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Abstract
Highly-available distributed storage systems are commonly
designed to optimize the availability of individual data ob-
jects, despite the fact that user level tasks typically request
multiple objects. In this paper, we show that the assignment
of object replicas (or fragments, in the case of erasure cod-
ing) to machines plays a dramatic role in the availability of
such multi-object operations, without affecting the avail-
ability of individual objects. For example, for the TPC-
H benchmark under real-world failures, we observe differ-
ences of up to four nines between popular assignments used
in existing systems. Experiments using our wide-area stor-
age system prototype, MOAT, on the PlanetLab, as well as
extensive simulations, show which assignments lead to the
highest availability for a given setting.

1 Introduction

With the fast advance of systems research, performance is
no longer the sole focus of systems design [19]. In par-
ticular, system availability is quickly gaining importance
in both industry and the research community. Data redun-
dancy (i.e., replication or erasure coding) is one of the key
approaches for improving system availability. When de-
signing highly-available systems, researchers typically op-
timize for the availability of individual data objects. For
example CFS [9] aims to achieve a certain availability
target for individual file blocks, while OceanStore [26]
and Glacier [18] focus on the availability of individual
(variable-size) objects. However, a user-level task or oper-
ation typically requests multiple data objects. For example,
in order to compile a project, all of its files need to be avail-
able for the compilation to succeed. Similarly, a database
query typically requests multiple database objects.

This work is motivated by the following question: Is op-
timizing the availability of individual data objects an ef-
fective approach for ensuring the high availability of these

∗Work done while this author was a graduate student at CMU and an
intern at Intel Research Pittsburgh.

multi-object operations? We observe that existing dis-
tributed storage systems can differ dramatically in how they
assign replicas, relative to each other, to machines. For
example, systems such as GFS [15], FARSITE [5], and
RIO [33] assign replicas randomly to machines (we call
this strategy RAND); others such as the original RAID [28]
and Coda [25] manually partition the objects into sets and
then mirror each set across multiple machines (we call this
strategy PTN); others such as Chord [36] assign replicas to
consecutive machines on the DHT ring. However, in spite
of the existence of many different assignment strategies,
previous studies have not provided general insight across
strategies nor have they compared the availability among
the strategies for multi-object operations. This leads to the
central question of this paper: What is the impact of the
replicas’ relative assignment on the availability of multi-
object operations?

Answering the above two questions is crucial for de-
signing highly-available distributed systems. A negative
answer to the first question would suggest that system de-
signers need to think about system availability in a differ-
ent way—we should optimize availability for multi-object
operations instead of simply for individual objects. An an-
swer to the second question would provide valuable design
guidelines toward such optimizations.

This paper is the first to study and answer these two
questions, using a combination of trace/model-driven sim-
ulation and real system deployment. Our results show that,
surprisingly, different object assignment strategies result in
dramatically different availability for multi-object opera-
tions, even though the strategies provide the same avail-
ability for individual objects and use the same degree of
replication. For example, we observe differences of multi-
ple nines arising between popular assignments used in ex-
isting systems such as CAN [29], CFS [9], Chord, Coda,
FARSITE, GFS, GHT [30], Glacier [18], Pastry [31], R-
CHash [22], RAID, and RIO. In particular, the difference
under the TPC-H benchmark reaches four nines: some pop-
ular assignments provide less than 50% availability, even



when individual objects have 5 nines availability, while
others provide up to 99.97% availability for the same de-
gree of replication.

To answer the second question above, we examine the
entire class of possible assignment strategies, including the
aforementioned RAND and PTN, in the context of two types
of multi-objects operations: strict operations that cannot
tolerate any missing objects in the answer (i.e., that require
complete answers) and more tolerant operations that are
not strict.

We design our simulation experiments based on an ini-
tial analytical study of assignment strategies under some
specific parameter settings [44]. Our initial analysis [44]
indicates that i) for strict operations, PTN provides the best
availability while RAND provides the worst; ii) for certain
operations that are more tolerant, RAND provides the best
availability while PTN provides the worst; and iii) it is im-
possible to achieve the best of both PTN and RAND.

Based on the above theoretical guidance, we design our
simulation study to explore the large parameter space that
is not covered by the analysis. Our simulation shows
that although operations can have many different tolerance
levels for missing objects, as a practical rule of thumb,
only two levels matter when selecting an assignment: does
the operation require all requested objects (strict) or not
(loose)? The results show that the above analytical re-
sult for “certain operations that are more tolerant” gener-
alizes to all loose operations. Namely, for all loose oper-
ations, RAND tends to provide the best availability while
PTN tends to provide the worst. These results have the
following implications for multi-object availability: PTN-
based systems such as RAID and Coda are optimized for
strict operations; RAND-based systems such as GFS, FAR-
SITE, and RIO are optimized for loose operations; and
other assignment strategies, such as the one used in Chord,
lie between PTN and RAND.

Next, we consider practical ways to implement PTN and
RAND in distributed systems where objects and machines
may be added or deleted over time. CAN approximates
RAND in such a dynamic setting. On the other hand, PTN
is more challenging to approximate due to its rigid struc-
ture. We propose a simple design that approximates PTN
in dynamic settings. We have implemented our design for
PTN, as well as other assignment strategies, in a prototype
wide-area distributed storage system called MOAT (Multi-
Object Assignment Toolkit). Although our prototype con-
siders the challenges of wide-area distributed storage, our
findings apply to local-area systems as well.

Finally, we study multi-object availability in the pres-
ence of two important real-world factors: load imbalance
resulting from the use of consistent hashing [22] and corre-
lated machine failures experienced by most wide-area sys-
tems [42]. We study these effects using MOAT under a
model for network failures, a real eight-month-long Plan-

etLab failure trace, a query trace obtained from the Iris-
Log network monitoring system [2], and the TPC-H bench-
mark. We use both live PlanetLab deployment and event-
driven simulation as our testbed. Our results show three
intriguing facts. First, both consistent hashing and ma-
chine failure correlation hurt the availability of more tol-
erant operations, but surprisingly, they slightly improve
the availability of more strict operations (if the availabil-
ity of individual objects is kept constant). Second, popular
assignments such as Glacier that approximate PTN under
perfect load balancing, fail to do so under consistent hash-
ing. Third, our earlier conclusions (which assume perfect
load balance and independent machine failures) hold even
with consistent hashing and correlated failures: the relative
ranking among the assignments remains unchanged.

Although this paper focuses solely on availability, object
assignment also affects performance—exploring the inter-
action between performance and availability goals is part of
our future work. Note that in some cases, these goals can be
achieved separately, by using a primary storage system for
performance goals and a backup storage system (that uses
replication or erasure coding) for availability goals [18].

