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ABSTRACT
This paper considers the problem of computing general commuta-
tive and associative aggregate functions (such as SUM) over dis-
tributed inputs held by nodes in a distributed system, while tolerat-
ing failures. Specifically, there are N nodes in the system, and the
topology among them is modeled as a general undirected graph.
Whenever a node sends a message, the message is received by all
of its neighbors in the graph. Each node has an input, and the goal
is for a special root node (e.g., the base station in wireless sensor
networks or the gateway node in wireless ad hoc networks) to learn
a certain commutative and associate aggregate of all these inputs.
All nodes in the system except the root node may experience crash
failures, with the total number of edges incidental to failed nodes
being upper bounded by f . The timing model is synchronous where
protocols proceed in rounds. Within such a context, we focus on the
following question:

Under any given constraint on time complexity, what is the
lowest communication complexity, in terms of the number
of bits sent (i.e., locally broadcast) by each node, needed
for computing general commutative and associate aggregate
functions?

This work, for the first time, reduces the gap between the upper
bound and the lower bound for the above question from polyno-
mial to polylog. To achieve this reduction, we present significant
improvements over both the existing upper bounds and the existing
lower bounds on the problem.

1. INTRODUCTION
The problem of fault-tolerant aggregation. In recent years, there
has been a line of research (e.g., [1, 4–6, 8, 9, 13, 14, 16, 17]) on
computing aggregates over distributed inputs held by nodes in a
distributed system. This paper focuses on the following specif-
ic fault-tolerant version of the problem (formally defined in Sec-
tion 2): There are N nodes in the system, and the topology among
them is modeled as a general undirected graph. Whenever a node
sends a message, the message is received by all of its neighbors in

the graph. (In other words, each “send” is a local broadcast.) Each
node has a non-negative integer input that is no larger than some
polynomial of N . The goal is for a special root node to compute a
certain aggregate function over all these inputs. For example, the
root can be the base station in wireless sensor networks or the gate-
way node in wireless ad hoc networks. We will focus on the SUM
function first, and then trivially generalize to arbitrary commutative
and associative aggregate functions (or CAAFs in short — see def-
inition in Section 2). All nodes in the system except the root may
experience crash failures. For convenience, we say that an edge
fails, iff at least one of its end points experiences a crash failure.
We use f to denote an upper bound on the total number of edge
failures. We consider a synchronous timing model where protocols
proceed in rounds.

We consider randomized protocols for computing SUM (or gen-
eral CAAFs) that always generate a correct result. A sum result is
correct [1] iff it falls between the sum of the inputs of all nodes and
the sum of the inputs of all nodes that are still alive and are not par-
titioned from the root at the end of the protocol’s execution.1 We
similarly define result correctness for general CAAFs. The time
complexity (TC) of a protocol is defined to be the number (denoted
as b) of flooding rounds needed for the protocol to terminate. Here
each flooding round consists of d rounds where d is the diameter of
the network. The communication complexity (CC) of a protocol is
the maximum number of bits that a node needs to send (i.e., locally
broadcast) in the entire execution of the protocol. Here the maxi-
mum is taken across all nodes in the system. Given such a context,
this paper focuses on the following question:

Under any given constraint on TC, what is the lowest CC
needed for computing SUM (or general CAAFs)?

Existing lower/upper bounds. The only known non-trivial lower
bound so far on the CC of SUM protocols, in the fault-tolerant set-
ting, was from our own previous work [4]. Specifically, there we

1For example, if a node fails or gets partitioned from the root (due
to the failure of other nodes) right before the SUM protocol start-
s, incorporating the node’s input into the final sum would not be
possible.
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Figure 1: Summary of results on the SUM problem. Here b is the time complexity, and f is an upper bound on the total number of
edges incident to failed nodes. Since the communication complexity depends on three parameters b, f , and N , the two-dimensional
curves here are for illustration purposes only. Note that O(( f
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proved that the CC is lower bounded by Ω( f
b2 log b

).2 This lower
bound indicates that the CC might be able to decrease polynomially
with the TC (i.e., with b). There have been only a few upper bound-
s on the problem. Well-known tree-aggregation protocols [12] for
computing SUM cannot tolerate failures. A brute-force SUM proto-
col, which has every node flood its id together with its value to the
whole network, can tolerate arbitrary number of failures, while in-
curring O(1) TC and O(N logN) CC. In comparison, under such
TC, the current lower bound of Ω( f

b2 log b
) on CC is only Ω(f).

