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Abstract
High availability is widely accepted as an explicit require-
ment for distributed storage systems. Tolerating correlated
failures is a key issue in achieving high availability in to-
day’s wide-area environments. This paper systematically
revisits previously proposed techniques for addressing cor-
related failures. Using several real-world failure traces,
we qualitatively answer four important questions regard-
ing how to design systems to tolerate such failures. Based
on our results, we identify a set of design principles that
system builders can use to tolerate correlated failures. We
show how these lessons can be effectively used by incorpo-
rating them into IRISSTORE, a distributed read-write stor-
age layer that provides high availability. Our results us-
ing IRISSTORE on the PlanetLab over an 8-month period
demonstrate its ability to withstand large correlated failures
and meet preconfigured availability targets.

1 Introduction

High availability is widely accepted as an explicit require-
ment for distributed storage systems (e.g., [8, 9, 10, 14,
15, 19, 22, 41]). This is partly because these systems are
often used to store important data, and partly because per-
formance is no longer the primary limiting factor in the
utility of distributed storage systems. Under the assump-
tion of failure independence, replicating or erasure coding
the data provides an effective way to mask individual node
failures. In fact, most distributed storage systems today use
some form of replication or erasure coding.

In reality, the assumption of failure independence is
rarely true. Node failures are often correlated, with mul-
tiple nodes in the system failing (nearly) simultaneously.
The size of these correlated failures can be quite large.
For example, Akamai experienced large distributed denial-
of-service (DDoS) attacks on its servers in May and June
2004 that resulted in the unavailability of many of its client
sites [1]. The PlanetLab experienced four failure events
during the first half of 2004 in which more than 35 nodes
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(≈ 20%) failed within a few minutes. Such large cor-
related failure events may have numerous causes, includ-
ing system software bugs, DDoS attacks, virus/worm in-
fections, node overload, and human errors. The impact
of failure correlation on system unavailability is dramatic
(i.e., by orders of magnitude) [6, 38]. As a result, tolerat-
ing correlated failures is a key issue in designing highly-
available distributed storage systems. Even though re-
searchers have long been aware of correlated failures, most
systems [8, 9, 10, 14, 15, 40, 41] are still evaluated and
compared under the assumption of independent failures.

In the context of the IrisNet project [17], we aim to de-
sign and implement a distributed read/write storage layer
that provides high availability despite correlated node fail-
ures in non-P2P wide-area environments (such as the Plan-
etLab and Akamai). We study three real-world failure
traces for such environments to evaluate the impact of re-
alistic failure patterns on system designs. We frame our
study around providing quantitative answers to several im-
portant questions, some of which involve the effectiveness
of existing approaches [19, 37]. We show that some exist-
ing approaches, although plausible, are less effective than
one might hope under real-world failure correlation, often
resulting in system designs that are far from optimal. Our
study also reveals the subtleties that cause this discrepancy
between the expected behavior and the reality. These new
findings lead to four design principles for tolerating cor-
related failures. While some of the findings are perhaps
less surprising than others, none of the findings and de-
sign principles were explicitly identified or carefully quan-
tified prior to our work. These design principles are applied
and implemented in our highly-available read/write storage
layer called IRISSTORE.

Our study answers the following four questions about
tolerating correlated failures:

Can correlated failures be avoided by history-based
failure pattern prediction? We find that avoiding cor-
related failures by predicting the failure pattern based
on externally-observed failure history (as proposed in
OceanStore [37]) provides negligible benefits in alleviating
the negative effects of correlated failures in our real-world



failure traces. The subtle reason is that the top 1% of cor-
related failures (in terms of size) have a dominant effect on
system availability, and their failure patterns seem to be the
most difficult to predict.

Is simple modeling of failure sizes adequate? We find
that considering only a single (maximum) failure size (as
in Glacier [19]) leads to suboptimal system designs. Under
the same level of failure correlation, the system configura-
tion as obtained in [19] can be both overly-pessimistic for
lower availability targets (thereby wasting resources) and
overly-optimistic for higher availability targets (thereby
missing the targets). While it is obvious that simplifying
assumptions (such as assuming a single failure size) will
always introduce inaccuracy, our contribution is to show
that the inaccuracy can be dramatic in practical settings.
For example, in our traces, assuming a single failure size
leads to designs that either waste 2.4 times the needed re-
sources or miss the availability target by 2 nines. Hence,
more careful modeling is crucial. We propose using a
bi-exponential model to capture the distribution of failure
sizes, and show how this helps avoid overly-optimistic or
overly-pessimistic designs.

Are additional fragments/replicas always effective in
improving availability? For popular (n/2)-out-of-n en-
coding schemes (used in OceanStore [22] and CFS [10]),
as well as majority voting schemes [35] over n replicas,
it is well known that increasing n yields an exponential
decrease in unavailability under independent failures. In
contrast, we find that under real-world failure traces with
correlated failures, additional fragments/replicas result in a
strongly diminishing return in availability improvement for
many schemes including the previous two. It is important
to note that this diminishing return does not directly result
from the simple presence of correlated failures. For ex-
ample, we observe no diminishing return under Glacier’s
single-failure-size correlation model. Rather, in our real-
world failure traces, the diminishing return arises due to the
combined impact of correlated failures of different sizes.
We further observe that the diminishing return effects are
so strong that even doubling or tripling n provides only
limited benefits after a certain point.

Do superior designs under independent failures remain
superior under correlated failures? We find that the ef-
fects of failure correlation on different designs are dramat-
ically different. Thus selecting between two designs D and
D′ based on their availability under independent failures
may lead to the wrong choice: D can be far superior under
independent failures but far inferior under real-world cor-
related failures. For example, our results show that while
8-out-of-16 encoding achieves 1.5 more nines of availabil-
ity than 1-out-of-4 encoding under independent failures, it
achieves 2 fewer nines than 1-out-of-4 encoding under cor-
related failures. Thus, system designs must be explicitly
evaluated under correlated failures.

Our findings, unavoidably, depend on the failure traces
we used. Among the four findings, the first one may be
the most dependent on the specific traces. The other three
findings, on the other hand, are likely to hold as long as
failure correlation is non-trivial and has a wide range of
failure sizes.

We have incorporated these lessons and design princi-
ples into our IRISSTORE prototype: IRISSTORE does not
try to avoid correlated failures by predicting the correlation
pattern; it uses a failure size distribution model rather than
a single failure size; and it explicitly quantifies and com-
pares configurations via online simulation with our correla-
tion model. As an example application, we built a publicly-
available distributed wide-area network monitoring system
on top of IRISSTORE, and deployed it on over 450 Planet-
Lab nodes for 8 months. We summarize our performance
and availability experience with IRISSTORE, reporting its
behavior during a highly unstable period of the PlanetLab
(right before the SOSP 2005 conference deadline), and
demonstrating its ability to reach a pre-configured avail-
ability target.

