ, in which case the
asymptotic time complexity of RVR and the previous protocols [17], [18]
will not be affected, while the communication complexities in all cases will
increase by a factor of Θ(λ).



The goal of view reconciliation is to give each honest node
u a final view final viewu such that i) the final views of
all honest nodes are identical, and ii) the final view contains
all the N honest nodes and at most fN malicious nodes. One
may observe that the set union honest initview already
satisfies these properties. But it is difficult to determine
union honest initview, since we do not know which
nodes are honest.

Establishing the initial views. The initial views on the
nodes can be established using similar approaches in existing
works [5], [17], [18]. This is not our contribution, not part of
the view reconciliation problem, and not part of RVR. Hence,
we only provide a concise review below.

First, there needs to be some mechanism for the nodes to
initially learn about each other. This is addressed in [17],
[18] by assuming the existence of some (insecure) public
channel. Every node may post messages to the public channel.
A message posted by an honest node will be received by all
honest nodes, while a message posted by a malicious node may
reach any subset (as chosen by the adversary) of the honest
nodes. This public channel can be implemented by flooding.

Now if every node posts to the public channel its public
key, IP address/port, together with a digital signature, then
every node u will learn about all the honest nodes, together
with some arbitrary number of malicious nodes. Let this set be
pre initviewu. Next every u in the system will simultane-
ously send a random challenge to all nodes in pre initviewu
A receiving node v will combine all the challenges it receives
(e.g., using a Merkle tree) into a single challenge. Node v will
then solve a computation puzzle instantiated by the challenge,
and then send back the puzzle solution (as well as the Merkle
proofs) to each node u from which v received a challenge.
Once u verifies the solution and the proof, u will include v
in initviewu. For simplicity, we will assume that an honest
node v can always successfully solve the puzzle, while the
adversary can solve total no more than fN puzzles here.

IV. OUR PROTOCOL: RANDOMIZED VIEW
RECONCILIATION

This section provides an overview of our novel
RandomizedViewReconcile (or RVR in short) protocol.

Messages with signatures. In RVR, each node u maintains
a view (viewu) that can change over time. Initially, viewu =
initviewu, and at the end of the protocol, final viewu
will be set to viewu. Throughout the protocol, u only sends
messages to and receives messages from node in its initial
view initviewu. A message always contains the sender,
the receiver, a sequence number, and a digital signature, to
enable authentication as well as to prevent replay attacks. A
node u will discard all message received from nodes not in
initviewu, and also all messages whose sequence numbers
are not expected. RVR has a certain number of iterations (see
Algorithm 1), and the iteration number is also included in
a message. In a particular iteration, a node will only use
messages with the corresponding iteration number. To be

Algorithm 1 RandomizedViewReconcile or RVR in short
input: f , δ, offset, u, initviewu, m;
output: final viewu;

1: viewu = initviewu;
2: repeat 6 ln 2

δ times do
3: leader = ProbLeaderElect(f, offset, u, initviewu,
m);

4: scoreu[·] = TwoStageSample(f, δ, offset, u,
initviewu, viewu);

5: foreach v do
6: if scoreu[v] ≥ 0.50 then add v to proposalu;
7: if scoreu[v] ≥ 0.75 then add v to overu;
8: if scoreu[v] ≤ 0.25 then add v to underu;
9: proposal = CoordinatedGossip(f, δ, offset, u,

viewu, initviewu, leader, proposalu);
10: viewu = overu ∪ (proposal \ underu);
11: offset = 2; //offset is 2 once gossiping is done
12: end
13: final viewu = viewu; return final viewu;

concise, we will not explicitly mention these mechanisms in
the pseudo-code or in the discussion.

Non-simultaneous start. Different honest nodes do not have
to start running RVR at the same time. When we say that all
honest nodes starts executing a certain protocol within offset

rounds of each other, we mean that the time between the first
honest node starting and the last honest node starting is at most
(offset−1) rounds. Hence offset = 1 means simultaneous
start. The value of offset will be fed into our protocol as a
parameter.