There is also a folklore SUM protocol that tolerates failures by re-
peatedly invoking the naive tree-aggregation protocol until it expe-
riences a failure-free run. This incurs O(f) TC and O(f logN)
CC. Under such TC, the current lower bound of Ω( f

b2 log b
) on CC

is Ω( 1
f log f

). To summarize, the two fault-tolerant SUM protocols
here both have fixed TC, and preclude the possibility of trading off
TC with CC. Furthermore, even under that fixed TC, their CC is
still a polynomial factor away from the lower bound (Figure 1).

Researchers have also studied the SUM problem when bounded
errors are allowed in the final answer (e.g., [1, 4, 5, 8, 13, 14]), in
either fault-tolerant or failure-free setting. Those results and their
approaches are less related to this work. Nevertheless even there,
in the fault-tolerant setting, a polynomial gap exists between the
upper bound and lower bound as long as b ≥ 2 [4].

For protocols that can compute general CAAFs, obviously ex-
isting lower bounds on SUM protocols directly carry over, since
those protocols need to at least be able to compute SUM. It hap-
pens that the two existing (zero-error) SUM upper bound protocols
work, without modification, for general CAAFs as well. We are not
aware of any better lower/upper bounds on zero-error protocols for
general CAAFs.

There have also been research efforts (e.g., [6,9,16,17]) on com-
puting aggregate functions (such as SELECTION) that are not CAAF-
s. But none of these efforts consider failures. Finally, some re-
searchers (e.g., [10]) have studied the token dissemination problem
in dynamic networks. In comparison, this paper considers i) the
aggregation problem where the “tokens” can be aggregated, and ii)
node failures in static networks. With these differences, their tech-
niques/results have limited relevance to our setting.

Our results. This work reduces the gap between the upper and
lower bound for the above SUM problem from polynomial to poly-
log, over the entire time complexity spectrum. Improvements over
both the existing upper bound and lower bound turn out to be nec-
essary to achieve this significant reduction. Specifically, we present
a novel upper bound of O( f

b
log2N + log2N) as well as a novel

2The model in [4] slightly differs from the model in this paper. But
the results there can still be trivially adapted to this paper. Such
trivial adaptation will be rigorously described in Appendix D.2.

lower bound of Ω( f
b log b

+ logN
log b

), for the CC of SUM protocol-
s whose TC is within b flooding rounds (Figure 1)3. Note that our
upper bound is at most log2N log b factor away from our improved
lower bound.

Our upper bound protocol also, for the first time, allows a tunable
tradeoff between CC and TC where the CC can decrease polyno-
mially with the TC. Using the standard doubling trick, Appendix A
further shows that the protocol can be easily extended to settings
with unknown f , while only increasing the CC by a logN fac-
tor. Doing so will achieve a property similar to early termination
— namely, the overhead of the protocol will automatically vary
depending on the actual number of failures occurred during its ex-
ecution.

Finally, same as some existing SUM protocols, our SUM proto-
col and its guarantees trivially generalizes to arbitrary CAAFs as
well. This gives an O( f

b
log2N + log2N) upper bound on gener-

al CAAFs. By our lower bound, within polylog factors, this upper
bound is the best that one can hope for.

Our main techniques. Our upper bound is non-trivial and involves
the synthesis of two novel building blocks:

• We first propose a novel deterministic aggregation protocol
AGG, parameterized by t ≥ 0, with TC of O(1) flooding
rounds and CC of O((t + 1) logN) bits. If the actual num-
ber of edge failures is no more than t, AGG always generates
a correct result. Note that setting t = f directly gives us
O(1) TC and O(f logN) CC, which is already much bet-
ter than the two existing SUM protocols mentioned earlier.
The key technique in AGG is to take speculative actions to
save time, instead of waiting for failures to be detected and
then falling back to a second plan. We further carefully de-
sign a distributed mechanism to determine which speculative
actions’ effects should be retained or discarded, while using
only local information.

• If the number of edge failures exceeds t, AGG may unknow-
ingly generates a wrong result. We hence design a novel
deterministic distributed verification protocol VERI, which
aims to tell whether AGG’s result is correct. VERI is also pa-
rameterized by t and incurs O(1) TC and O((t + 1) logN)
CC. The key technique in VERI is that we allow it to have
one-sided error. Specifically, we allow VERI to sometimes

3We have actually proved an upper bound of
O(( f

b
logN + logN) ·min(b, f, logN)). But for clarity,

this paper uses the simpler form ofO( f
b

log2N + log2N) in most
places. The main novelty in our lower bound is the f

b log b
term.