2 Background and Related Work

Distributed storage systems and erasure coding. Dis-
tributed storage systems [8, 9, 10, 14, 15, 19, 22, 41] have
long been an active area in systems research. Of these
systems, only OceanStore [22] and Glacier [19] explicitly
consider correlated failures. OceanStore uses a distributed
hash table (DHT) based design to support a significantly
larger user population (e.g., 1010 users) than previous sys-
tems. Glacier is a more robust version of the PAST [32]
DHT-based storage system that is explicitly designed to tol-
erate correlated failures.

Distributed storage systems commonly use data redun-
dancy (replication, erasure coding [31]) to provide high
availability. In erasure coding, a data object is encoded
into n fragments, out of which any m fragments can re-
construct the object. OceanStore uses (n/2)-out-of-n era-
sure coding. This configuration of erasure coding is also
used by the most recent version of CFS [10, 13], one of the
first DHT-based, read-only storage systems. Glacier, on the
other hand, adapts the settings of m and n to achieve avail-
ability and resource targets. Replication can be viewed as
a special case of erasure coding where m = 1.

In large-scale systems, it is often desirable to automati-
cally create new fragments upon the loss of existing ones
(due to node failures). We call such systems regeneration
systems. Almost all recent distributed storage systems (in-
cluding OceanStore, CFS, and our IRISSTORE system) are
regeneration systems. Under the assumption of failure in-
dependence, the availability of regeneration systems is typ-
ically analyzed [41] using a Markov chain to model the
birth-death process.



Trace Duration Nature of nodes # of nodes Probe interval Probe method
PL trace [3] 03/2003 to 06/2004 PlanetLab nodes 277 on avg 15 to 20 mins all-pair pings; 10 ping packets per probe
WS trace [6] 09/2001 to 12/2001 Public web servers 130 10 mins HTTP GET from a CMU machine
RON trace [4] 03/2003 to 10/2004 RON testbed 30 on avg 1 to 2 mins all-pair pings; 1 ping packet per probe

Table 1: Three traces used in our study.

Previous availability studies of correlated failures. Tra-
ditionally, researchers assume failure independence when
studying availability [8, 9, 10, 14, 15, 40, 41]. For stor-
age systems, correlated failures have recently drawn more
attention in the context of wide-area environments [11,
19, 21, 37, 38], local-area and campus network environ-
ments [9, 34], and disk failures [6, 12]. None of these pre-
vious studies point out the findings and design principles
in this paper or quantify their effects. Below, we focus on
those works most relevant to our study that were not dis-
cussed in the previous section.

The Phoenix Recovery Service [21] proposes placing
replicas on nodes running heterogeneous versions of soft-
ware, to better guard against correlated failures. Because
their target environment is a heterogeneous environment
such as a peer-to-peer system, their approach does not con-
flict with our findings.

The effects of correlated failures on erasure coding sys-
tems have also been studied [6] in the context of survivable
storage disks. The study is based on availability traces of
desktops [9] and different Web servers. (We use the same
Web server trace in our study.) However, because the tar-
get context in [6] is disk drives, the study considers much
smaller-scale systems (at most 10 disks) than we do.

Finally, this paper establishes a bi-exponential model to
fit correlated failure size distribution. Related to our work,
Nurmi et al. [30] show that machine availability (instead of
failure sizes) in enterprise and wide-area distributed sys-
tems also follows hyper-exponential (a more general ver-
sion of our bi-exponential model) models.

Data maintenance costs. In addition to availability, failure
correlation also impacts data maintenance costs (i.e., dif-
ferent amounts of data transferred over the network in re-
generating the objects). Weatherspoon et al. [36] show that
the maintenance costs of random replica placement (with
small optimizations) are similar to those of an idealized
optimal placement where failure correlation is completely
avoided. These results do not conflict with our conclusion
that random replica placement (or even more sophisticated
placement) cannot effectively alleviate the negative effects
of failure correlation on availability.

3 Methodology

This study is based on system implementation and ex-
perimental evaluation. The experiments use a combina-
tion of three testbeds: live PlanetLab deployment, real-

time emulation on Emulab [2], and event-driven simula-
tion. Each testbed allows progressively more extensive
evaluation than the previous one. Moreover, the results
from one testbed help validate the results from the next
testbed. We report availability and performance results
from the 8-month live deployment of our system over the
PlanetLab. We also present detailed simulation results for
deeper understanding into system availability, especially
when exploring design choices. Simulation allows us to
directly compare different system configurations by sub-
jecting them to identical streams of failure/recovery events,
which is not possible using our live deployment. We have
carefully validated the accuracy of our simulation results
by comparing them against the results from the PlanetLab
deployment and also Emulab emulation. Our detailed com-
parison in [29] shows that there is negligible differences
between the three sets of results.

In this paper, we use ERASURE(m,n) to denote an m-
out-of-n read-only erasure coding system. Also, to unify
terminology, we often refer to replicas as fragments of an
ERASURE(1, n) system. Unless otherwise mentioned, all
designs we discuss in this paper use regeneration to com-
pensate for lost fragments due to node failures.

For the purpose of studying correlated failures, a fail-
ure event (or simply failure) crashes one or more nodes
in the system. The number of nodes that crash is called
the size of the failure. To distinguish a failure event from
the failures of individual nodes, we explicitly call the latter
node failures. A data object is unavailable if it can not be
reconstructed due to failures. We present availability re-
sults using standard “number of nines” terminology (i.e.,
log

0.1(φ), where φ is the probability that the data object is
unavailable).

Failure traces. We use three real-world wide-area fail-
ure traces (Table 1) in our study. WS trace is in-
tended to be representative of public-access machines that
are maintained by different administrative domains, while
PL trace and RON trace potentially describe the be-
havior of a centrally administered distributed system that
is used mainly for research purposes, as well as for a few
long running services.

A probe interval is a complete round of all pair-pings or
Web server probes. PL trace1 and RON trace consist
of periodic probes between every pair of nodes. Each probe
may consist of multiple pings; we declare that a node has

1Note that PL trace has sporadic “gaps”, see [29] for how we clas-
sify the gaps and treat them properly based on their causes.



failed if none of the other nodes can ping it during that in-
terval. We do not distinguish between whether the node
has failed or has simply been partitioned from all other
nodes—in either case it is unavailable to the overall sys-
tem. WS trace contains logs of HTTP GET requests from
a single node at CMU to multiple Web servers. Our evalu-
ation of this trace is not as precise because near-source net-
work partitions make it appear as if all the other nodes have
failed. To mitigate this effect, we assume that the probing
node is disconnected from the network if 4 or more con-
secutive HTTP requests to different servers fail.2 We then
ignore all failures during that probe period. This heuristic
may still not perfectly classify source and server failures,
but we believe that the error is likely to be minimal.

In studying correlated failures, each probe interval is
considered as a separate failure event whose size is the
number of failed nodes that were available during the previ-
ous interval. More details on our trace processing method-
ology can be found in [29].

Limitations. Although the findings from this paper depend
on the traces we use, the effects observed in this study are
likely to hold as long as failure correlation is non-trivial and
has a wide range of failure sizes. One possible exception
is our observation about the difficulty in predicting failure
patterns of larger failures. However, we believe that the
sources of some large failures (e.g., DDoS attacks) make
accurate prediction difficult in any deployment.