Allowing offset ≥ 2 enables our protocol to work even if
the nodes are not perfectly in synch. Furthermore, even if all
the nodes start simultaneously, due to the lack of knowledge of
N , the nodes may get out-of-synch in the CoordinatedGossip
subroutine. Hence we will need to allow offset in all other
parts of our protocol anyway.

Overview of design. RVR has a certain number of iterations
(see Algorithm 1). At a high level, we build upon a well-
known leader-based paradigm [6], [11] (see Section II for
discussion on related work): In each iteration some leader
proposes a certain view to all the nodes. The protocol ensures
that if the leader is honest, then all nodes will properly
adopt the proposal. This adopted proposal (i.e., view) will
already contain N honest nodes and at most fN malicious
nodes, which means that it has all the desired properties. The
protocol further ensures that in later iterations, even if the
leader is malicious, the previously adopted proposal will not be
disrupted — namely, the (bad) proposal made by a malicious
leader will not be adopted (see proof of Theorem 8).

Three key subroutines. Our overarching approach in RVR
to achieving small time complexity is to aggressively rely
on randomization, and then carefully ensure that the error δ
resulted from randomization can be decreased exponentially.
Specifically, RVR uses three key subroutines, all of which



are randomized. The first ProbLeaderElect subroutine aims to
elect an honest leader in the system. Doing so perfectly will be
challenging — we have unlimited number of malicious nodes
in the system. But fortunately, the leader election here does not
need to be always correct. Hence we elect the leader by simply
having the nodes solve computational puzzles. Whoever solves
the puzzle will become the leader. It is certainly possible
to have multiple nodes solving the puzzles at roughly the
same time, which would result in multiple leaders. This gets
further complicated when the nodes do not start executing
ProbLeaderElect simultaneously. Section V will show that
with a proper puzzle difficulty, we can nevertheless ensure
a positive constant probability of having a unique and honest
leader.

Our CoordinatedGossip subroutine allows the elected leader
to disseminate its proposal to all honest nodes, via randomized
gossiping. A difficulty here is that because the honest nodes
do not know N , they may disagree on how many rounds they
should gossip for. As a result, they may get out-of-synch with
each other when they finish CoordinatedGossip. Making them
fully synchronous would require solving the classic byzantine
firing squad problem [25]. Unfortunately, byzantine firing
squad protocols typically assume that the protocols are run
over some given set of nodes (which we do not have until after
view reconciliation is complete). To overcome this difficulty,
we will design a simple yet elegant mechanism so that the
nodes will return from CoordinatedGossip within 2 rounds
(instead of 1 round, which would imply perfect synchrony) of
each other.

Finally, in the leader-based paradigm, when the leader forms
its proposal and when a node decides whether to adopt the
leader’s proposal, they need to collect the current views of all
the honest nodes. Naturally in our setting, a node u will con-
ceptually collect the views of all those nodes in initviewu.
Doing so directly entails large communication complexity,
hence we instead randomly sample some of the nodes for their
views. A tricky part is that the malicious nodes either may re-
quest for too many samples (hence blowing up communication
complexity) or may push samples aggressively to other nodes
(hence causing their views to be over-represented). We will
use two-stage sampling in our TwoStageSample subroutine
to overcome this issue.
Provable guarantees. Algorithm 1 gives the pseudo-code for
the RVR. We defer a more detailed discussion of the pseudo-
code and the formal analysis to Section VIII, after we elaborate
the three key subroutines in Section V through VII.

V. PROBABILISTIC LEADER ELECTION

Conceptual design. Recall that RVR allows a δ probability
of error. We say that ProbLeaderElect succeeds if it elects
a unique leader and the elected leader is an honest node.
As long as ProbLeaderElect succeeds with some constant
probability (e.g., 0.16 as in our proof later), repeating it for
O(ln 1

δ ) times can already guarantee at least one success with
1 − δ probability. By our design of RVR, we only need one
successful iteration anyway, to achieve our final goal.