In the next section we discuss motivating applications
and examples. Section 3 defines our system model and
gives a classification of popular assignments. Section 4
shows that PTN and RAND dominate other assignments.
Section 5 presents our designs to approximate PTN in dy-
namic settings. Section 6 describes MOAT and evaluates
assignments under real-world workloads and faultloads.
Section 7 discusses related work and Section 8 presents
conclusions.

2 Motivation

2.1 Motivating Applications
In most applications including traditional file systems and
database systems, user operations tend to request multiple
objects. These applications can easily motivate our work.
In this section, however, we focus on two classes of appli-
cations that are extreme in terms of the number of objects
requested by common operations. For each operation, we
will focus on the number of objects requested and the tol-
erance for missing objects.

Image databases. In recent years, computer systems are
increasingly being used to store and serve image data [6,
21, 35, 37]. These databases can be quite large. For ex-
ample, with each 2D protein image object being 4MB,
a distributed bio-molecular image database [35] can eas-
ily reach multiple terabytes of data. The SkyServer as-
tronomy database [37], which stores the images of astro-
nomical spheres, is rapidly growing, with the potential of
generating one petabyte of new data per year [38]. Such
large databases are typically distributed among multiple



EFGH

EFGH
assignment IVassignment I assignment II assignment III

ABCD ABCD

GHAB CDEF

ABCD

EFGH GH

AB
BC

DE
EF

FG

HA
CD

AB
ABGH

CD
CD

EF
EF

GH

Figure 1: Four possible assignments of 8 objects, A through H, to 8 machines. Each box represents a machine. A dash
(-) indicates an object that is not accessed by the given query.

machines either residing in a LAN or distributed in the
wide-area (e.g., similar to the Grid [1]). High availability
has been an integral requirement of these systems. For ex-
ample, the TerraServer system for aerial images explicitly
aims for four nines availability [6].

Queries to these image databases can touch a non-trivial
fraction of the entire database. For example, among the
35 typical queries used to benchmark SkyServer, at least
one query touches over 9.7% of the entire database, while
at least four other queries touch over 0.5% of the entire
database [17]. Clearly, these queries touch a large number
of objects. In other image databases [21], it is difficult to
suitably index the data because queries are not known a
priori and often require domain-specific knowledge. As a
result, each query essentially searches every object in the
database.

The requirements from these queries can vary based on
their semantics. For example, a SkyServer query “com-
pute the average brightness of all galaxies” would likely be
able to tolerate some missing objects. On the other hand, a
query of “check whether any of the images in the database
contain the face of a criminal” would likely require check-
ing all objects in the database, and is thus a strict operation.

Data storage used in network monitoring. Our sec-
ond class of applications is Internet-scale distributed stor-
age systems such as IrisNet [2, 11, 16], SDIMS [41] and
PIER [20] that are used for monitoring potentially hun-
dreds of thousands of network endpoints. In order to avoid
the unnecessary bandwidth consumption for data transfer,
data are typically stored near their sources (e.g., at the
hosts being monitored) [2, 11, 20, 41]. As a result, the
database is distributed over a large number of wide-area
hosts. Many queries from these applications request aggre-
gated information over a large data set, e.g., the distribution
of resource usage over the hosts, the correlation (join) of
the worm-infected hosts and their operating systems, etc.
Each such query touches a non-trivial fraction of the entire
database. These aggregation queries are likely to be able
to tolerate some missing objects. However, other queries,
e.g., by a system administrator trying to pinpoint a network
problem or find all virus-infected hosts, may not be able to

tolerate any missing objects, and are thus strict operations.

2.2 Motivating Example
With our motivating applications in mind, the following
simple example illustrates the impact and the subtleties of
object assignment.

A simple example with subtle answers. Consider an im-
age database with 16 objects and a query that requests
8 of the 16 objects, namely A through H. An example
is the query of “check whether any of the images in the
database contain the face of a given male criminal”, where
A through H are the images with male faces. Because of
the nature of this operation, the query is successful only if
all the 8 images A–H are available. Suppose each object
has exactly two copies, there are 8 identical machines on
which we can place these copies, and each machine may
hold no more than four objects. Each machine may fail
(crash), causing all its data to become unavailable. An ob-
ject is unavailable if and only if both its copies are unavail-
able. For simplicity, assume that machines fail indepen-
dently with the same probability p < 0.5.

Figure 1 gives four (of the many) possible assignments
of objects to machines, depicting only the 8 objects re-
quested by the query. Which of these four assignments
gives us a better chance that all 8 image objects are avail-
able so that the query for criminal faces succeeds? Intu-
itively, it may make sense that concentrating the objects on
fewer machines, as in assignments I and II, gives us a bet-
ter chance. However, that still leaves a choice between as-
signment I and assignment II. A careful calculation shows
that in fact assignment I provides better availability than
assignment II1, and hence the best availability among all
four assignments.

Now consider a network monitoring database with 16
objects, and a query for the average load on U.S. hosts,
where objects A–H contain the load information for the
U.S. hosts. Suppose we are willing to tolerate some error
in the average and the query succeeds as long as we can

1The failure probabilities are FP (I) = p4+4p3(1−p)+2p2(1−p)2

and FP (II) = p4 + 4p3(1 − p) + 4p2(1 − p)2.



retrieve 5 or more objects. Intuitively, it may now make
sense that spreading the objects across more machines, as
in assignments III and IV, gives us a better chance that the
query succeeds. However, that still leaves a choice between
assignments III and IV and again it is not clear which is bet-
ter. A careful calculation shows that the relative assignment
of objects in assignment IV2 provides the best availability
among all four assignments.

What happens when the query requires 6 or 7 objects to
succeed instead of 5 or 8? What about all the other pos-
sible assignments that place two objects per machine? Do
any of them provide significantly better availability than
assignment IV? For databases with millions of objects and
hundreds of machines, answering these questions by brute-
force calculation is not feasible, so effective guidelines are
clearly needed.
Example remains valid under erasure coding. Our sim-
ple example uses replication for each object. The exact
same problem also arises with erasure coding, where we
assign fragments (instead of copies) to machines. If the
number of fragments per object is the same as the total
number of machines in the system (e.g., 8 in our exam-
ple), then the assignment problem goes away. However, in
large-scale systems, the total number of machines is typi-
cally much larger than the number of fragments per object.
As a result, the same choice regarding fragment assignment
arises.