Because we target IRISSTORE’s design for non-P2P
environments, we intentionally study failure traces from
systems with largely homogeneous software (operating
systems, etc.). Even in WS trace, over 78% of the
web servers were using the same Apache server run-
ning over Unix, according to the historical data at
http://www.netcraft.com. We believe that wide-
area non-P2P systems (such as Akamai) will largely be ho-
mogeneous because of the prohibitive overhead of main-
taining multiple versions of software. Failure correlation
in P2P systems can be dramatically different from other
wide-area systems, because many failures in P2P systems
are caused by user departures. In the future, we plan to ex-
tend our study to P2P environments. Another limitation of
our traces is that the long probe intervals prevent the de-
tection of short-lived failures. This makes our availability
results slightly optimistic.

Steps in our study. Section 4 constructs a tunable failure
correlation model from our three failure traces; this model
allows us to study the sensitivity of our findings beyond
the three traces. Sections 5–8 present the questions we
study, and their corresponding answers, overlooked sub-
tleties, and design principles. These sections focus on

2This threshold is the smallest to provide a plausible number of near-
source partitions. Using a smaller threshold would imply that the client
(on Internet2) experiences a near-source partition > 4% of the time in our
trace, which is rather unlikely.

read-only ERASURE(m,n) systems, and mainly use trace-
driven simulation, supplemented by model-driven simula-
tion for sensitivity study. Section 9 shows that our conclu-
sions readily extend to read/write systems. Section 10 de-
scribes and evaluates IRISSTORE, including its availability
running on PlanetLab for an 8-month period.

4 A Tunable Model for Correlated Failures

This section constructs a tunable failure correlation model
from the three failure traces. The primary purpose of
this model is to allow sensitivity studies and experiments
with correlation levels that are stronger or weaker than
in the traces. In addition, the model later enables us
to avoid overly-pessimistic and overly-optimistic designs.
The model balances idealized assumptions (e.g., Poisson
arrival of correlated failures) with realistic characteristics
(e.g., mean-time-to-failure and failure size distribution) ex-
tracted from the real-world traces. In particular, it aims
to accurately capture large (but rare) correlated failures,
which have a dominant effect on system unavailability.

4.1 Correlated Failures in Real Traces
We start by investigating the failure correlation in our three
traces. Figure 1 plots the PDF of failure event sizes for the
three traces. Because of the finite length of the traces, we
cannot observe events with probability less than 10−5 or
10−6. While RON trace and WS trace have a roughly
constant node count over their entire duration, there is a
large variation in the total number of nodes in PL trace.
To compensate, we use both raw and normalized failure
event sizes for PL trace. The normalized size is the
(raw) size multiplied by a normalization factor γ, where
γ is the average number of nodes (i.e., 277) in PL trace
divided by the number of nodes in the interval.

In all traces, Figure 1 shows that failure correlation
has different strengths in two regions. In PL trace, for
example, the transition between the two regions occurs
around event size 10. In both regions, the probability
decreases roughly exponentially with the event size (note
the log-scale of the y-axis). However, the probability de-
creases significantly faster for small-scale correlated fail-
ures than for large-scale ones. We call such a distribution
bi-exponential. Although we have only anecdotal evidence,
we conjecture that different failure causes are responsible
for the different parts of the distribution. For example, we
believe that system instability, some application bugs, and
localized network partitions are responsible for the small
failure events. It is imaginable that the probability de-
creases quickly as the scale of the failure increases. On
the other hand, human interference, attacks, viruses/worms
and large ISP failures are likely to be responsible for the
large failures. This is supported by the fact that many of



 1e-06
 1e-05

 0.0001
 0.001
 0.01

 0.1
 1

 0  10  20  30  40  50  60

P
ro

b
a
b
ili

ty

Failure Event Size

G(0.009, 0.4, 0.95)
Trace (Normalized)

Trace

 1e-06
 1e-05

 0.0001
 0.001
 0.01

 0.1
 1

 0  10  20  30  40  50  60

P
ro

b
a
b
ili

ty

Failure Event Size

G(0.0012, 0.4, 0.98)
Trace

 1e-06
 1e-05

 0.0001
 0.001
 0.01
 0.1

 1

 0  5  10  15  20  25  30

P
ro

b
a
b
ili

ty

Failure Event Size

G(0.0012, 0.32, 0.95)
Trace

(a) PL trace (b) WS trace (c) RON trace

Figure 1: Correlated failures in three real-world traces. G(α, ρ1, ρ2) is our correlation model.

the larger PlanetLab failures can be attributed to DDoS at-
tacks (e.g., on 12/17/03), system software bugs (e.g., on
3/17/04), and node overloads (e.g., on 5/14/04). Once such
a problem reaches a certain scale, extending its scope is
not much harder. Thus, the probability decreases relatively
slowly as the scale of the failure increases.

4.2 A Tunable Bi-Exponential Model

In our basic failure model, failure events arrive at the sys-
tem according to a Poisson distribution. The entire system
has a universe of u nodes. The model does not explicitly
specify which of the u nodes each failure event crashes,
for the following reasons: Predicting failure patterns is not
an effective means for improving availability, and pattern-
aware fragment placement achieves almost identical avail-
ability as a pattern-oblivious random placement (see Sec-
tion 5). Thus, our availability study needs to consider only
the case where the m fragments of a data object are placed
on a random set of m nodes. Such a random placement,
in turn, is equivalent to using a fixed set of m nodes and
having each failure event (with size s) crash a random set
of s nodes in the universe. Realizing the above point helps
us to avoid the unnecessary complexity of modeling which
nodes each failure event crashes – each failure event simply
crashes a random set of s nodes.

We find that many existing distributions (such as heavy-
tail distributions [24]) cannot capture the bi-exponential
property in the trace. Instead, we use a model that has
two exponential components, one for each region. Each
component has a tunable parameter ρ between 0 and ∞

that intuitively captures the slope of the curve and controls
how strong the correlations are. When ρ = 0, failures
are independent, while ρ = ∞ means that every failure
event causes the failure of all u nodes. Specifically, for
0 < ρ < ∞, we define the following geometric sequence:
f(ρ, i) = c(ρ) · ρi. The normalizing factor c(ρ) serves to
make

∑
u

i=0
f(ρ, i) = 1.

We can now easily capture the bi-exponential property
by composing two f(ρ, i). Let pi be the probability of fail-
ure events of size i, for 0 ≤ i ≤ u. Our correlation model,
denoted as G(α, ρ1, ρ2), defines pi = (1 − α)f(ρ1, i) +

αf(ρ2, i), where α is a tunable parameter that describes the
probability of large-scale correlated failures. Compared to
a piece-wise function with different ρ’s for the two regions,
G(α, ρ1, ρ2) avoids a sharp turning point at the boundary
between the two regions.