Algorithm 2 ProbLeaderElect
input: f , offset, u, initviewu, m; output: leader;

1: generate fresh challengeu and send 〈u, challengeu〉 to
all nodes in initviewu;

2: spend offset rounds receiving messages in the form of
〈w, challengew〉;

3: form a Merkle tree with all the challengew’s received
as leaves, and let rootu be the root of the Merkle tree;

4: spend 6 · offset rounds trying to find x such that
hash(x,u,rootu)

max hash
≤ 1

6m(1+f)|initviewu|·offset ;
5: if find such x, send 〈x, u, rootu, off path hashes〉 to

all nodes in initviewu;
6: spend offset rounds receiving messages in the form of
〈y, w, rootw, off path hashes〉;

7: leader = null;
8: for each 〈y, w, rootw, off path hashes〉 received
9: if off path hashes validates properly and if

hash(y,w,rootw)
max hash

≤ 1
6m|initviewu|·offset then leader = w;

10: return leader;

This leads to the following design: We will exploit the limit
on the adversary’s computation power. We let all the nodes in
the system solve computational puzzles. Whoever solves the
puzzle will claim itself as the leader, by directly notifying
all other nodes. ProbLeaderElect fails if i) a malicious node
solves the puzzle, or ii) none of the honest nodes solve the
puzzle, or iii) more than one honest nodes solve the puzzle. By
choosing a proper puzzle difficulty, we will be able to properly
bound the probability of these three events away from 1.
Details of the design. Algorithm 2 gives the pseudo-code
for ProbLeaderElect. To instantiate the computational puzzles,
each node w generates a fresh random nonce as challengew
at Line 1 and sends to every node in vieww. Each node u
will collect challenges from all nodes in initviewu, and
then construct a standard Merkle tree with root rootu. Next
u will spend 6 · offset rounds (at Line 4) trying to find a
solution x such that hash(x,u,rootu)

max hash
≤ 1

6m(1+f)|initviewu|·offset .
(We will explain this threshold later.) If u finds such x, it
will notify every node w in initviewu, while including a
standard Merkle proof showing that challengew has been
included in the Merkle tree, if any. Node w will validate (at
Line 9) that the solution x is for a sufficiently hard puzzle,
by checking that hash(x,u,rootu)

max hash
≤ 1

6m|initvieww|·offset . The
threshold 1

6m|initvieww|·offset here is such that regardless of
the values of |initviewu| and |initvieww|, a puzzle solution
obtained at Line 4 on an honest node u can always be
validated at Line 9 on an honest node w. Furthermore, the
threshold 1

6m|initvieww|·offset is such that on expectation in
the system, there will roughly be one honest node finding
a puzzle solution. However, this threshold may allow the
malicious nodes to solve a somewhat easier puzzle, which will
be addressed when we prove the guarantees of the subroutine.
Provable guarantees. Theorem 1 (proven in our full technical
report [26]) proves the complexity and success probability of



ProbLeaderElect. Our proof will properly take care of the fact
that the malicious nodes may i) solve easier puzzles, and ii)
have more time to solve the puzzles compared to the honest
nodes.

Theorem 1. Assume that m ≥ 1, N ≥ 1000, and f < 1
3 . If

all honest nodes start running ProbLeaderElect within offset

rounds of each other, then:
• Each honest node returns after exactly 8 ·offset rounds,

while sending Θ(N lnN) bits in each round.
• With probability at least 0.16, ProbLeaderElect returns

the same leader on all honest nodes and the leader

returned is an honest node.