Also, in our simple example, it is possible to use era-
sure coding across all objects (i.e., treating them as a sin-
gle piece of data). This would clearly minimize the failure
probability if we need all the objects for the operation to be
successful. However, due to the nature of erasure coding, it
is not practical to use erasure coding across large amounts
of data (e.g., using erasure coding across all the data in the
database). Specifically, for queries that request only some
of the objects (as in our example), erasure coding across all
the objects means that much more data is fetched than is
needed for the query. On the other hand, when objects are
small, it is practical to use erasure coding across sets of ob-
jects. In such scenarios, we view each erasure-coded set of
objects as a single logical object. In fact, we intentionally
use a relatively large object size of 33MB in some of our
later experiments to capture such scenarios.
Summary. The impact of object assignment on availabil-
ity is complicated and subtle. Intuitive rules make sense,
such as “concentrate objects on fewer machines for strict
operations” and “spread objects across machines for more
tolerant operations”. However, these intuitive rules are not
useful for selecting among assignments with the same de-
gree of concentration/spread (e.g, for choosing between as-
signments I and II in our example). This paper provides

2The failure probabilities are FP (III) = p8 + 8p7(1 − p) +
28p6(1 − p)2 + 24p5(1 − p)3 + 6p4(1 − p)4 and FP (IV ) =
p8 + 8p7(1 − p) + 28p6(1 − p)2 + 8p5(1 − p)3.

N number of objects in the system
k number of FORs per object
m number of FORs needed to reconstruct

an object (out of the k FORs)
n number of objects requested by an operation
t number of objects needed for the operation

to be successful (out of the n objects)
s number of machines in the system
l number of FORs on each machine (= Nk/s)
p failure probability of each machine

FP (α) failure probability of assignment α

Table 1: Notation used in this paper.

effective guidelines for selecting among all assignments,
including among assignments with the same degree of con-
centration/spread. As our results show, such guidelines are
crucial: popular assignments with the same degree of con-
centration/spread can still vary by multiple nines in the
availability they provide for multi-object operations. For
the example above, our results will show that for the query
that cannot tolerate missing objects, assignment I is actu-
ally near optimal among all possible assignments. On the
other hand, for more tolerant queries, a random assignment
of the objects to the machines (with each machine holding
two objects) will give us the highest availability.

3 Preliminaries

In this section, we set the context for our work by present-
ing our system model and then reviewing and classifying
well-known assignments.

3.1 System Model

We begin by defining our system model for both replicated
and erasure-coded objects. Table 1 summarizes the nota-
tion we use.

There are N data objects in the system, where an ob-
ject is, for example, a file block, a file, a database tuple, a
group of database tuples, an image, etc. An operation re-
quests (for reading and/or writing) n objects, 1 ≤ n ≤ N ,
to perform a certain user-level task. There are s machines
in the system, each of which may experience crash (be-
nign) failures with a certain probability p. Replication or
erasure coding is used to provide fault tolerance. Each ob-
ject has k replicas (for replication) or k fragments (for era-
sure coding). We use the same k for all objects to ensure
a minimal level of fault tolerance for each object. Extend-
ing the model and our results to different k’s is part of our
future work. To unify terminology, we call each fragment
or replica a FOR of the object. The k FORs of an object
are numbered 1 through k. We assume that m out of k
FORs are needed for a given object to be available for use.
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Figure 2: Placement of a single object o in different consistent hashing-based assignments used in various systems. The
machines (shown as squares) have random IDs in the circular ID space. The object is replicated on three machines (shown
as black solid squares). Each single object placement rule determines a different relative placement among objects, which
in turn results in different availability. For each such assignment, we also note the corresponding ideal assignment if
consistent hashing achieved perfect load balancing (PLB).

non-ideal assignments (consistent-hashing-based) systems using similar non-ideal assignments
Chord [36] (Figure 2(a)): ith successor of hash(o)

Multi-hash (Figure 2(b)): 1st successor of hash(o, i) CAN [29], GFS [15], FARSITE [5], RIO [33]
Pastry [31] (Figure 2(c)): machine with the ith closest ID to hash(o)

Glacier [18] (Figure 2(d)): 1st successor of hash(o) + MAXID · (i−1)/k GHT [30], R-CHash [22, 40]
Group (Figure 2(e)): See Section 5.1 Original RAID [28], Coda [25, 34]3

Table 2: Salient object assignments. For the assignments in the first column, we note to which machine the ith FOR of
object o is assigned.

If an object has less then m FORs available, we say the
object fails. A global assignment (or simply assignment)
is a mapping from the kN FORs to the s machines in the
system. An assignment is ideal (in terms of load balance)
if each machine has exactly l = kN/s FORs. The value l
is also called the load of a machine.

For an operation requesting n objects, if not all n ob-
jects are available, the operation may or may not be con-
sidered successful, depending on its tolerance for missing
objects. This paper studies threshold criteria: an operation
is successful if and only if at least t out of the n objects are
available. Here t is an operation-specific value from 1 to n
based on the application semantics.

We need to emphasize that the operation threshold t is
not to be confused with the m in m-out-of-k erasure cod-
ing:

• In erasure coding, a single object is encoded into k
fragments, and we can reconstruct the object from
any m fragments. Moreover, the reconstructed object
is the same regardless of which m fragments are re-
trieved.

• For an operation with a threshold t, it does not recon-
struct the n objects. Rather, the user may be reason-
ably satisfied even if only t objects are retrieved be-
cause of the specific application semantics. Depend-
ing on which t objects are retrieved, the answer to the

3Note that Coda [25] itself does not restrict the assignment from vol-
umes to servers. However, in most Coda deployments [34], system ad-
ministrators use an assignment similar to PTN.

user query may be different. But the user is willing to
accept any of these approximate answers.

Finally, we define the availability of an operation as
the probability that it is successful. We use “number of
nines” (i.e., log

0.1(1 − availability)) to describe avail-
ability. The complement of availability is called unavail-
ability or failure probability. For a given operation, we
use FP (α) to denote the failure probability of a partic-
ular assignment α. When we say that one assignment
α is x nines better than another assignment β, we mean
log

0.1 FP (α) − log
0.1 FP (β) = x. Finally, our availabil-

ity definition currently does not capture possible retries or
the notion of “wait time” before a failed operation can suc-
ceed by retrying. We intend to investigate these aspects in
our future work.

3.2 Classifying Well-Known Assignments
Next, we review popular assignments from the literature,
and then define three ideal assignments.

We focus on well-known assignments based on consis-
tent hashing [22]. In consistent hashing, each machine has
a numerical ID (between 0 and MAXID) obtained by, for
example, pseudo-randomly hashing its own IP address. All
machines are organized into a single ring where the ma-
chine IDs are non-decreasing clockwise along the ring (ex-
cept at the point where the ID space wraps around).