The logN
log b

term comes, in a relatively straightforward way, from
applying the results in [7] to the output domain size of Ω(N).



N number of nodes in the system b SUM protocol’s TC, in terms of flooding rounds
n size of two-party problems d diameter of the topology G
f upper bound on the number of edge failures c diameter of the topology never exceeds cd due to failures
t parameter in AGG and VERI l a node’s level in the aggregation tree

Table 1: Key notations.

err when AGG does not err. VERI also employs a similar dis-
tributed mechanism to the one in AGG to avoid the need for
global information in its execution.

Our upper bound protocol is eventually obtained by executing mul-
tiple pairs of AGG and VERI in a proper way.

Our new lower bound builds upon our previous lower bound [4],
which was obtained via information cost arguments. To obtain this
new result, we first introduce a new two-party problem EQUALI-
TYCP, and then leverage a strong result on the Sperner capacity of
general directed graphs [3] (instead of relying on information cost
arguments). The possibility of leveraging the Sperner capacity of
the cyclic q-gon [2] was hinted in a single footnote, but without
any further details or any final result, in our previous paper [4].
This paper not only presents the specific lower bound obtained via
that approach, but also slightly strengthens that approach — The
approach in this paper yields a slightly better constant (specifically
in Lemma 11) than the originally hinted approach.

2. MODEL AND DEFINITIONS
Commutative and associative aggregate functions. A binary op-
erator � is commutative and associative if for all operands o1, o2,
and o3, we have o1�o2 = o2�o1 and (o1�o2)�o3 = o1�(o2�o3). A
functionF is called a commutative and associative aggregate func-
tion, or CAAF in short, if i) there exists a commutative and associa-
tive binary operator � such thatF(o1, o2, ..., oN ) = o1�o2�...�oN ,
and ii) the domain size of oi1 � oi2 � ... � oik is at most polynomial
with respect to N , for all 1 ≤ k ≤ N where i1 through ik are
arbitrary distinct indices. The second requirement stems from the
“aggregate” nature of the function — “aggregating” oi1 through
oik should generate a concise output. CAAF covers a wide range
of common aggregate functions such as SUM and COUNT. Many
other aggregate functions such as AVERAGE, MEDIAN, and SE-
LECTION are related to CAAFs. For example, it is known [16] that
MEDIAN and SELECTION can be solved using COUNT by doing a
binary search over the output domain.

Our novel upper bound applies to all CAAFs. But for the sake
of clarity, the rest of the paper will prove the upper bound only for
SUM. This allows us to conveniently use natural phrases such as
“the sum of these 4 inputs”. None of our arguments there rely on
the specifics of the addition operator. Hence generalizing to other
CAAFs is entirely trivial – one only needs to replace the addition
operator with �.
Network model. There are N nodes in the system, where N is
known by the protocol. (See Table 1 for notation summary.) Each
node has a unique id of logN bits (log in this paper is always base
2). Node i has an integer input oi, whose domain size is polynomi-
al of N . The goal is for a special root node, whose id is known by
all nodes, to learn the sum of all these inputs. The topology among
the N nodes is modeled as an undirected graph G. A node knows
neither G nor its neighbors in G. We impose no restriction on G
except that it needs to be connected. We consider a synchronous
timing model where protocols proceed in rounds. In each round,
each node first receives all the messages sent by its neighbors in
G in the previous round. Next it does some local computation and
then may choose to send (i.e., locally broadcast) a single message,

which will be received by all its neighbors in G in the next round.
To make our results as strong as possible, we assume that all n-
odes start execution at round 1 for our lower bound. For our upper
bound, we assume that the root initiates the protocol at round 1.
Upon receiving the first message, a non-root node gets "activated"
and joins the execution.

Failure model. All nodes in the system, except the root, may ex-
perience crash failures. A node that is disconnected from the root
(i.e., has no path to the root) due to the failures of other nodes is
also considered as failed. We consider only oblivious failure adver-
saries that adversarially decide beforehand (i.e., before the protocol
flips any coins) which nodes fail at what time. For convenience, we
say that an edge fails, iff at least one of its end points experiences a
crash failure. We use f to denote an upper bound on the total num-
ber of edge failures, ranging from 1 to Θ(N).4 We assume that f
is known to the protocol.5

Let s2 be the set of the inputs of all nodes, and s1 be the set
of the inputs of all nodes that have not failed by the end of the
protocol’s execution. Following [1, 4], we say that a sum result
is correct if it is in the interval of [

∑
o∈s1 o,

∑
o∈s2 o]. We nat-

urally generalize such result correctness definition to any CAAF:
Here the result is correct if it is between mins1⊆s⊆s2(�o∈so) and
maxs1⊆s⊆s2(�o∈so).6 We only consider randomized protocols for
computing SUM (or general CAAFs) that always generate a correct
result.