VI. COORDINATED GOSSIPING

Algorithm 3 CoordinatedGossip
input: f , δ, offset, u, initviewu, leader, proposalu;
output: proposal;

1: if u 6= leader then proposal = null else proposal =
proposalu (attached with a signature from u);

2: count = 0;
3: repeat 3 ln |initviewu|

2 ln ln |initviewu| + offset rounds do
4: // each iteration here takes one round
5: if proposal 6= null and |proposal| ≤ (1 +
f)|initviewu| then send proposal (together with the
attached signature) to 8 ln |initviewu|δ uniformly random
node chosen from initviewu;

6: for each message msg received do
7: if msg = msg fin then increment count
8: else if msg has leader’s signature attached then

proposal = msg;
9: if count > f

1+f · |initviewu| then break;
10: end
11: send msg fin to all nodes in initviewu;
12: wait until msg fin is received (including msg fin re-

ceived at Line 6) from at least |initviewu|1+f nodes;
13: return proposal;

Conceptual design. CoordinatedGossip aims to disseminate a
message (i.e., proposalleader) from the leader to all honest
nodes, after ProbLeaderElect has been invoked and succeeded.
If ProbLeaderElect did not succeed, we will not care about the
correctness of CoordinatedGossip (though we still care about
its performance overhead).

The basic idea in CoordinatedGossip is simple: leader

will first generate a signature on proposalleader. Next in
each round, each node u will relay proposalleader, together
with the signature, to O(log N

δ ) nodes in u’s current view.
Before relaying, a node needs to check proposal’s size to
avoid sending too many bits when the leader is malicious. A
receiving node will verify leader’s signature before accepting
it. We will prove that 3 lnN

2 ln lnN rounds is sufficient for all
honest nodes to receive proposalleader with probability close
to 1. During such gossiping process, each node only sends
O(N ln N

δ ) bits per round. In comparison, directly having

leader send proposalleader to all nodes in its view would
require leader to send Ω(N2) bits.

The only difficulty in CoordinatedGossip is that the nodes
do not know N , and hence do not know for how many rounds
they should gossip. Each node u does have initviewu, and
can use |initviewu| in place of N for calculating 3 lnN

2 ln lnN .
However, |initviewu| is different on different u’s. This
means that two nodes u and w may spend different number
of rounds in running CoordinatedGossip. A further problem
is that CoordinatedGossip will be invoked multiple times in
RVR, making u and w more and more out-of-synch each time
the subroutine is invoked. Making all the nodes return from
CoordinatedGossip simultaneously would correspond to the
classic byzantine firing squad problem [25]. Unfortunately,
same as typical byzantine consensus protocols, byzantine firing
squad protocols [25] also have the implicit assumption that the
protocols are run over some given set of nodes.

In our design of CoordinatedGossip, we do not make all the
honest nodes return in the same round. Rather, we ensure that
there exists some r, such that each honest node either returns
in round r or in round r + 1. Achieving this will be much
easier than solving the byzantine firing squad problem under
our setting. Furthermore, our guarantee continues to hold
even if the nodes do not start executing CoordinatedGossip
simultaneously. This ensure that the “out-of-synch” will not
accumulate over multiple invocations of the subroutine.

Details of the design. Algorithm 3 gives the pseudo-code
for CoordinatedGossip. Our central goal here is to ensure
that all honest nodes return within two rounds of each other.
To achieve this, when a node u has finished its gossip-
ing, it will send out a special msg fin message to all
nodes in initviewu. Node u will then wait until it has
received msg fin from |initviewu|

1+f nodes in initviewu (at
Line 12), before u finally returns from the subroutine. Note
that |initviewu|1+f ≤ N and initviewu always contains N
honest nodes. Hence as long as all N honest nodes send out
msg fin, u is guaranteed to eventually receive msg fin from
a sufficient number of nodes and return.