Figure 2 visualizes and Table 2 describes the assign-
ments used in Chord, CAN, Pastry and Glacier. Intu-
itively, in Chord, the object is hashed once and then as-



signed to the k successors of the hash value. In CAN (or
Multi-hash), the object is hashed k times using k differ-
ent hash functions, and assigned to the k immediate succes-
sors of the k hash results.4 Pastry also hashes the object,
but it assigns the object to the machines with the k clos-
est IDs to the hash value. Finally, Glacier hashes the object
and then places the object at k equi-distant points on the ID
ring. Because of the use of consistent hashing, machines
in these assignments may not have exactly the same load;
hence, by definition, the assignments are not ideal. Table 2
also lists other popular assignments that are similar to the
ones discussed above.

Next we define three ideal assignments. RAND is the as-
signment obtained by randomly permuting the Nk FORs
and then assigning the permutation to the machines (l
FORs per machine) sequentially. Note that strictly speak-
ing, RAND is a distribution of assignments. If the ma-
chine IDs and the hashes of the objects in consistent hash-
ing were exactly evenly distributed around the ring, then
Multi-hash would be the same as RAND (Figure 2(b)).
In PTN, we partition objects into sets and then mirror each
set across multiple machines. Specifically, the FORs of l
objects are assigned to machines 1 through k, the FORs of
another l objects are assigned to machines k + 1 through
2k, and so on. If consistent hashing provided perfect load
balancing, then Glacier would be the same as PTN (Fig-
ure 2(d)). This is because all objects whose hashes fall
into the three ID regions (delimited by black solid squares
and their corresponding predecessors) will be placed on the
three black solid squares, and those three machines will not
host any other objects. Finally, in SW (sliding window), the
FORs of l/k objects are assigned to machines 1 through k,
the FORs of another l/k objects are assigned to machines
2 through k + 1, and so on. If consistent hashing provided
perfect load balancing, then Chord and Pastry would
be the same as SW (Figures 2(a) and (c)), because all ob-
jects falling within the ID region between a machine and
its predecessor will be assigned to the same k successors.

Finally, we define the concept of a projected assignment
for a given operation. For an assignment and a given op-
eration requesting n objects, the projected assignment is
the mapping from the nk FORs of the n objects to the ma-
chines. In other words, in the projected assignment, we
ignore objects not requested by the operation. We extend
the definitions of PTN and RAND to projected assignments.
A projected assignment is called PTN if the global assign-
ment is PTN and the nk FORs reside on exactly nk/l ma-
chines. Namely, the n objects should concentrate on as few
machines as possible and obey the PTN rule within those
machines (as in assignment I of Figure 1, where n = 8 and

4Strictly speaking, CAN uses consistent hashing in multiple dimen-
sions instead of a single dimension. Thus we use the term Multi-hash
to describe this assignment.

k = 2).5 Similarly, a projected assignment is called RAND
if the global assignment is RAND and the nk FORs reside
on exactly min(nk, s) machines. Here, RAND spreads the
n objects on as many machines as possible. In Figure 1,
assignments III and IV have the desired spread, but such
well-structured assignments are highly unlikely to occur
under the RAND rule. When the context is clear, we will
not explicitly distinguish an assignment from its projected
assignment.

4 Study of Ideal Assignments

In this section, we investigate the ideal assignments under
independent machine failures. Later, Section 6 will study
the more practical assignments under real failure traces.

4.1 Simulation of Ideal Assignments
We begin our study by using simulation to compare RAND,
PTN and SW. We consider here the case where n = N and
leave the cases for n < N to our later evaluation of practi-
cal assignments. There are six free parameters in our simu-
lation: N , s, k, m, p and t. We have performed a thorough
simulation over the entire parameter space and considered
additional assignments beyond those in Section 3.2, but in
this paper we are able to present only a small subset of our
results (Figure 3). Each of the observations described be-
low extends to all the other parameter settings and assign-
ments with which we experimented. Note that Figure 3 and
other figures in this paper use a relatively large failure prob-
ability p, in order to show the underlying trend with confi-
dence, given the limited duration of our simulations. The
observations and conclusions do not change with smaller
p.

Figure 3 shows that when t = n, PTN has the lowest un-
availability (roughly 0.08) among the three assignments in
the figure. In contrast, when t = n RAND has the highest
unavailability (nearly 1) among the three. Hence, PTN is
the best and RAND is the worst when t = n. As t decreases,
the unavailability of PTN does not change until we are able
to tolerate 300 missing objects (i.e., t/n ≈ 98.7%). The
reason is that in PTN, whenever one object is unavailable,
then the other l − 1 objects on the same set of machines
become unavailable as well (l = 300). For RAND, the un-
availability decreases much faster as we are able to toler-
ate more and more missing objects. The curves for PTN
and RAND cross when t/n ≈ 99.8%, below which point
RAND becomes the best among all assignments while PTN
roughly becomes the worst. This crossing point appears to
be not far from the availability probability for individual
objects, i.e., 1 − pk ≈ 99.9%. When t/n = 99.4%, the
difference between PTN and RAND is already three nines.

5Note that assignments II and III fail to have the PTN rule and the
desired concentration, respectively.
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Figure 3: Unavailability of ideal assignments for an op-
eration that requests all 24000 objects stored on 240 ma-
chines in the system. The number of machines is set to
match our PlanetLab deployment. Each object has 3 repli-
cas, and each machine fails with probability 0.1. The x-
axis is the fraction (t/n) of the 24000 objects that needs to
be available for the operation to succeed.

The intuition behind the above results is that each as-
signment has a certain amount of “inter-object correlation”.
Because each machine may hold FORs of multiple objects,
these objects become correlated even if machine failures
are independent. Intuitively, PTN is the assignment that
maximizes inter-object correlation, while RAND minimizes
it. When t is very close to n, larger inter-object correlation
is better because it does not help for a small number of ob-
jects to be available by themselves. On the other hand, if
t is not close to n, smaller inter-object correlation is bet-
ter because it decreases the chance that many objects fail
together.

It is important to note that the crossing between PTN and
RAND occurs very close to 100%. As we mentioned earlier,
in all our experiments, the crossing point occurs when t/n
is near the availability of individual objects. As long as
this availability is reasonably high, the crossing point will
be close to 100%. This observation has significant practical
importance. Namely, despite the fact that t can range from
1 to n, we can largely classify operations into “strict” op-
erations and “loose” operations, as follows: An operation
is strict if it cannot tolerate any missing objects, otherwise
it is loose. With practical parameters, loose operations will
most likely fall into the region where RAND is the best. On
the other hand, PTN is best for strict operations.