Time complexity and communication complexity. Most of the
definitions here directly follow from [4]. To make our results as
strong as possible, our upper bound only uses private coins, while
our lower bound allows public coins.

With respect to a topology G, the time complexity (TC) of a SUM
protocol describes the number of rounds needed for it to terminate,
under the worst-case inputs of nodes in G, the worst-case failure
adversary (parameterized by f ), and the worst-case coin flips. The
shape of G has a large impact on TC. Hence similar to [4], we will
always describe TC in terms of flooding rounds. Here each flooding
round consists of d rounds, where d is G’s diameter and is assumed
to be known to the protocol. We use b to denote the TC in terms of
flooding rounds (i.e., the total number of rounds would be bd).

At any given point of time between round 1 and round bd, let
H be the same as G except that all the failed nodes and their in-
cidental edges have been deleted. H’s diameter may be larger or
smaller than G. For a flooding round to remain meaningful in such
a context, we assume that the failures do not substantially increase
the network’s diameter. Specifically, we assume that the diameter
ofH is no larger than c · d, where c is some constant known to the
protocol. As part of our future work, we are currently working on

4Certain graphs may have more than Θ(N) edges. But we focus
on f between 1 and Θ(N) which applies to all graphs.
5Appendix A explains how to remove this assumption using a sim-
ple doubling trick.
6Alternatively, one could define a result to be correct iff the result
equals �o∈so for some s where s1 ⊆ s ⊆ s2. All our theorems and
proofs hold, without any modification, under such an alternative
definition.



Algorithm 1 Our upper bound protocol. Here b, c, and f are input parameters with b ≥ 21c.

1: x = b b−2c
19c
c; the root uses private coins to select logN integers, with replacement, from the range of [1, x];

let the selected integers be y1, y2, ..., ylogN , in non-decreasing order;
2: for all integer i ∈ [1, logN ] where (i = 1 or yi 6= yi−1) do
3: at the beginning of flooding round ((yi − 1)× 19c+ 1), root initiates a pair of AGG and VERI executions, both with t = b 2f

x
c;

// this pair of executions will end by flooding round (yi × 19c);
4: if (AGG does not abort and VERI outputs true) then output AGG’s result and terminate;
5: end for
6: at the beginning of the last 2c flooding rounds, root initiates the brute-force SUM protocol, outputs its result, and terminates;

a new lower bound proof that aims to show the necessity of this
requirement, which is however beyond the scope of this paper.

With respect to G, we define a node i’s communication com-
plexity (denoted as ai) when running a SUM protocol to be the to-
tal number of bits it sends (i.e., locally broadcasts) when running
the protocol, under the worst-case inputs of nodes in G, the worst-
case failure adversary (parameterized by f ), and the average-case
coin flips. A SUM protocol’s communication complexity (CC) is
the maximum ai across all i’s. Note that here we define CC over
the bottleneck node instead of over the average node, which is ap-
propriate in our distributed setting with a general topology and con-
sistent with prior work [16].

Let aG be the smallest CC under the topology G with at most
f edge failures, across all SUM protocols whose TC is at most b
flooding rounds. We define FT0(SUMN , f, b) to be the maximum
aG across all G where G is connected and has exactly N nodes.
Here "FT" stands for "fault-tolerant" and the subscript "0" stands
for "zero-error".
Communication complexity of two-party problems. In Section 7,
we will need to reason about the communication complexity of cer-
tain two-party problems. In those problems, Alice and Bob have
inputs X and Y respectively, and they aim to compute a certain
function Π(X,Y ). We only require Alice to learn the final result.
We use n to denote the size of these two-party problems (with N
being reserved to denote the number of nodes in G). Unless other-
wise noted, by a protocol for solving Π, we mean a public coin Las
Vegas protocol. We define the communication complexity (CC) of
Π (denoted as R0(Π)) to be smallest expected (with expectation
taken over the coin flips) number of bits sent by Alice and Bob
combined, across all protocols for solving Π.

3. SUMMARY OF RESULTS
The following two theorems summarize our main results:

THEOREM 1. For any b ≥ 21c and 1 ≤ f ≤ N , we have:

FT0(SUMN , f, b) = O((
f

b
logN + logN) ·min(b, f, logN))

= O(
f

b
log2N + log2N).