Let r be the round during which u returns. Consider any
other honest node v. We want v to return no later than round
r + 1. To achieve this, we let v break from the gossiping
process and move on (at Line 9), as long as v has received
msg fin from more than f

1+f · |initviewv| nodes in its view.
We will be able to prove later that at least one node out of
all these f

1+f · |initviewv| nodes must be honest. Hence the
malicious nodes by themselves will not be able to trick v
into breaking prematurely. At the same time, note that u’s
returning in round r (at Line 12) implies that u has received
msg fin from |initviewu|

1+f nodes. We will be able to prove later
that, out of these |initviewu|1+f nodes, at least (1 − f)N nodes
are honest. Hence v will also receive msg fin from at least
(1 − f)N nodes in its view in round r. Since (1 − f)N >
fN ≥ f

1+f · |viewv| for all constants f < 1
3 , these msg fin

messages will be sufficient for v to break from the gossiping
process (at Line 9). We will later prove that v will then return



in the next round.
Provable guarantees. The following theorem presents the
complexity of CoordinatedGossip, and further proves that i) all
honest nodes will return within two rounds of each other from
CoordinatedGossip, and ii) there will be a sufficient number
of rounds during which all honest nodes are gossiping.

Theorem 2. Assume f < 1
3 . If all honest nodes start executing

CoordinatedGossip within offset rounds of each other, then:
1) Each honest node sends Θ(N ln N

δ ) bits in each round
of the execution;

2) Each honest node spends at most 3 ln((1+f)N)
2 ln ln((1+f)N) + (2 ·

offset)+1 rounds before returning from the subroutine;
3) All honest nodes will return within 2 round of each other;
4) There are at least 3 lnN

2 ln lnN rounds during which all honest
nodes are executing the loop at Line 3.

Proof.
1) Obvious from the pseudo-code.
2) Every honest node u will eventually reach Line 11 and send
msg fin to all nodes, no later than 3 ln((1+f)N)

2 ln ln((1+f)N)+offset+1
rounds after u starts executing CoordinatedGossip. For any
other given honest node v, u will send its msg fin message
no later than 3 ln((1+f)N)

2 ln ln((1+f)N) + (2 · offset) + 1 rounds after
v starts executing CoordinatedGossip. There will be total N
such u’s. Receiving finished messages from all of them will
enable v to return.
3) Let round r be the first round during which one or more
honest nodes return. Let u be one such honest node, where
initviewu contains N honest nodes and aN malicious nodes,
for some a where 0 ≤ a ≤ f . Consider any other honest
node v. We claim that if v does not return in round r, then
it must return in round r + 1. To see why, note that u must
have received msg fin (at Line 12) from |initviewu|

1+f = 1+a
1+fN

nodes by round r. At least 1+a
1+fN − aN such messages must

be from honest nodes. For all f < 1
3 , we have 1+a

1+fN −aN =
1−af
1+f N ≥ (1− f)N > fN ≥ |viewv| f1+f . This means that v

must satisfy the condition at Line 9 by round r, and thus break
from the loop. Once v breaks, in round r+ 1, it will send out
msg fin. In fact, such argument applies to all honest nodes,
and they will all have sent out msg fin by round r + 1. All
these N ≥ |viewv|

1+f msg fin messages will be received by v
and enable v to return in round r + 1.
4) For all honest node u, we have N ≤ |initviewu| ≤ (1 +
f)N , and hence the number of iterations in the loop at Line 3
will be from 3 lnN

2 ln lnN + offset to 3 ln((1+f)N)
2 ln ln((1+f)N) + offset.

Since all honest nodes starts executing CoordinatedGossip
within offset rounds of each other, there will be at least
3 lnN

2 ln lnN rounds during which all honest nodes are executing
the loop, unless the condition at Line 9 is satisfied during
these rounds. To prove that the condition is not satisfied, we
need to show that those msg fin messages from the mali-
cious nodes will never be sufficient to satisfy the condition.
Consider any honest node u where initviewu contains N
honest nodes and aN malicious nodes, for some a where
0 ≤ a ≤ f . For the condition at Line 9, it is easy to verify that

f
1+f · |initviewu| =

f
1+f · (1 + a)N ≥ aN . This means that

the condition for u will never be satisfied by those msg fin

messages from those aN malicious nodes.