4.2 Analytical Study of Ideal Assignments
The above simulation study shows that among the assign-
ments we simulated, PTN and RAND are each the best in
two different regions. But is this because we missed out
on some other assignments? Do we need to consider addi-
tional assignments? Definitive answers to these questions
are not readily obtained experimentally, because there are
exponentially many possible assignments.

We have separately obtained analytical results [44] on
optimal assignments under some specific t values and as-
suming failure independence. Because these results are
only for restricted parameter settings and are not the con-
tribution of this paper, following we provide only a brief
summary of the analytical results from [44]:6

• For t = n (i.e., strict operations), PTN is the best (to
within 0.25 nines) and RAND is the worst (to within
0.70 nines) among all possible ideal assignments.

• For t = l + 1 and n = N (or t = 1 and n < N ),
PTN is the worst and RAND is the best (to within 0.31
nines) among all possible ideal assignments.

• It is impossible to achieve the best of both PTN and
RAND.

The analysis in [44] also finds a rigorous mathematical def-
inition for inter-object correlation, which confirms our ear-
lier intuition.

5 Designs to Approximate Optimal Assign-
ments

Our study in the previous section shows that PTN and
RAND are (near) optimal for strict and loose operations, re-
spectively. This motivates the exploration of practical de-
signs that approximate these ideal assignments when ob-
jects and machines may be added or deleted on the fly. Our
goal is to approximate not only PTN and RAND, but also
their projected assignments for n < N . We have also
explored optimizing solutions for systems where strict and
loose operations may coexist. For lack of space, we defer
the solutions to [43]. We refer the reader back to Table 2
for definitions of various non-ideal assignments.
RAND is already approximated by Multi-hash.

Moreover, for any operation requesting n objects,
Multi-hash is likely to spread the nk FORs evenly on
the ID ring. This means that the projected assignment will
also approximate RAND. Thus, we do not need any further
design in order to approximate RAND.

For PTN, RAID [28] and Coda [34, 25] achieve PTN by
considering only a static set of machines (or disks in the
case of RAID). Adding or deleting machines requires hu-
man intervention. Glacier handles the dynamic case,
and it would have achieved PTN if consistent hashing pro-
vided perfect load balancing. However, we will see later
that in practice, it behaves similar to Chord (and hence
far from PTN). Therefore, we propose a Group DHT (or
Group in short) design that better approximates PTN. Re-
gardless of whether we use Glacier, Chord, Pastry

6Because it only wastes resources for one machine to host multiple
FORs of the same object, we consider only assignments where each ma-
chine has ≤ 1 FOR of any given object. The only exception is RAND,
where some assignments in the distribution may violate this property.



or Group, their projected assignments will not approxi-
mate PTN when n < N . Therefore, we further propose
designs to ensure that the projected assignments approxi-
mate PTN for n < N .

Our designs are compatible with the standard DHT rout-
ing mechanisms for locating objects. It is worth pointing
out that when n is large, DHT routing will be inefficient.
For those cases, multicast techniques such as in PIER [20]
can be used to retrieve the objects. Our designs are compat-
ible with those techniques as well. Finally, for cases where
a centralized directory server is feasible (e.g., in a LAN
cluster), neither DHT routing nor multicast techniques are
required for our design.

5.1 Approximating PTN for n = N

This section describes how we approach PTN with Group
DHT. The design itself is not the main contribution or focus
of this paper – thus we will provide only a brief description,
and leave the analysis of Group DHT’s performance, as
well as discussions of security issues, to [43].

Basic Group DHT design. In Group DHT (or Group),
each DHT node is a group of exactly k machines (Fig-
ure 2(e) provides an example for k = 3).7 We assign the k
FORs of an object to the k machines in the successor group
of the object’s hash value. Here we assume that all objects
have the same number of FORs, and a more general design
is part of our future work. There is a small number r (e.g.,
r = s/1000) of “rendezvous” machines in the system that
help us form groups.

For machine join, it is crucial to observe that a machine
joins the system for two separate purposes: using the DHT
(as a client) and providing service (as a server). A machine
can always use the DHT by utilizing some other existing
machine (that is already in the DHT) as a proxy, even be-
fore itself becomes part of the ring. It must be able to find
such a proxy because it needs to know a bootstrap point to
join the DHT.

In order to provide service to other machines, a machine
first registers with a random rendezvous. If there are less
than k new machines registered with the rendezvous at this
point, the new machine simply waits. Otherwise, the k new
machines form a group, and join the DHT ring. During the
delayed join, the new machine can still use the DHT as a
client – it simply cannot contribute. The only factor we
need to consider then is whether there will be a large frac-
tion of machines that cannot contribute. With 1/1000 of
the machines serving as rendezvous machines, each with at
most k − 1 waiting, the fraction of the machines that are
waiting is at most (k − 1)/1000. Given that k is a small
number such as 5, this means that only 0.4% of the ma-

7In this section, we use node to denote a logical node in the DHT and
machine to denote one of the s physical machines.

chines in the system are not being utilized, which is negli-
gible.

When a machine in a group fails or departs, the group
has two options. The first option would be to dismiss itself
entirely, and then have the k − 1 remaining machines join
the DHT again. This may result in thrashing because the
leave/join rate is artificially inflated by a factor of k. The
second option would be for the group to wait, and hope to
recruit a new machine so that it can recover to k machines.
However, doing so causes some objects to have fewer than
k FORs for possibly an extended period of time.

In our design, we use a mixture of both options. When
a group loses a member, it registers with a random ren-
dezvous. If the rendezvous has a new machine registered
with it, the group will recruit the new machine as its mem-
ber. If the group is not able to recruit a new machine before
the total number of members drops from k − 1 to k − 2,
it dismisses itself. The threshold of k − 2 is tunable, and
a smaller value will decrease the join/leave rate at the cost
of having fewer replicas on average. However, our study
shows that even a threshold of k − 2 yields a near opti-
mal join/leave rate, and hence we always use k − 2 as the
threshold. Finally, the group will also dismiss itself if it has
waited longer than a certain threshold amount of time.

Rendezvous. It is important to remember that the ren-
dezvous machines are contacted only upon machine join
and leave, and not during object retrieval/lookup. In our
system, we intend to maintain roughly r = s/1000 ren-
dezvous in the group DHT. This r is well above the number
of machines needed to sustain the load incurred by machine
join/leave under practical settings, and yet small enough to
keep the fraction of un-utilized machines negligible.

We use the following design to dynamically in-
crease/decrease r with s. Each group independently be-
comes a rendezvous with probability of 1/1000. These ren-
dezvous then use the Redir [24] protocol to form a smaller
rendezvous DHT. To contact a random rendezvous, a ma-
chine simply chooses a random key and searches for the
successor of the key in the smaller rendezvous DHT. As
with other groups in the system, rendezvous groups may
fail or leave. Fortunately, the states maintained by ren-
dezvous groups are soft states, and we simply use periodic
refresh.