THEOREM 2. For any b ≥ 1 and 1 ≤ f ≤ N , we have:

FT0(SUMN , f, b) = Ω(
f

b log b
+

logN

log b
).

The rest of the paper proves the two theorems above. Here we
give an overview of the structure of our upper bound protocol (Al-
gorithm 1) that is used to prove Theorem 1. Given total b flooding
rounds as a constraint on TC, we divide the first b − 2c flood-
ing rounds into x = Θ(b) intervals, with each interval having
19c = Θ(1) flooding rounds. Thanks to the small TC of AGG
and VERI, running AGG followed by VERI will take at most one

interval. If the edge failures were evenly distributed across all the
intervals, then each interval would have at most f

x
edge failures. In

such a case, running AGG parameterized with t = f
x

in any single
interval would already produce a correct result, while incurring a
desirable CC ofO(( f

b
+1) logN). Here recall that t is the number

of edge failures that AGG intends to tolerate, and the CC of AGG is
O((t+ 1) logN).

Since the edge failures are not always evenly distributed, we
need a more complex design. Specifically, the root uses private
coins to select logN intervals uniformly randomly. In each select-
ed interval, the root initiates a pair of AGG and VERI executions,
both with t = b 2f

x
c. One can easily see that with probability at

least 1
2

, a random interval has no more than t edge failures. Hence
with probability at least 1 − 1

N
, the number of edge failures in

some selected interval is small enough for AGG to tolerate. But if
there have been more than t edge failures in an interval, then AGG
may unknowingly produce a wrong result. A difficulty here is that
we cannot easily determine the number of edge failures that have
occurred in a given interval, since it involves counting while toler-
ating potential additional failures during counting. Hence instead
of checking the number of edge failures in a given interval, our
protocol invokes VERI after AGG, and then checks the condition at
Line 4 of Algorithm 1. If the condition is met, the protocol outputs
AGG’s result and terminates. By Theorem 5 and 7 later, such a re-
sult must be correct. Furthermore by Theorem 4 and 7 later, if the
number of edge failures in an interval is no more than t, then the
condition at Line 4 is guaranteed to be met.

Having given an intuitive overview on the protocol’s correctness,
we move on to look at its CC. Since there can be at most x inter-
vals in total and f intervals with failures, AGG and VERI will be
executed at most min(x, f + 1, logN) times. The CC incurred by
each AGG and VERI invocation is O((t + 1) logN) bits, result-
ing in total O(( f

b
logN + logN) ·min(b, f, logN)) bits in all the

intervals. Next, the probability of reaching Line 6 is at most 1
N

.
As explained in Section 1, the CC of the brute-force SUM proto-
col is O(N logN). Hence the CC incurred at Line 6, over average
coin-flips, is O(logN).

Next in Section 4 and 5, we focus on AGG and VERI, and prove
their properties. Section 6 then provides the full proof for Theo-
rem 1. Theorem 2 will be discussed in Section 7.

4. THE AGG PROTOCOL
Overview. Algorithm 2 at the end of this paper provides the pseudo-
code for AGG. AGG has an input parameter t (t ≥ 0), which is the
number of edge failures that it intends to tolerate. When running
AGG, a node will flood7 a special symbol to abort AGG once it has
sent (11t+ 14)(logN + 5) bits. Such a mechanism will never be

7Throughout this paper, a node floods a certain message by first
sending the message to its neighbors, and then the other nodes sim-
ply forward that message upon first receiving it.



triggered (as we prove later) if the actual number of edge failures
is no larger than t. If the actual number of edge failures exceeds
t, aborting before the CC gets too large enables AGG to properly
bound its CC.

AGG first constructs a spanning tree and does a standard tree-
based aggregation, where each non-root node sends its partial sum
upstream (i.e., towards the root) along the tree. The partial sum of
a node (either non-root or root) is the sum of the node’s own input
and all the partial sums received from its children. A key impact
of failures is that they may block and prevent certain partial sum-
s from propagating upstream. If a partial sum from a node B is
blocked, a natural solution is to have B flood its partial sum, since
flooding has the maximum resilience against failures. If the flood-
ing does reach the root, the root can then incorporate B’s partial
sum to the final result. A second thought, however, shows that even
with flooding, B’s partial sum may still fail to reach the root if B’s
entire neighborhood fails immediately after B initiates the flood-
ing. When this happens, the system needs to fall back and flood
the partial sums ofB’s children, orB’s descendants ifB’s children
have also failed.