The next theorem (proven in our full technical report [26])
proves the success probability of CoordinatedGossip:

Theorem 3. Assume that N ≥ 1000, δ ≤ 0.1, and f < 1
3 . If

i) all honest nodes start executing CoordinatedGossip within
offset rounds of each other, ii) all honest nodes invoke
CoordinatedGossip using the same leader parameter, iii)
leader is an honest node, and iv) |proposalleader| ≤ (1 +
f)N , then with probability at least 1− 1

4000 , all honest nodes
return proposalleader.

VII. TWO-STAGE SAMPLING

Algorithm 4 TwoStageSample()
input: f , δ, offset, u, initviewu, viewu;
output: scoreu[·];

1: generate fresh nonceu and send 〈u, hash(nonceu)〉 to all
nodes in initviewu;

2: spend offset rounds receiving messages in the form of
〈w, hash(noncew)〉;

3: send 〈u, nonceu〉 to all nodes in initviewu;
4: spend offset rounds receiving messages in the form of
〈w, noncew〉;

5: validate each noncew received if noncew matches the
previously received hash;

6: for each validated noncew, send 〈u, viewu〉 to w if
hash(u,nonceu,w,noncew)

max hash
≤ 1+f
|initviewu| (

30
1−3f

)2 ln 3(1+f)|initviewu|
δ

and |viewu| ≤ (1 + f)|initviewu|;
7: spend offset round receiving messages in the form of
〈w, vieww〉;

8: validate each vieww received if noncew was validated and if
hash(w,noncew,u,nonceu)

max hash
≤ 1
|initviewu| (

30
1−3f

)2 ln 3|initviewu|
δ

;
9: for each v do

10: votesu[v] = |{w | v ∈ vieww and vieww was validated}|;
11: scoreu[v] = votesu[v]/(( 30

1−3f
)2 ln 3|initviewu|

δ
);

12: return scoreu[·];

Conceptual design. Consider any given honest node u. For
each node v, define fracu[v] = |{w |w∈initviewu and v∈vieww}|

|initviewu|
— namely, fracu[v] is the fraction of the nodes in initviewu
that have v in their current views. Our TwoStageSample()
subroutine enables u to estimate fracu[v] for all node v. We
only obtain an estimate since otherwise u will need to retrieve
O(N) views where each view is of O(N) size, which would
result in Ω(N2) communication complexity. Later we will
prove that obtaining a (good enough) estimate is nevertheless
still sufficient for everything to work.

The simplest way to estimate fracu[v] is perhaps for u
to choose t random nodes from initviewu. For each w
chosen, node u will then pull from w, by requesting w to
send vieww (which is considered one sample) to u. Node u
can then estimate fracu[v] (for all v), based on the vieww’s
received. While such a way of estimating does work, all the
malicious nodes may pull from w and cause w to send Ω(N2)



bits, breaking the desirable guarantee on communication com-
plexity. Instead of u pulling from w, an alternative approach
is for w to choose t random nodes from initvieww. For
each u chosen, w will push to u, by sending vieww to u
(without u requesting for it). This gives w control over the
communication complexity incurred. But now a malicious
node w will aggressively push vieww to all nodes, causing
vieww to be over-represented.

Our TwoStageSample() overcomes the above problem via
two stages. The first stage is the same as the push-based design
above, where w pushes vieww to t other nodes. In the second
stage, each receiving node u will decide whether to validate
and use the received vieww, and use it for the estimation later.
Node u validates vieww if it feels that w should indeed have
pushed vieww to u. Two things are still needed to enable
such design. First, w and u need to determine, in a consistent
way, whether vieww should be a sampled (i.e., pushed) to
u. We achieve this by letting w and u generate a shared
random number. Second, the probability of vieww being a
sample for u depends on N . Neither w nor u knows N , and
they can only use |initviewu| and |initvieww| in place of
N . But |initviewu| and |initvieww| may be different. To
resolve this issue, w will need to slightly over-push, by using
a somewhat larger probability.
Details of the design. Algorithm 4 gives the pseudo-code
for TwoStageSample(). For Line 1 to Line 5, each node
u sends a fresh nonce nonceu to all other nodes. To pre-
vent a malicious node from carefully constructing its nonce
after seeing other nodes’ nonces first, the protocol requires
each node to publish a commitment of its nonce first.
Next, any given ordered pair w → u corresponds to two
nonces, noncew and nonceu. Node w will push to u iff
i) w knows both nonces, and ii) u,hash(nonceu,w,noncew)