Figure 1 shows how well this model fits the three traces.
The parameters of the models are chosen such that the
Root Mean Square errors between the models and the trace
points are minimized. Because of space limitations, we are
only able to provide a brief comparison among the traces
here. The parameters of the model are different across
the traces, in large part because the traces have different
universe sizes (10 node failures out of 277 nodes is quite
different from 10 node failures out of 30 nodes). As an
example of a more fair comparison, we selected 130 ran-
dom nodes from PL trace to enable a comparison with
WS trace, which has 130 nodes. The resulting trace is
well-modeled by G(0.009, 0.3, 0.96). This means that the
probability of large-scale correlated failures in PL trace
is about 8 times larger than WS trace.

Failure arrival rate and recovery. So far the correlation
model G(α, ρ1, ρ2) only describes the failure event size
distribution, but does not specify the event arrival rate. To
study the effects of different levels of correlation, the event
arrival rate should be such that the average mean-time-to-
failure (MTTF) of nodes in the traces is always preserved.
Otherwise with a constant failure event arrival rate, increas-
ing the correlation level would have the strong side effect
of decreasing node MTTFs. To preserve the MTTF, we de-
termine the system-wide failure event arrival rate λ to be
such that 1/(λ

∑
u

i=1
(ipi)) = MTTF/u.

We observe from the traces that, in fact, there exists non-
trivial correlation among node recoveries as well. More-
over, nodes in the traces have non-uniform MTTR and
MTTF. However, our experiments show that the above
two factors have little impact on system availability for
our study. Specifically, for all parameters we tested (e.g.,
later in Figure 4), the availability obtained under model-
driven simulation (which assumes independent recover-
ies and uniform MTTF/MTTR) is almost identical to that
obtained under trace-driven simulation (which has recov-
ery correlation and non-uniform MTTF/MTTR). There-



fore, our model avoids the unnecessary complexity of mod-
eling recovery correlation and non-uniform MTTF/MTTR.

Stability of the model. We have performed an exten-
sive stability study for our model using PL trace and
RON trace. We do not use WS trace due to its short
length. We summarize our results below – see [29] for the
full results. Our results show that each model converges
within a 4 month period in its respective failure traces. We
believe this convergence time is quite good given the rar-
ity of large correlation events. Second, the model built
(“trained”) using a prefix of a trace (e.g., the year 2003
portion) reflects well the failures occurring in the rest of
the trace (e.g., the year 2004 portion). This is important
because we later use the model to configure IRISSTORE to
provide a given availability target.

In the next four sections, we will address each of the
four questions from Section 1. Unless otherwise stated,
all our results are obtained via event-driven simulation (in-
cluding data regeneration) based on the three real failure
traces. The bi-exponential model is used only when we
need to tune the correlation level—in such cases we will
explicitly mention its use. As mentioned earlier, the accu-
racy of our simulator has been carefully validated against
live deployment results on the PlanetLab and also emula-
tion results on Emulab. Because many existing systems
(e.g., OceanStore, Glacier, and CFS) use a large number of
fragments, we show results for up to n = 60 fragments (as
well as for large values of m).

5 Can Correlated Failures be Avoided by
History-based Failure Pattern Prediction?

Chun et al. [11] point out that externally observed node
failure histories (based on probing) can be used to dis-
cover a relatively stable pattern of correlated failures (i.e.,
which set of nodes tend to fail together), based on a por-
tion of PL trace. Weatherspoon et al. [37] (as part of
the OceanStore project [22]) reach a similar conclusion by
analyzing a four-week failure trace of 306 web servers3.
Based on such predictability, they further propose a frame-
work for online monitoring and clustering of nodes. Nodes
within the same cluster are highly correlated, while nodes
in different clusters are more independent. They show that
the clusters constructed from the first two weeks of their
trace are similar to those constructed from the last two
weeks. Given the stability of the clusters, they conjecture
that by placing the n fragments (or replicas) in n different
clusters, the n fragments will not observe excessive failure
correlation among themselves. In some sense, the problem
of correlated failures goes away.

3The trace actually contains 1909 web servers, but the authors ana-
lyzed only 306 servers because those are the only ones that ever failed
during the four weeks.
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Our Finding. We carefully quantify the effectiveness of
this technique using the same method as in [37] to process
our failure traces. For each trace, we use the first half of
the trace (i.e., “training data”) to cluster the nodes using
the same clustering algorithm [33] as used in [37]. Then,
as a case study, we consider two placement schemes of an
ERASURE(n/2, n) (as in OceanStore) system. The first
scheme (pattern-aware) explicitly places the n fragments
of the same object in n different clusters, while the second
scheme (pattern-oblivious) simply places the fragments on
n random nodes. Finally, we measure the availability under
the second half of the trace.

We first observe that most (≈ 99%) of the failure events
in the second half of the traces affect only a very small
number (≤ 3) of the clusters computed from the first half
of the trace. This implies that the clustering of correlated
nodes is relatively stable over the two halves of the traces,
which is consistent with [37].

On the other hand, Figure 2 plots the achieved avail-
ability of the two placement schemes under WS trace.
PL trace produces similar results [29]. We do not use
RON trace because it contains too few nodes. The graph
shows that explicitly choosing different clusters to place
the fragments gives us negligible improvement on avail-
ability. We also plot the availability achieved if the failures
in WS trace were independent. This is done via model-
driven simulation and by setting the parameters in our bi-
exponential model accordingly. Note that under indepen-
dent failures, the two placement schemes are identical. The
large differences between the curve for independent fail-
ures and the other curves show that there are strong nega-
tive effects from failure correlation in the trace. Identify-
ing and exploiting failure patterns, however, has almost no
effect in alleviating such impacts. We have also obtained
similar findings under a wide-range of other m and n val-
ues for ERASURE(m,n).

A natural question is whether the above findings are be-
cause our traces are different from the traces studied in
[11, 37]. Our PL trace is, in fact, a superset of the failure
trace used in [11]. On the other hand, the failure trace stud-
ied in [37], which we call Private trace, is not pub-
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Figure 3: Predictability of pairwise failures. For two nodes selected at random, the plots show the probability that the
pair fail together (in correlation) more than x times during the entire trace. Distributions fitting the curves are also shown.

licly available. Is it possible that Private trace gives
even better failure pattern predictability than our traces, so
that pattern-aware placement would indeed be effective?
To answer this question, we directly compare the “pattern
predictability” of the traces using the metric from [37]: the
average mutual information among the clusters (MI) (see
[37] for a rigorous definition). A smaller MI means that the
clusters constructed from the training data predict the fail-
ure patterns in the rest of the trace better. Weatherspoon et
al. report an MI of 0.7928 for their Private trace. On
the other hand, the MI for our WS trace is 0.7612. This
means that the failure patterns in WS trace are actually
more “predictable” than in Private trace.

The Subtlety. To understand the above seemingly contra-
dictory observations, we take a deeper look at the failure
patterns. To illustrate, we classify the failures into small
failures and large failures based on whether the failure size
exceeds 15. With this classification, in all traces, most
(≈ 99%) of the failures are small.