5.2 Approximating PTN for n < N

Group approximates a global PTN assignment. However,
for an operation requesting n < N objects, the corre-
sponding projected assignment will not be PTN. This is be-
cause the hash function spreads the n objects around the
ring, whereas the projected PTN assignment requires the
n objects to occupy as few machines as possible. Next
we present designs for approximating projected PTN, us-
ing known designs for supporting range queries.



Defining a global ordering. To ensure that the projected
assignments approximate PTN, we first define an ordering
among all the objects. The ordering should be such that
most operations roughly request a “range” of objects ac-
cording to the ordering. Note that the operations need not
be real range queries. In many applications, objects are se-
mantically organized into a tree and operations tends to re-
quest entire subtrees. For example, in network monitoring
systems, users tends to ask aggregation questions regard-
ing some particular regions in the network. In the case of
file systems, if a user requests one block in a file, she will
likely request the entire file. Similarly, files in the same
directories are likely to be requested together. For these
hierarchical objects, we can easily use the full path from
the root to the object as its name, and the order is directly
defined alphabetically by object names.

Placing objects on the ID ring according to the order.
After defining a global ordering among the objects, we use
an order-preserving hash function [14] to generate the IDs
of the objects. Compared to a standard hash function, for a
given ordering “<” among the objects, an order-preserving
hash function hashorder() has the extra guarantee that if
o1 < o2, then hashorder(o1) < hashorder(o2). If we
have some knowledge regarding the distribution of the ob-
ject names (e.g., when the objects are names in a telephone
directory), then it is possible [14] to make the hash func-
tion uniform as well. The “uniform” guarantee is important
because it ensures the load balancing achieved by consis-
tent hashing. Otherwise some ID regions may have more
objects than others.

For cases where a uniform order-preserving function is
not possible to construct, we further adopt designs [7, 23]
for supporting range queries in DHTs. In particular, MOAT
uses the item-balancing DHT [23] design to achieve dy-
namic load balancing. Item-balancing DHT is the same as
Chord except that each node periodically contacts a ran-
dom other node in the system to adjust load (without dis-
turbing the order).

Finally, there are also cases where a single order cannot
be defined over the objects. We are currently investigating
how to address those cases using database clustering algo-
rithms [46].

6 Study of Practical Assignments

In this section, we use our MOAT prototype, real fail-
ure traces, and real workloads to study consistent hashing-
based assignments. In particular, we will answer the fol-
lowing two questions that were not answered in Section 4:
Which assignment is the best under the effects of imperfect
load balancing in consistent hashing, and also under the ef-
fects of machine failure correlation? How do the results
change from our earlier study on ideal assignments?

For lack of space, we will consider in this section only
the scenario where each object has 3 replicas, unless oth-
erwise noted. We have also performed extensive experi-
ments for general erasure coding with different m and k
values—the results we obtain are qualitatively similar and
all our claims in this section still hold. In the following, we
will first describe our MOAT prototype, the failure traces
and the workload, and then thoroughly study consistent
hashing-based assignments.

6.1 MOAT Implementation
We have incorporated the designs in the previous sec-
tion into a read/write wide-area distributed storage system
called MOAT. MOAT is similar to PAST [32], except that it
supports all the consistent-hashing-based assignments dis-
cussed in this paper. Specifically, it supports Glacier,
Chord, Group and Multi-hash.8 For Group, unless
otherwise mentioned, we mean Group with the ordering
technique from Section 5.2. Other assignments do not use
the ordering technique. MOAT currently only supports op-
timistic (best effort) consistency. We have implemented
MOAT by modifying FreePastry 1.3.2 [13]. MOAT is writ-
ten in Java 1.4, and uses nonblocking I/O and Java serial-
ization for communication.

Despite the fact that we support DHT routing in MOAT,
as we mentioned in Section 5, DHT routing will not be
used if either a centralized server is feasible or when the
number of objects requested by an operation is large. To
isolate DHT routing failures (i.e., failures by the DHT to
locate an object) from object failures and to better focus on
the effects of assignments, in all our experiments we define
availability as the probability that some live, accessible ma-
chine in the system has that object.

6.2 Faultloads and Workloads
A faultload is, intuitively, a failure workload, and describes
when failures occur and on which machines. We consider
two different faultloads intended to capture two different
failure scenarios. The first faultload, NetModel, is a syn-
thetic one and aims to capture short-term machine unavail-
ability caused by local network failures that partition the
local machine from the rest of the network, rendering it in-
accessible. We use the network failure model from [10]
with a MTTF of 11571 seconds, MTTR of 609 seconds,
and a failure probability of p = 0.05. The MTTR is di-
rectly from [10], while the MTTF is calculated from our
choice of p.

The second faultload, PLtrace, is a pair-wise ping
trace [3] among over 200 PlanetLab machines from April
2004 to November 2004. Because of the relatively large

8In the remainder of the paper, we will not explicitly discuss Pastry
as it is similar to Chord for the purposes of this paper.



(15 minutes) sampling interval, PLtrace mainly captures
machine failures rather than network failures. This trace
enables us to study the effects of failure correlation, FOR
repair (i.e., generating new FORs to compensate for lost
FORs due to machine failure), as well as heterogeneous
machine failure probabilities. In our evaluation, we con-
sider a machine to have failed if none of the other machines
can ping it. Further details about how we process the trace
can be found in [43].

We also use two real workloads for user operations, the
TPC-H benchmark and a query log from IrisLog [2]. Our
two workloads are intended to represent the two classes of
applications in Section 2. Note that TPC-H is not actually a
benchmark for image databases. However, it has a similar
data-mining nature and most queries touch a large number
of objects (e.g., several touch over 5% of the database).

In our TPC-H workload, we use an 800GB database (i.e.,
a TPC-H scaling factor of 8000) and 240 MOAT machines.
Because of our 3-fold replication overhead, the overall
database size is 2.4TB.9 Each object is roughly 33MB and
contains around 29,000 consecutive tuples in the relational
tables. Note that we intentionally use a relatively large ob-
ject size to take into account the potential effects of erasure
coding across smaller objects (recall Section 2.2). Using
smaller objects sizes will only further increase the differ-
ences among the assignments and magnify the importance
of using the appropriate assignments. The ordering among
the objects for TPC-H is defined to be the ordering deter-
mined by (table name, tuple name), where tuple
name is the primary key of the first tuple in the object.
Note that most queries in TPC-H are not actually range
queries on the primary key. So this enables us to study
the effect of a non-ideal ordering among objects.