max hash
≤

1+f
|initviewu| (

30
1−3f )2 ln 3(1+f)|initviewu|

δ . Similarly, node v val-
idates w’s push iff i) u knows both nonces, and
hash(noncew,w,nonceu,u)

max hash
≤ 1

|initviewu| (
30

1−3f )2 ln 3|initviewu|
δ .

The two conditions on w and u controls how many samples
are taken. Furthermore, they are designed in such a way that
w always tries to over-push: Namely, the condition on w is
always no harder to satisfy that the condition on u.
Provable guarantees. The following theorem (proven in our
full technical report [26]) summarizes the complexity of
TwoStageSampling():

Theorem 4. Assume f < 1
3 . If all honest nodes start executing

TwoStageSampling() within offset rounds of each other,
then each honest node returns after exactly 3 ·offset rounds,
while sending on expectation Θ(N ln N

δ ) bits per round.

The next theorem (proven in our full technical report [26])
proves that for any pair w → u, u controls the probability of
vieww being sampled. In particular, malicious nodes cannot
force a higher probability on u.

Theorem 5. Assume f < 1
3 . Consider any given

node w and any given honest node u. Define pu =
1

|initviewu| (
30

1−3f )2 ln 3|initviewu|
δ . Define p(w → u) to be the

probability that vieww is received and then validated by u at
Line 8. If all honest nodes start TwoStageSampling() within
offset rounds of each other, then p(w → u) = pu for honest
w and p(w → u) ≤ pu for malicious w.

The next theorem (proven in our full technical re-
port [26]) proves that the estimates (scoreu[·]) returned by
TwoStageSampling() satisfy some critical properties.

Theorem 6. Assume f < 1
3 . For any honest or malicious node

v, define count[v] = |{u|v ∈ initviewu and u is honest}|.
If for all honest nodes u, |viewu| ≤ (1 + f)N and they all
start executing TwoStageSampling() within offset rounds of
each other, then with probability at least 1− 16δ3

81 , none of the
following (bad) events will happen:

1) There exists some node v and some honest node u such
that count[v] = N and scoreu[v] ≤ 0.75.

2) There exists some node v and some honest node u such
that count[v] = 0 and scoreu[v] ≥ 0.25.

3) There exists some node v, some honest nodes u and w,
such that scoreu[v] ≥ 0.5 and scorew[v] ≤ 0.25.

4) There exists some node v, some honest nodes u and w,
such that scoreu[v] ≤ 0.5 and scorew[v] ≥ 0.75.

VIII. PUT EVERYTHING TOGETHER

We are now ready to put everything together and prove the
formal guarantees of RVR (Algorithm 1). All line numbers
in this section refers to Algorithm 1. We first provide some
additional comments on Algorithm 1. On the leader, the
proposalleader contains a node v if the score for v is at least
0.5 (at Line 6). A node u will overrule the leader’s proposal
with respect to v, if u’s score for v is either overwhelming
(at Line 7) or underwhelming (at Line 8). Line 11 sets
offset = 2 since offset must be 2 after the invocation of
CoordinatedGossip. The following theorem (proven in our full
technical report [26]) proves the complexity of our protocol:

Theorem 7. Assume that m ≥ 1, N ≥ 1000, δ ≤ 0.1,
and f < 1

3 . If all honest nodes start executing RVR within
offset rounds of each other, then each honest node will return
within Θ( lnN

ln lnN ln 1
δ ) rounds, while sending on expectation

Θ(N ln N
δ ) bits per round.

The next theorem proves that with probability of at least
1− δ, our protocol achieves the intended goal.