Next, we investigate how accurately we can predict the
failure patterns for the two classes of failures. We use the
same approach [20] used for showing that UNIX processes
running for a long time are more likely to continue to run
for a long time. For a random pair of nodes in WS trace,
Figure 3(a) plots the probability that the pair crashes to-
gether (in correlation) more than x times because of the
small failures. The straight line in log-log scale indicates
that the data fits the Pareto distribution of P (#failure ≥

x) = cx−k, in this case for k = 1.5. We observe similar
fits for PL trace (P (#failure ≥ x) = 0.3x−1.45) and
RON trace (P (#failure ≥ x) = 0.02x−1.4). Such a
fit to the Pareto distribution implies that pairs of nodes that
have failed together many times in the past are more likely
to fail together in the future [20]. Therefore, past pairwise
failure patterns (and hence the clustering) caused by the
small failures are likely to hold in the future.

Next, we move on to large failure events (Fig-
ure 3(b)). Here, the data fit an exponential distribution of
P (#failure ≥ x) = ae−bx. The memoryless property
of the exponential distribution means that the frequency

of future correlated failures of two nodes is independent
of how often they failed together in the past. This in turn
means that we cannot easily (at least using existing history-
based approaches) predict the failure patterns caused by
these large failure events. Intuitively, large failures are gen-
erally caused by external events (e.g., DDoS attacks), oc-
currences of which are not predictable in trivial ways. We
observe similar results [29] in the other two traces. For ex-
ample, Figure 3(c) shows an exponential distribution fit for
the large failure events in RON trace. For PL trace,
the fit is P (#failure ≥ x) = 0.3e−0.9x.

Thus, the pattern for roughly 99% of the failure events
(i.e., the small failure events) is predictable, while the pat-
tern for the remaining 1% (i.e., the large failure events)
is not easily predictable. On the other hand, our experi-
ments show that large failure events, even though they are
only 1% of all failure events, contribute the most to un-
availability. For example, the unavailability of a “pattern-
aware” ERASURE(16, 32) under WS trace remains un-
changed (0.0003) even if we remove all the small failure
events. The reason is that because small failure events af-
fect only a small number of nodes, they can be almost com-
pletely masked by data redundancy and regeneration. This
explains why on the one hand, failure patterns are largely
predictable, while on the other hand, pattern-aware frag-
ment placement is not effective in improving availability.
It is also worth pointing out that the sizes of these large
failures still span a wide range (e.g., from 15 to over 50 in
PL trace and WS trace). So capturing the distribution
over all failure sizes is still important in the bi-exponential
model.

The Design Principle. Large correlated failures (which
comprise a small fraction of all failures) have a dominant
effect on system availability, and system designs must not
overlook these failures. For example, failure pattern pre-
diction techniques that work well for the bulk of correlated
failures but fail for large correlated failures are not effec-
tive in alleviating the negative effects of correlated failures.

Can Correlated Failures be Avoided by Root Cause-
based Failure Pattern Prediction? We have established
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above that failure pattern prediction based on failure his-
tory may not be effective. By identifying the root causes of
correlated failures, however, it becomes possible to predict
their patterns in some cases [21]. For example, in a hetero-
geneous environment, nodes running the same OS may fail
together due to viruses exploiting a common vulnerability.

On the other hand, first, not all root causes result in
correlated failures with predictable patterns. For example,
DDoS attacks result in correlated failures patterns that are
inherently unpredictable. Second, it can be challenging to
identify/predict root causes for all major correlated failures
based on intuition. Human intuition does not reason well
about close-to-zero probabilities [16]. As a result, it can
be difficult to enumerate all top root causes. For example,
should power failure be considered when targeting 5 nines
availability? How about a certain vulnerability in a certain
software? It is always possible to miss certain root causes
that lead to major failures. Finally, it can also be challeng-
ing to identify/predict root causes for all major correlated
failures, because the frequency of individual root causes
can be extremely low. In some cases, a root cause may
only demonstrate itself once (e.g., patches are usually in-
stalled after vulnerabilities are exploited). For the above
reasons, we believe that while root cause analysis will help
to make correlated failures more predictable, systems may
never reach a point where we can predict all major corre-
lated failures.

6 Is Simple Modeling of Failure Sizes Ade-
quate?

A key challenge in system design is to obtain the “right”
set of parameters that will be neither overly-pessimistic
nor overly-optimistic in achieving given design goals. Be-
cause of the complexity in availability estimation intro-
duced by failure correlation, system designers sometimes
make simplifying assumptions on correlated failure sizes in
order to make the problem more amenable. For example,

Glacier [19] considers only the (single) maximum failure
size, aiming to achieve a given availability target despite
the correlated failure of up to a fraction f of all the nodes.
This simplifying assumption enables the system to use a
closed-form formula [19] to estimate availability and then
calculate the needed m and n values in ERASURE(m,n).

Our Finding. Figure 4 quantifies the effectiveness of this
approach. The figure plots the number of fragments needed
to achieve given availability targets under Glacier’s model
(with f = 0.65 and f = 0.45) and under WS trace.
Glacier does not explicitly explain how f can be chosen
in various systems. However, we can expect that f should
be a constant under the same deployment context (e.g., for
WS trace).

A critical point to observe in Figure 4 is that for the
real trace, the curve is not a straight line (we will ex-
plore the shape of this curve later). Because the curves
from Glacier’s estimation are roughly straight lines, they
always significantly depart from the curve under the real
trace, regardless of how we tune f . For example, when
f = 0.45, Glacier over-estimates system availability when
n is large: Glacier would use ERASURE(6, 32) for an avail-
ability target of 7 nines, while in fact, ERASURE(6, 32)
achieves only slightly above 5 nines availability. Un-
der the same f , Glacier also under-estimates the avail-
ability of ERASURE(6, 10) by roughly 2 nines. If f is
chosen so conservatively (e.g., f = 0.65) that Glacier
never over-estimates, then the under-estimation becomes
even more significant. As a result, Glacier would suggest
ERASURE(6, 31) to achieve 3 nines availability while in
reality, we only need to use ERASURE(6, 9). This would
unnecessarily increase the bandwidth needed to create, up-
date, and repair the object, as well as the storage overhead,
by over 240%.

While it is obvious that simplifying assumptions (such
as assuming a single failure size) will always introduce in-
accuracy, our above results show that the inaccuracy can be
dramatic (instead of negligible) in practical settings.

The Subtlety. The reason behind the above mismatch be-
tween Glacier’s estimation and the actual availability under
WS trace is that in real systems, failure sizes may cover
a large range. In the limit, failure events of any size may
occur; the only difference is their likelihood. System avail-
ability is determined by the combined effects of failures
with different sizes. Such effects cannot be summarized as
the effects of a series of failures of the same size (even with
scaling factors).