The key challenge here is that we need to do this within O(1)
flooding rounds. We cannot afford to wait to see whether B’s par-
tial sums get successfully flooded, and then fall back to flooding
some other partial sums if things did not go well. To save time,
we will have to do floodings speculatively, before knowing which
floodings will be needed. This in turn leads to a second challenge:
There will be overlap (or duplicates) in the partial sums received by
the root (e.g., partial sums from both B and some of B’s descen-
dants). We need a careful mechanism to avoid double counting,
which is non-trivial, especially without global knowledge about the
tree topology.

The following sections present the details of AGG. At a high-
level, AGG has 3 sequential phases: i) spanning tree construc-
tion and tree-aggregation (Section 4.1), ii) identifying potential-
ly blocked partial sums and (speculatively) flooding them (Sec-
tion 4.2), and iii) using a distributed mechanism based on witnesses
to avoid double counting (Section 4.3). To facilitate understanding,
the discussion here will be intuitive — we leave the formal proofs
to Appendix B.

4.1 Tree Construction/Aggregation and Some
Key Concepts

This section first describes the tree construction/aggregation phase
in AGG, which is largely standard. Next we formalize a number of
new concepts that are key for our later design.

Tree construction and aggregation. To construct the tree, the root
first sends a tree_construct message, together with a hop count. A
node B waits for the first tree_construct message it receives. Note
that this message easily enables B to figure out the current round,
and synchronize its round counter with the root. Let A denote the
sender of that message. B sends an ack message indicating to A
thatB isA’s child, and then sends a tree_construct message itself to
continue constructing the tree. B’s failing before sending ack will
be equivalent to B not being present in the network. The failure
of B after sending ack will be dealt with later in AGG. From now
on in this paper, the notions of “parent”, “child”, “ancestor”, and
“descendant” will always be with respect to this tree.

Next AGG does standard tree-aggregation. Consider a given n-
ode B, and let l be its level (i.e., its distance from the root). Node
B acts in the (cd− l+1)th round during tree-aggregation, by sum-
ming up its own input with all the partial sums received from its
children so far, and then sending the new partial sum to B’s parent.
Note that B does not necessarily wait for a message from each of

root (also local root)

visible
critical
failurefragments

invisible
critical
failure

local root

Figure 2: Example aggregation tree and fragments.

its children, since some may have failed. Each partial sum thus is
the sum of inputs from a subset of the nodes, and we also say that
the partial sum includes those inputs.
Some key concepts. We say that a node B at level l experiences a
critical failure if it fails after sending ack during tree construction
and before taking its action in the (cd − l + 1)th round during
tree-aggregation. Such a critical failure can be easily detected by
B’s parent A (if A is alive) during that round, when A does not
receive the scheduled message from B. We want critical failure to
become global knowledge when possible. To do so, A will flood a
message claiming that B experiences a critical failure. We say that
a flooding is successful if the flooded message eventually reaches
the root. One can easily see that a successful flooding must reach all
live nodes within cd rounds. We say that a critical failure is visible
if it is eventually seen by the root. Otherwise it is invisible. To help
understanding, the next will first assume that all critical failures are
visible, and then remove that assumption in Section 4.4.

Imagine that we remove all those edges connecting visible crit-
ical failures with their corresponding parents. Doing so partitions
the aggregation tree into many smaller trees which we call frag-
ments (Figure 2). A node’s local ancestors (descendants) are all its
ancestors (descendants) within the node’s fragment. Each fragment
also has its own local root. A fragment has a clean property: The
partial sum of a node never includes inputs from nodes outside of
its fragment, since those inputs have been blocked by the visible
critical failures. Hence we can restrict most of our discussions to
within a fragment.

A node A’s partial sum is a representative of a node B iff i) A is
either B itself or A is B’s local ancestor, and ii) the tree path from
A to B (excluding A and B) contains no invisible critical failures.
Intuitively, B’s representative must include B’s input. A represen-
tative set is a set of partial sums with the following property: For
any node B, if B is alive at (has failed by) the end of the VERI
execution that immediately follows AGG, then a representative set
contains exactly one (at most one) representative of B. Intuitively,
if we obtain a representative set and sum up all the partial sums
there, we get a correct sum result.