Theorem 8. Assume that m ≥ 1, N ≥ 1000, δ ≤ 0.1, and
f < 1

3 . If all honest nodes start executing RVR within offset

rounds of each other, then with probability at least 1−δ, both
of the following hold:

1) For all honest nodes u, final viewu is the same.
2) For all honest nodes u, final viewu contains all the N

honest nodes and at most fN malicious nodes.

Proof. RVR invokes TwoStageSample exactly 6 ln 2
δ times.

Let Er1 be the event that none of the four bad events in
Theorem 6 happens immediately after Line 4 in the r-th iter-
ation of RVR. We claim that Pr[∩1≤r≤6 ln 2

δ
Er1 ] ≥ 1− 0.04δ.

In the first iteration immediately before Line 4 we have



|viewu| = |initviewu| ≤ (1 + f)N for all honest nodes
u, which satisfies the condition required to invoke Theorem 6.
Conditioned on Er1 , immediately before Line 9 in the r-th iter-
ation of RVR, |proposalu| ≤ (1 + f)N for any honest node
u since v ∈ proposalu implies that count[v] > 0 and thus
is must be included in initvieww for some honest node w.
Recall the definition of union honest initview from Sec-
tion III. Thus |proposalu| ≤ |union honest initview| ≤
(1 + f)N . Conditioned on Er1 , it can be similarly shown
that immediately before Line 10 in the r-th iteration of
RVR, |viewu| ≤ (1 + f)N . The claim then follows trivially
via induction on r by repeatedly invoking Theorem 6. Let
E1 = ∩1≤r≤6 ln 2

δ
Er1 .

Next, we say that an iteration in RVR is good if during that
iteration, i) ProbLeaderElect returns the same leader on all
honest nodes and the leader returned is an honest node, and
ii) CoordinatedGossip returns proposalleader on all honest
nodes. By Theorem 1 and 3 and a union bound, an iteration is
good with probability at least 0.16− 1

4000 = 0.15975. Hence
with probability at least 1− (1− 0.15975)6 ln 2

δ > 1− δ1.03 >
1− 0.94δ, there exists some good iteration. Let such event be
E2. A union bound immediately tells us that with probability
at least 1− δ, both E1 and E2 occur. It thus suffices to prove
the two claims in the theorem while condition upon that E1
and E2 occur. The following proves them one by one.

First claim. We first prove that at the end of the good iteration,
viewu is the same on all honest nodes u. The good iteration
must have a unique and honest leader. Consider any node v.
We will show that for all honest nodes u, at the end of that iter-
ation, v ∈ viewu iff v ∈ proposalleader. To prove this, note
that if v ∈ proposalleader, then scoreleader[v] ≥ 0.5. By
event E1, scoreu[v] 6≤ 0.25 and hence v /∈ underwhelmu. By
Line 10, v will be in viewu. The case for v /∈ proposalleader
is similar. Now because proposalleader is the same on all
honest nodes u, viewu is the same on all honest nodes u.

Next we prove that in any iteration after the good itera-
tion, on all honest nodes u, viewu will no longer change.
Immediately after the good iteration, for all nodes v, we have
either count[v] = N or count[v] = 0. If count[v] = N , then
event E1 ensures that v ∈ overu in all future iterations. If
count[v] = 0, then E1 ensures that v ∈ underu in all future
iterations. Together with the condition at Line 10, we know
that viewu will no longer change in future iterations.

Finally, since at the end of the good iteration, viewu is
the same on all honest nodes u, and since viewu does not
change in all iterations after the good iteration, we know that
final viewu is the same for all honest nodes u.

Second claim. Consider any given honest node v. We know
that count[v] = N at the beginning of the first iteration.
By the same argument as earlier, v will continue to be in
viewu (and thus v ∈ final viewu) for all honest node
u in all iterations. Next, union honest views contains at
most fN malicious nodes. For all malicious node v /∈
union honest views, we know that count[v] = 0 at the
beginning of the first iteration. By the same argument as

earlier, we know that v /∈ viewu (and thus v /∈ final viewu)
for all honest nodes u in all iterations.
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