In our IrisLog workload, the query trace contains 6,467
queries processed by the system from 11/2003 to 8/2004.
IrisLog maintains 3530 objects that correspond to the load,
bandwidth, and other information about PlanetLab ma-
chines. The number of objects requested by each query
ranges from 10 to 3530, with an average of 704. The ob-
jects in IrisLog form a logical tree based on domain names
of the machines being monitored. The ordering among the
objects is simply defined according to their full path from
the root of the tree. In contrast to TPC-H, the operations
in IrisLog request contiguous ranges of objects along the
ordering.

6.3 Effects of Consistent Hashing

We perform this set of experiments by deploying the 240
MOAT machines on 80 PlanetLab machines and using the
network failure faultload of NetModel. The machines span

9For comparison, industrial vendors use a 10 TB database with TPC-H
in clusters with 160 machines [4].
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Figure 4: Unavailability of an operation requesting all
24,000 objects in the system, under the NetModel faultload.
t/n is the fraction of objects that needs to be available for
the operation to succeed.

North America, Europe and Asia, and include both aca-
demic and non-academic sites. Each machine emulates lo-
cally whether it is experiencing a network failure according
to NetModel, and logs the availability of its local objects.
We then measure the availability of different operations by
collecting and analyzing the logs. During the experiments,
there were no failures caused by PlanetLab itself, and all
failures experienced by the system were emulated failures.
For Group, we use only a single rendezvous node.

Figure 4 plots the unavailability of a single operation re-
questing all 24,000 objects in MOAT under Multi-hash,
Glacier, Chord and Group. We focus on t values that
are close to n, to highlight the crossing points between as-
signments. We also obtained three curves (via simulation
as in Section 4.1) for their counterpart ideal assignments
(i.e., PTN, SW, and RAND). For clarity, however, we omit
the SW curve. The general trends indicate that our ear-
lier claims about the optimality of PTN and RAND hold
for Group and Multi-hash. Furthermore, the crossing
point between PTN and RAND is rather close to n.

The same conclusion holds for Figure 5, which plots
the unavailability of a much smaller “range” operation (re-
questing only 600 objects). The large difference among
different assignments shows that object assignments have
dramatic availability impact even on operations that request
a relatively small number of objects. The 600 objects re-
quested only comprise of 2.5% of the 24,000 objects in the
system. It is also easy to observe that for n < N , the
order-preserving hash function (in Group with order) is
necessary to ensure good availability. Next we look at two
deeper aspects of these plots.

Does consistent hashing increase or decrease avail-
ability? In Figure 4, Group is close to PTN, which
means it well-approximates the optimal assignment of
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Figure 5: Unavailability of a smaller operation that re-
quests only 600 objects (among the 24,000 object in the
system), under the NetModel faultload. Again, t/n is the
fraction of the 600 objects that needs to be available for
the operation to succeed.

PTN. Multi-hash has the same trend as RAND but it
does depart from RAND significantly. The imperfect load
balancing in consistent hashing decreases the slope of the
Multi-hash curve (as compared to RAND), and makes
it slightly closer to PTN. This means that the unavailability
for loose operations is increased, while the unavailability
for strict operations is decreased. We also observe sim-
ilar effects of consistent hashing when comparing Chord
against SW, and Group against PTN (except that the effects
are much smaller).

We pointed out in Section 4 that the key difference be-
tween PTN and RAND is that PTN maximizes the inter-
object correlation while RAND minimizes the inter-object
correlation. Imperfect load balancing (as in Group and
Multi-hash) increases such inter-object correlation. As
a result, consistent hashing makes all curves closer to PTN.

We argue that this effect from imperfect load balancing
in consistent hashing should be explicitly taken into ac-
count in systems design, because the difference between
RAND and Multi-hash can easily reach multiple nines.
For example, when t/n = 99.8% in Figure 4, the unavail-
ability under Multi-hash is 1.12 × 10−3, while the un-
availability under RAND is only 1.67× 10−5 (not shown in
the graph).

Does Glacier approximate PTN well? As with
Group, the counterpart ideal assignment for Glacier is
PTN, the best assignment for strict operations. However,
Figure 4 clearly shows that Glacier is much closer to
Chord than to Group when t/n is close to 1.0. This can
be explained by carefully investigating the inter-object cor-
relation in these assignments and counting the number of
machines intersecting with any given machine. Two ma-
chines intersect if they host FORs from the same objects.

A smaller number of intersecting machines (as in PTN)
roughly indicates larger inter-object correlation.

In Chord, the total number of intersecting machines is
roughly 2(k−1), where k is the number of replicas or frag-
ments per object. In Group, this number is k. For Glacier,
suppose that the given machine is responsible for ID region
(v1, v2). The next set of FORs for the objects in this region
will fall within (v1 + MAXID/k, v2 + MAXID/k). Unless
this region exactly falls within a machine boundary, it will
be split across two machines. Following this logic, the total
number of intersecting machines is roughly 2(k − 1). This
explains why Glacier is closer to Chord than to Group
when t/n is close to 1.0.

When t = n in Figure 4, the unavailability of Chord
(0.027) and Glacier (0.034) is about 4 times that of
Group (0.0074). The advantage of Group becomes larger
when k increases. We observe in our experiments that
when using the NetModel faultload with p = 0.2 and 12-
out-of-24 erasure coding (i.e., m = 12 and k = 24), the un-
availability of Chord and Glacier is 0.0117 and 0.0147,
respectively. On the other hand, Group has an unavailabil-
ity of only 0.00067 – roughly a 20-fold advantage. In our
other experiments we also consistently observe that the dif-
ference between Group and Glacier is about k times.

6.4 Effects of Failure Correlation
We next use our second faultload, PLtrace, to study the ef-
fects of correlated machine failures (together with consis-
tent hashing). Given that we want to obtain a fair compari-
son across different assignments, we need the system to ob-
serve only failures injected according to the traces and not
the (non-deterministic) failures on the PlanetLab. This is
rather unlikely using our live PlanetLab deployment given
our eight month long trace and the required duration of the
experiments.

Simulation validation via real deployment. To solve this
problem, we use a mixture of real deployment and event-
driven simulation for PLtrace. Using trace compression,
we are able to inject and replay a one-week portion of
PLtrace into our MOAT deployment on the PlanetLab in
around 12 hours. To observe a sufficient number of fail-
ures, we intentionally choose a week that has a relatively
large number of failures. These 12-hour experiments are
repeated many times (around 20 times) to obtain two runs
(one for Group and one for Multi-hash) without non-
deterministic failures.