To avoid the overly-pessimistic or overly-optimistic con-
figurations resulting from Glacier’s method, a system must
consider a distribution of failure sizes. IRISSTORE uses
the bi-exponential model for this purpose. Figure 4 also
shows the number of fragments needed for a given avail-
ability target as estimated by our simulator driven by the
bi-exponential model. The estimation based on our model
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matches the curve from WS trace quite well. It is also
important to note that the difference between Glacier’s esti-
mation and our estimation is purely from the difference be-
tween single failure size and a distribution of failure sizes.
It is not because Glacier uses a formula while we use sim-
ulation. In fact, we have also performed simulations using
only a single failure size, and the results are similar to those
obtained using Glacier’s formula.
The Design Principle. Assuming a single failure size can
result in dramatic rather than negligible inaccuracies in
practice. Thus correlated failures should be modeled via a
distribution.

7 Are Additional Fragments Always Effec-
tive in Improving Availability?

Under independent failures, distributing the data always
helps to improve availability, and any target availability
can be achieved by using additional (smaller) fragments,
without increasing the storage overhead. For this rea-
son, system designers sometimes fix the ratio between n
and m (so that the storage overhead, n/m, is fixed), and
then simply increase n and m simultaneously to achieve
a target availability. For instance, under independent
failures, ERASURE(16, 32) gives better availability than
ERASURE(12, 24), which, in turn, gives better availabil-
ity than ERASURE(8, 16). Several existing systems, in-
cluding OceanStore and CFS, use such ERASURE(n/2, n)
schemes. Given independent failures, it can even be
proved [29] that increasing the number of fragments (while
keeping storage constant) exponentially decreases unavail-
ability. In Section 9, we will show that a read/write repli-
cation system using majority voting [35] for consistency
has the same availability as ERASURE(n/2, n). Thus, our
discussion in this section also applies to these read/write
replication systems (where, in this case, the storage over-
head does increase with n).
Our Finding. We observe that distributing frag-
ments across more and more machines (i.e., increas-

ing n) may not be effective under correlated failures,
even if we double or triple n. Figure 5(a) plots the
availability of ERASURE(4, n), ERASURE(n/3, n) and
ERASURE(n/2, n) under PL trace. The graphs for
WS trace are similar (see [29]). We do not use
RON trace because it contains only 30 nodes. The
three schemes clearly incur different storage overhead and
achieve different availability. We do not intend to compare
their availability under a given n value. Instead, we focus
on the scaling trend (i.e., the availability improvement) un-
der the three schemes when we increase n.

Both ERASURE(n/3, n) and ERASURE(n/2, n) suffer
from a strong diminishing return effect. For example, in-
creasing n from 20 to 60 in ERASURE(n/2, n) provides
less than a half nine’s improvement. On the other hand,
ERASURE(4, n) does not suffer from such an effect. By
tuning the parameters in the correlation model and using
model-driven simulation, we further observe that the di-
minishing returns become more prominent under stronger
correlation levels as well as under larger m values [29] .

The above diminishing return shows that correlated fail-
ures prevent a system from effectively improving availabil-
ity by distributed data across more and more machines. In
read/write systems using majority voting, the problem is
even worse: the same diminishing return effect occurs de-
spite the significant increases in storage overhead.

The Subtlety. It may appear that diminishing return is
an obvious consequence of failure correlation. However,
somewhat surprisingly, we find that diminishing return
does not directly result from the presence of failure cor-
relation.

Figure 5(b) plots the availability of ERASURE(n/2, n)
under synthetic correlated failures. In these experiments,
the system has 277 nodes total (to match the system size in
PL trace), and each synthetic correlated failure crashes
a random set of nodes in the system.4 The synthetic corre-

4Crashing random sets of nodes is our explicit choice for the exper-
imental setup. The reason is exactly the same as in our bi-exponential
failure correlation model (see Section 4).



lated failures all have the same size. For example, to ob-
tain the curve labeled “f0.2”, we inject correlated failure
events according to Poisson arrival, and each event crashes
20% of the 277 nodes in the system. Using single-size
correlated failures matches the correlation model used in
Glacier’s configuration analysis.

Interestingly, the curves in Figure 5(b) are roughly
straight lines and exhibit no diminishing returns. If we in-
crease the severeness (i.e., size) of the correlated failures,
the only consequence is smaller slopes of the lines, instead
of diminishing returns. This means that diminishing return
does not directly result from correlation. Next we explain
that diminishing return actually results from the combined
effects of failures with different sizes (Figure 5(c)).

Here we will discuss unavailability instead of availabil-
ity, so that we can “sum up” unavailability values. In the
real world, correlated failures are likely to have a wide
range of sizes, as observed from our failure traces. Fur-
thermore, larger failures tend to be rarer than smaller fail-
ures. As a rough approximation, system unavailability can
be viewed as the summation of the unavailability caused
by failures with different sizes. In Figure 5(c), we con-
sider two different failure sizes (0.2 × 277 and 0.4 × 277),
where the failures with the larger size occur with smaller
probability. It is interesting to see that when we add up the
unavailability caused by the two kinds of failures, the re-
sulting curve is not a straight line.5 In fact, if we consider
nines of availability (which flips the curve over), the com-
bined curve shows exactly the diminishing return effect.

Given the above insight, we believe that diminishing re-
turns are likely to generalize beyond our three traces. As
long as failures have different sizes and as long as larger
failures are rarer than smaller failures, there will likely be
diminishing returns. The only way to lessen diminishing
returns is to use a smaller m in ERASURE(m,n) systems.
This will make the slope of the line for 0.01f0.4 in Fig-
ure 5(c) more negative, effectively making the combined
curve straighter.

The Design Principle. System designers should be aware
that correlated failures result in strong diminishing return
effects in ERASURE(m,n) systems unless m is kept small.
For popular systems such as ERASURE(n/2, n), even dou-
bling or tripling n provides very limited benefits after a
certain point.

8 Do Superior Designs under Independent
Failures Remain Superior under Corre-
lated Failures?

Traditionally, system designs are evaluated and compared
under the assumption of independent failures. A positive

5Note that the y-axis is on log-scale, and that is why the summation of
two straight lines does not result in a third straight line.
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answer to this question would provide support for this ap-
proach.

Our Finding. We find that correlated failures hurt some
designs much more than others. Such non-equal effects are
demonstrated via the example in Figure 6. Here, we plot
the unavailability of ERASURE(1, 4) and ERASURE(8, 16)
under different failure correlation levels, by tuning the pa-
rameters in our correlation model in model-driven simula-
tion. These experiments use the model G(0.0012, 2

5
ρ2, ρ2)

(a generalization of the model for WS trace to cover a
range of ρ2), and a universe of 130 nodes, with MTTF
= 10 days and MTTR = 1 day. ERASURE(1, 4) achieves
around 1.5 fewer nines than ERASURE(8, 16) when fail-
ures are independent (i.e., ρ2 = 0). On the other hand, un-
der the correlation level found in WS trace (ρ2 = 0.98),
ERASURE(1, 4) achieves 2 more nines of availability than
ERASURE(8, 16).6

The Subtlety. The cause of this (perhaps counter-intuitive)
result is the diminishing return effect described earlier. As
the correlation level increases, ERASURE(8, 16), with its
larger m, suffers from the diminishing return effect to a
much greater degree than ERASURE(1, 4). In general, be-
cause diminishing return effects are stronger for systems
with larger m, correlated failures hurt systems with large
m more than those with small m.