4.2 Identify and Flood Potentially Blocked
Partial Sums

With the above notion of representative set, our goal in the re-
mainder of AGG is for the root to obtain a representative set. If
there were no critical failures at all, then the root’s partial sum by
itself is already a representative set. With critical failures, a rep-
resentative set will contain not only the root’s partial sum but al-
so those blocked partial sums. Consider the example in Figure 3.
Here, the root’s partial sum, A’s partial sum, and F ’s partial sum
form a representative set. Imagine that we haveA and F flood their
partial sums, so that the root can get those and add those to the fi-
nal result. However, A, B, and C all fail right before A intends
to flood. Hence A’s partial sum is lost and we now need D and E
to flood their partial sums, which will form a second representative
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Figure 3: Why speculative flooding is needed.

set together with the root’s and F ’s partial sum. Ideally, D and E
should do so after they know that A’s flooding has failed. Unfor-
tunately, it can take one flooding round before such determination
can be made, sinceA’s flooding could traverse a long non-tree path
before reaching E (Figure 3). Similarly, if E’s flooding also fail-
s, then E’s local descendants (if any) may need to wait one more
flooding round before taking action.

This example shows that to have small TC, nodes need to flood
speculatively, before knowing that the flooding is needed. AGG
uses the following elegant design to decide which node initiates
flooding at what time: The root always floods its partial sum in
the first round of the partial sum flooding phase. A non-root node
B at level l floods its partial sum in the (l + 1)th round of the
phase, iff in that round it does not receive any flooding message
(containing any partial sums) from its parent A. Here A may or
may not be the initiator of the corresponding flooding. This design
has two important features. First, the design never does excessive
floodings: IfA has not failed by the (l+1)th round,B must receive
some message from A and will not initiate its own flooding. This
implies that the total number of floodings is linear with the number
of edge failures. Second, Lemma 16 in Appendix B proves that the
design always floods a superset of those partial sums that need to
be flooded. Namely, if B did not flood its own partial sum, then B
must have forwarded a “better” partial sum that includes all those
inputs included by B’s partial sum.

4.3 Avoid Double Counting While Using Only
Limited Information

The root potentially receives many flooded partial sums, and it
needs to pick a representative set to avoid double counting. The
partial sums seen by the root can be classified into three mutually-
exclusive categories: The partial sum of a node B is dominated if
the root also sees A’s partial sum where A is B’s local ancestor. A
non-dominated partial sum of a node B is compulsory if either B
or at least one ofB’s local descendants is still alive at the end of the
VERI execution that immediately follows AGG, otherwise the non-
dominated partial sum is called optional. Lemma 17 in Appendix B
proves that the union of all compulsory partial sums and any subset
of optional partial sums forms a representative set.

Without knowledge of the global tree topology for labeling each
partial sum, AGG maintains distributed topology information to do
so. Specifically, when initially constructing the tree, AGG lets each
node learn the ids of its nearest 2t ancestors. Interestingly, such
limited information is already sufficient for AGG to select a repre-
sentative set, in the following way via witnesses.

Having witnesses label partial sums. A nodeB’s witness is either
B itself or some local descendant of B whose distance to B is at
most t. Let the local root of B’s fragment be X and consider B’s
witness C. First, if C sees X among its 2t ancestors, then its 2t
ancestors must contain all of B’s local ancestors. Note that par-
tial sums seen by the root must be seen by all live nodes as well.

Hence if C sees a partial sum from some local ancestor of B’s, C
knows that B’s partial sum is dominated and will thus flood its de-
termination 〈dominated,B〉 to inform the root. Otherwise C floods
its determination 〈compulsory‖optional, B〉. When B has multiple
witnesses, such determination may be flooded multiple times. This
does not increase CC since all the determinations are identical, and
a node only needs to participate in one such flooding.

Second, if C does not see X among its 2t ancestors, then there
must be at least 2t − t = t nodes on the tree path from B to X
(excluding B and X). If the number of edge failures is no more
than t, then there must be at least one live node on that tree path
between B and X . That live node must have successfully flooded
a partial sum of either itself or one of its local ancestors. This
implies that B’s partial sum must be dominated. C will thus flood
the determination 〈dominated, B〉. If the number of edge failures
exceeds t, such determination might be wrong, which will be dealt
with later by VERI.

Finally, it is possible for all of B’s witnesses to fail (or for their
floodings to fail to reach the root). In such a case,B’s farthest local
descendant must be no more than t hops away from B, since oth-
erwise the number of edge failures will be more than t. (Again, the
case where the number of edge failures exceeds t will be dealt with
by VERI.) This implies that B and its local descendants must have
all failed, since they are all B’s witnesses. Hence if the root does
not receive any determination on B’s partial sum, the root knows
that the partial sum cannot be compulsory, and must be either dom-
inated or optional.