These two successful runs then serve as validation points
for our event-driven simulator. We feed the same one-week
trace into our event-driven simulator and then compare the
results to validate its accuracy (Figure 6). It is easy to see
that the two simulation curves almost exactly match the
two curves from the PlanetLab deployment, which means
our simulator has satisfactory accuracy. For space reasons,
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Figure 7: Effects of failure correlation: The availability
of an operation that requests all 24,000 objects in the sys-
tem. The legend “(c)” means that the curve is for PLtrace
with correlated failures, while “(i)” means that the curve
is obtained assuming independent failures.

we omit other validation results. We next inject the entire
PLtrace into our simulator.

Does failure correlation increase or decrease availabil-
ity? Figure 7 plots the unavailability of a single operation
under PLtrace for Glacier, Multi-hash, and Group.
For clarity, we did not plot the curve for Chord, which
is close to Glacier. The data (not included in Figure 7)
show that for all three settings, the average unavailability
of individual objects is around 10−5. We then perform a
separate simulation assuming that each machine fails inde-
pendently with a failure probability of 0.0215, a value cho-
sen such that 0.0215k ≈ 10−5 (recall k = 3). We include
the corresponding simulation curves (for the three assign-
ments) under this independent failure model in Figure 7 as
well. For clarity, we omit the curve for Glacier under
independent failures.

Comparing the two sets of curves reveals that ma-

chine failure correlation makes all the curves move toward
Group and away from Multi-hash (i.e., decreasing the
slope of the curves). The effect is the most prominent when
we compare Multi-hash(c) and Multi-hash(i). In
retrospect, this phenomenon is easy to explain. The rea-
son is exactly the same as the effect of imperfect load bal-
ancing discussed in Section 6.3. Namely, machine failure
correlation increases the inter-object correlation of all as-
signments. This also provides intuition regarding why our
earlier conclusions (assuming failure independence) on the
optimality of PTN and RAND hold even under correlated
failures. Namely, even though all assignments become
closer to PTN under correlated failures, their relative rank-
ing will not change because the extra “amount” of correla-
tion added is the same for all assignments.

6.5 Overall Availability for Real Workloads
Up to this point, we have presented results only for the
availability of individual operations. This section inves-
tigates the overall availability of all operations in our two
real workloads, via simulation driven by PLtrace. Because
the queries in the workloads are of different sizes, here we
assume that they have the same t/n values. These results
provide a realistic view of how much availability improve-
ment we can achieve by using appropriate assignments.

The TPC-H benchmark consists of 22 different queries
on a given database. To evaluate their availability in
our simulator, we first instantiate the given database as a
MySQL database and use it to process the queries. We then
record the set of tuples touched by each query. Finally, we
simulate a replicated and distributed TPC-H database and
use the trace to determine the availability of each query.

We plot only two assignments because our results so far
have already shown that Group and Multi-hash are
each near-optimal in different regions. In both Figure 8(a)
and (b), we see that when t = n, Group outperforms
Multi-hash by almost 4 nines. On the other hand, for
t/n = 90%, Multi-hash achieves at least 2 more nines
than Group; this difference becomes even larger when
t/n < 90%. The absolute availability achieved under
the two workloads are different largely due to the different
sizes of the operations. In TPC-H, the operations request
more objects than in the IrisLog trace. Finally, the crossing
between Group and RAND again occurs when t is quite
close to n. This indicates that from a practical perspec-
tive, we may consider only whether an operation is able to
tolerate missing objects, rather than its specific t.

7 Related Work

To the best of our knowledge, this paper is the first to
study the effects of object assignment on multi-object op-
eration availability. On the surface, object assignment is
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Figure 8: Overall availability under real workloads and the PLtrace faultload.

related to replica placement. Replica placement has been
extensively studied for both performance and availability.
Replica placement research for availability [8, 12, 45] typ-
ically considers the availability of individual objects rather
than multi-object operations. These previous results on
replica placement cannot be easily extended to multi-object
operations because the two problems are fundamentally
different. For example, the replica placement problem goes
away if all the machines are identical, but as our results
show, assignment still affects availability even when all the
machines are identical.

Despite the fact that previous systems [5, 15, 22, 29, 31,
36, 39] use different assignments for objects, all systems
except Chain Replication [39] study only the performance
(rather than the availability) of object assignments (if the
effects of assignment are explored at all). Chain replica-
tion [39] investigates the availability of individual objects
in LAN environments. In their setting, the availability of
individual objects is influenced by the different data re-
pair times for different assignments. For example, after a
machine failure, in order to restore (repair) the replication
degree for the objects on that failed machine, it is faster
to create new replicas of these objects on many different
target machines in parallel. As a result, more random-
ized assignments such as Multi-hash are preferable to
more structured assignments such as Group. Compared
to Chain Replication, this paper studies the effects of as-
signments on multi-object operations. The findings from
Chain Replication and this paper are orthogonal. For ex-
ample, for strict operations, our study shows that Group
yields much higher availability than Multi-hash. When
restoring lost replicas, we can still use the pattern as sug-
gested in Chain Replication, and temporarily restore the
replicas of the objects on many different machines. The
object replicas can then be lazily moved to the appropriate
places as determined by the desired assignment (e.g., by
Group). In this way, all assignments will enjoy the same
minimum repair time.

As in our Group design, the concept of grouping nodes
is also used in Viceroy [27], but for a different purpose of
bounding the in-degrees of nodes. Because of the different

purpose, the size of each group in Viceroy can vary be-
tween c1 log s to c2 log s, where c1 and c2 are constants.
Viceroy maintains the groups simply by splitting a group if
it is too large, or merging a group with its adjacent group
if it is too small. In our design, the group sizes have less
variance, and we achieve this by the use of rendezvous.

This paper studies the effects of object assignments ex-
perimentally. In [44], we have also obtained initial the-
oretical optimality results under some specific parameter
settings (namely, when t = n and t = l + 1). Using exper-
imental methods, this paper answers the object assignment
question for all t values. It also investigates the effects of
two real-world factors—failure correlation and imperfect
load balancing—that were not considered in [44].

8 Conclusion

This paper is the first to reveal the importance of object
assignment to the availability of multi-object operations.
Without affecting the availability of individual objects or
resource usage, appropriate assignments can easily im-
prove the availability of multi-object operations by mul-
tiple nines. We show that under realistic parameters, if
an operation cannot tolerate missing objects, then PTN is
the best assignment while RAND is the worst. Otherwise
RAND is the best while PTN is the worst. Designs to ap-
proximate these assignments, Multi-hash and Group,
respectively, have been implemented in MOAT and eval-
uated on the PlanetLab. Our results show differences of
2–4 nines between Group and Multi-hash for both an
IrisLog query trace and the TPC-H benchmark.
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