The Design Principle. A superior design under indepen-
dent failures may not be superior under correlated failures.
In particular, correlation hurts systems with larger m more
than those with smaller m. Thus designs should be explic-
itly evaluated and compared under correlated failures.

9 Read/Write Systems

Thus far, our discussion has focused on read-only
ERASURE(m,n) systems. Interestingly, our results extend
quite naturally to read/write systems that use quorum tech-
niques or voting techniques to maintain data consistency.

6The same conclusion also holds if we directly use WS trace to drive
the simulation.



Quorum systems (or voting systems) [7, 35] are stan-
dard techniques for maintaining consistency for read/write
data. We first focus on the case of pure replication. Here, a
user reading or writing a data object needs to access a quo-
rum of replicas. For example, the majority quorum system
(or majority voting) [35] requires that the user accesses a
majority of the replicas. This ensures that any reader in-
tersects in at least one replica with the latest writer, so that
the reader sees the latest update. If a majority of the repli-
cas is not available, then the data object is unavailable to
the user. From an availability perspective, this is exactly
the same as a read-only ERASURE(n/2, n) system. Among
all quorum systems that always guarantee consistency, we
will consider only majority voting because its availability
is provably optimal [7].

Recently, Yu [40] proposed signed quorum systems
(SQS), which uses quorum sizes smaller than n/2, at the
cost of a tunably small probability of reading stale data.
Smaller quorum sizes help to improve system availability
because fewer replicas need to be available for a data ob-
ject to be available. If we do not consider regeneration (i.e,
creating new replicas to compensate for lost replicas), then
the availability of such SQS-based systems would be ex-
actly the same as that of a read-only ERASURE(m,n) sys-
tem, where m is the quorum size. Regeneration makes the
problem slightly more complex, but our design principles
still apply [29].

Finally, quorum systems can also be used over erasure-
coded data [18]. Despite the complexity of these protocols,
they all have simple threshold-based requirements on the
number of available fragments. As a result, their availabil-
ity can also be readily captured by properly adjusting the
m in our ERASURE(m,n) results.

10 IRISSTORE: A Highly-Available
Read/Write Storage Layer

Applying the design principles in the previous sections,
we have built IRISSTORE, a decentralized read/write stor-
age layer that is highly-available despite correlated failures.
IRISSTORE does not try to avoid correlated failures by pre-
dicting correlation patterns. Rather, it tolerates them by
choosing the right set of parameters. IRISSTORE deter-
mines system parameters using a model with a failure size
distribution rather than a single failure size. Finally, IRIS-
STORE explicitly quantifies and compares configurations
via online simulation using our correlation model. IRIS-
STORE allows both replication and erasure coding for data
redundancy, and also implements both majority quorum
systems and SQS for data consistency. The original design
of SQS [40] appropriately bounds the probability of incon-
sistency (e.g., probability of stale reads) when nodes MTTF
and MTTR are relatively large compared to the inter-arrival
time between writes and reads. If MTTF and MTTR are

small compared to the write/read inter-arrival time, the in-
consistency may be amplified [5]. To avoid such undesir-
able amplification, IRISSTORE also incorporates a simple
data refresh technique [28].

We use IRISSTORE as the read-write storage layer of
IRISLOG7, a wide-area network monitoring system de-
ployed on over 450+ PlanetLab nodes. IRISLOG with IRIS-
STORE has been available for public use for over 8 months.

At a high level, IRISSTORE consists of two major com-
ponents. The first component replicates or encodes objects,
and processes user accesses. The second component is re-
sponsible for regeneration, and automatically creates new
fragments when existing ones fail. These two subsystems
have designs similar to Om [41]. For lack of space, we
omit the details (see [26]) and focus on two aspects that are
unique to IRISSTORE.

10.1 Achieving Target Availability

Applications configure IRISSTORE by specifying an avail-
ability target, a bi-exponential failure correlation model, as
well as a cost function. The correlation model can be spec-
ified by saying that the deployment context is “PlanetLab-
like,” “WebServer-like,” or “RON-like.” In these cases,
IRISSTORE will use one of the three built-in failure cor-
relation models from Section 4. We also intend to add
more built-in failure correlation models in the future. To
provide more flexibility, IRISSTORE also allows the appli-
cation to directly specify the three tunable parameters in
the bi-exponential distribution. It is our long term goal to
extend IRISSTORE to monitor failures in the deployment,
and automatically adjust the correlation model if the initial
specification is not accurate.

The cost function is an application-defined function that
specifies the overall cost resulting from performance over-
head and inconsistency (for read/write data). The function
takes three inputs, m, n, and i (for inconsistency), and re-
turns a cost value that the system intends to minimize given
that the availability target is satisfied. For example, a cost
function may bound the storage overhead (i.e., n/m) by re-
turning a high cost if n/m exceeds certain threshold. Sim-
ilarly, the application can use the cost function to ensure
that not too many nodes need to be contacted to retrieve
the data (i.e., bounding m). We choose to leave the cost
function to be completely application-specific because the
requirements from different applications can be dramati-
cally different.

With the cost function and the correlation model, IRIS-
STORE uses online simulation to determine the best values
for m, n, and quorum sizes. It does so by exhaustively
searching the parameter space (with some practical caps
on n and m), and picking the configuration that minimizes

7http://www.intel-iris.net/irislog



the cost function while still achieving the availability tar-
get. The amount of inconsistency (i) is predicted [39, 40]
based on the quorum size. Finally, this best configuration is
used to instantiate the system. Our simulator takes around
7 seconds for each configuration (i.e., each pair of m and n
values) on a single 2.6GHz Pentium 4; thus IRISSTORE
can perform a brute-force exhaustive search for 20,000
configurations (i.e., a cap of 200 for both n and m, and
m ≤ n) in about one and a half days. Many optimizations
are possible to further prune the search space. For exam-
ple, if ERASURE(16, 32) does not reach the availability tar-
get then neither does ERASURE(17, 32). This exhaustive
search is performed offline; its overhead does not affect
system performance.

10.2 Optimizations for Regeneration
When regenerating read/write data, IRISSTORE (like
RAMBO [25] and Om [41]) uses the Paxos distributed con-
sensus protocol [23] to ensure consistency. Using such
consistent regeneration techniques in the wide-area, how-
ever, poses two practical challenges that are not addressed
by RAMBO and Om:8

Flooding problem. After a large correlated failure, one in-
stance of the Paxos protocol needs to be executed for each
of the objects that have lost any fragments. For example,
our IRISLOG deployment on the PlanetLab has 3530 ob-
jects storing PlanetLab sensor data, and each object has 7
replicas. A failure of 42 out of 206 PlanetLab nodes (on
3/28/2004) would flood the system with 2,478 instances of
Paxos. Due to the message complexity of Paxos, this cre-
ates excessive overhead and stalls the entire system.
Positive feedback problem. Determining whether a dis-
tant node has failed is often error-prone due to unpre-
dictable communication delays and losses. Regeneration
activity after a correlated failure increases the inaccuracy
of failure detection due to the increased load placed on the
network and nodes. Unfortunately, inaccurate failure de-
tections trigger more regeneration which, in turn, results in
larger inaccuracy. Our experience shows that this positive
feedback loop can easily crash the entire system.

To address the above two problems, IRISSTORE imple-
ments two optimizations:
Opportunistic Paxos-merging. In IRISSTORE, if the sys-
tem needs to invoke Paxos for multiple objects whose frag-
ments happen to reside on the same set of nodes, the re-
generation module merges all these Paxos invocations into
a single one. This approach is particularly effective with
IRISSTORE’s load balancing algorithm [27], which tends
to place the fragments for two objects either on the same
set of nodes or on completely disjoint sets of nodes. Com-
pared to explicitly aggregating objects into clusters, this

8RAMBO has never been deployed over the wide-area, while Om has
never been evaluated under a large number of simultaneous node failures.

 1

 0.9

 0.8

 0.7
01224364860

Fr
ac

tio
n

Time (Hours before the deadline)

Available nodes
Available objects

Figure 7: Availability of IRISSTORE in the wild.

approach avoids the need to maintain consistent split and
merge operations on clusters.

Paxos admission-control. To avoid the positive feedback
problem, we use a simple admission control mechanism on
each node to control its CPU and network overhead, and to
avoid excessive false failure detections. Specifically, each
node, before initiating a Paxos instance, samples (by pig-
gybacking on the periodic ping messages) the number of
ongoing Paxos instances on the relevant nodes. Paxos is
initiated only if the average and the maximum number of
ongoing Paxos instances are below some thresholds (2 and
5, respectively, in our current deployment). Otherwise, the
node queues the Paxos instance and backs off for some
random time before trying again. Immediately before a
queued Paxos is started, IRISSTORE rechecks whether the
regeneration is still necessary (i.e., whether the object is
still missing a fragment). This further improves failure
detection accuracy, and also avoids regeneration when the
failed nodes have already recovered.

10.3 Availability of IRISSTORE in the Wild

In this section and the next, we report our availability and
performance experience with IRISSTORE (as part of IRIS-
LOG) on the PlanetLab over an 8-month period. IRISLOG
uses IRISSTORE to maintain 3530 objects for different sen-
sor data collected from PlanetLab nodes. As a background
testing and logging mechanism, we continuously issued
one query to IRISLOG every five minutes. Each query tries
to access all the objects stored in IRISSTORE. We set a
target availability of 99.9% for our deployment, and IRIS-
STORE chooses, accordingly, a replica count of 7 and a
quorum size of 2.

Figure 7 plots the behavior of our deployment under
stress over a 62-hour period, 2 days before the SOSP’05
deadline (i.e., 03/23/2005). The PlanetLab tends to suffer
the most failures and instabilities right before major con-
ference deadlines. The figure shows both the fraction of
available nodes in the PlanetLab and the fraction of avail-
able (i.e., with accessible quorums) objects in IRISSTORE.
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Figure 8: IRISSTORE performance. (In (c), “AC” means Paxos admission-control and “PM” means Paxos-merging.)

At the beginning of the period, IRISSTORE was running
on around 200 PlanetLab nodes. Then, the PlanetLab ex-
perienced a number of large correlated failures, which cor-
respond to the sharp drops in the “available nodes” curve
(the lower curve). On the other hand, the fluctuation of the
“available objects” curve (the upper curve) is consistently
small, and is always above 98% even during such an un-
usual stress period. This means that our real world IRIS-
STORE deployment tolerated these large correlated fail-
ures well. In fact, the overall availability achieved by
IRISSTORE during the 8-month deployment was 99.927%,
demonstrating the ability of IRISSTORE to achieve a pre-
configured target availability.

10.4 Basic Performance of IRISSTORE

Access latency. Figure 8(a) shows the measured latency
from our lab to access a single object in our IRISLOG de-
ployment. The object is replicated on random PlanetLab
nodes. We study two different scenarios based on whether
the replicas are within the US or all over the world. Net-
work latency contributes to most of the end-to-end latency,
and also to the large standard deviations.

Bandwidth usage. Our next experiment studies the
amount of bandwidth consumed by regeneration, including
the Paxos protocol. To do this, we consider the PlanetLab
failure event on 3/28/2004 that caused 42 out of the 206
live nodes to crash in a short period of time (an event found
by analyzing PL trace). We replay this event by deploy-
ing IRISLOG on 206 PlanetLab nodes and then killing the
IRISLOG process on 42 nodes.

Figure 8(b) plots the bandwidth used during regenera-
tion. The failures are injected at time 100. We observe
that on average, each node only consumes about 3KB/sec
bandwidth, out of which 2.8KB/sec is used to perform nec-
essary regeneration, 0.27KB/sec for unnecessary regenera-
tion (caused by false failure detection), and 0.0083KB/sec
for failure detection (pinging). The worst-case peak for an
individual node is roughly 100KB/sec, which is sustainable
even with home DSL links.

Regeneration time. Finally, we study the amount of time

needed for regeneration, demonstrating the importance of
our Paxos-merging and Paxos admission-control optimiza-
tions. We consider the same failure event (i.e., killing 42
out of 206 nodes) as above.

Figure 8(c) plots the average number of replicas per
object and shows how IRISSTORE gradually regenerates
failed replicas after the failure at time 100. In particular,
the failure affects 2478 objects. Without Paxos admission-
control or Paxos-merging, the regeneration process does
not converge.

Paxos-merging reduces the total number of Paxos invo-
cations from 2478 to 233, while admission-control helps
the regeneration process to converge. Note that the aver-
age number of replicas does not reach 7 even at the end
of the experiment because some objects lose a majority
of replicas and cannot regenerate. A single regeneration
takes 21.6sec on average which is dominated by the time
for data transfer (14.3sec) and Paxos (7.3sec). The time
for data transfer is determined by the amount of data and
can be much larger. The convergence time of around 12
minutes is largely determined by the admission-control pa-
rameters and may be tuned to be faster. However, regen-
eration is typically not a time-sensitive task, because IRIS-
STORE only needs to finish regeneration before the next
failure hits. Our simulation study based on PL trace
shows that 12-minute regeneration time achieves almost
identical availability as, say, 5-minute regeneration time.
Thus we believe IRISSTORE’s regeneration mechanism is
adequately efficient.

11 Conclusion

Despite the wide awareness of correlated failures in the re-
search community, the properties of such failures and their
impact on system behavior has been poorly understood. In
this paper, we made some critical steps toward helping sys-
tem developers understand the impact of realistic, corre-
lated failures on their systems. In addition, we provided a
set of design principles that systems should use to tolerate
such failures, and showed that some existing approaches
are less effective than one might expect. We presented the



design and implementation of a distributed read/write stor-
age layer, IRISSTORE, that uses these design principles to
meet availability targets even under real-world correlated
failures.
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