Take all three cases into account, and by Lemma 17 discussed
earlier, to form a representative set, the root simply includes in the
set a partial sum from a node B iff 〈compulsory‖optional, B〉 has
been received.

4.4 Complexity and Correctness of AGG
We have been assuming no invisible critical failures. Lemma 15

in Appendix B proves that all the local ancestors of an invisible
critical failure must have failed by the end of the tree-aggregation
phase. Leveraging such observation, there we show that invisible
critical failures does not affect any of our arguments earlier.

The following two theorems prove the complexity and correct-
ness guarantees of AGG:

THEOREM 3. The time complexity and communication complex-
ity of AGG are no more than 11c flooding rounds and O((t +
1) logN) bits, respectively.

Proof: The pseudo-code in Algorithm 2 obviously shows that AGG
terminates within 7cd + 4 rounds, which are at most 11c flooding
rounds. For communication complexity, recall that in AGG, a node
will flood a special symbol to abort AGG once it has sent (11t +
14)(logN + 5) bits. 2

THEOREM 4. If there are at most t edge failures during the ex-
ecution of AGG, then AGG never aborts and always outputs a cor-
rect result.

Proof: See Appendix B. 2

5. THE VERI PROTOCOL
We again focus on intuitions here, and leave the formal proofs to

Appendix C.

Overview. Algorithm 3 at the end of this paper provides the pseudo-
code for VERI. VERI aims to determine whether AGG’s output is
correct. The natural approach is for VERI to determine whether



scenario AGG VERI

1. no more than t edge failures (implying no LFC) output correct result output true
2. more than t edge failures and no LFC output correct result or abort no guarantee
3. more than t edge failures and exists LFC no guarantee output false

Table 2: Guarantees of AGG and VERI under different scenarios.

there have been more than t edge failures. This turns out to be diffi-
cult since it involves counting while tolerating potential additional
failures during counting. Instead, our approach is to i) identify a
weaker requirement that is nevertheless sufficient for AGG not to
err, and ii) allow VERI to sometimes err when AGG does not err.
Such a weaker requirement on VERI eventually makes an efficient
design possible.

Specifically, with respect to a pair of AGG and VERI execution
(both with parameter t), a long failure chain (LFC) is a chain of t
nodes A1, A2, ..., At within the same fragment such that i) Ai is
the parent of Ai+1 (1 ≤ i ≤ t − 1), ii) all of them have failed
by the end of the AGG execution, and iii) At has at least one local
descendant that is alive at the end of the VERI execution. Here the
notions of fragment, parent, and etc are all defined based on the
AGG execution. A1 andAt are called the head and tail of the LFC,
respectively. Note that having no more than t edge failures implies
no LFC, while the reverse is not true. The following theorem claims
that regardless of the number of edge failures, AGG will not err as
long as there is no LFC.

THEOREM 5. If there is no LFC, then AGG either outputs a
correct result or aborts.

Proof: See Appendix B. 2
The theorem implies that VERI may safely err in the 2nd scenario

in Table 2, where there are more than t edge failures but no LFC.
Table 2 also summarizes the guarantees of AGG and VERI in all
other possible scenarios.

5.1 Design of The VERI Protocol
By the above discussion, we design VERI by focusing on de-

tecting LFCs. Similar to AGG, in VERI once a node has sent
(5t+ 7)(3 logN + 10) bits, it will flood a special symbol to cause
VERI to output false.

Strawman design assuming no additional failures. To help un-
derstanding, we first describe a strawman design while assuming
that there are no additional failures occurring during VERI’s exe-
cution. A simple way to detect LFCs is for each node to ping its
parent and children on the (aggregation) tree, and to flood the in-
formation about detected failures to all other nodes. Those failed
parents and failed children are potentially tails and heads of LFC-
s. Without knowing the global tree topology, we will leverage the
same witnesses as in Section 4.3 to determine whether they are in-
deed tails and heads of LFCs. Consider a failed parent B and a
witness C ofB’s. Recall thatB’s witness is eitherB itself or some
local descendant of B whose distance to B is at most t. C finds,
among its 2t ancestors,B’s nearest ancestorA such thatA is either
a failed child or a fragment boundary. One can easily see that B is
the tail of an LFC iff A is at least t − 1 hops away from B. Thus
C can precisely determine whetherB is the tail of an LFC, and can
flood such determination to inform the root.

Failures of the witnesses. We now move on to the actual VERI
design, by explaining how different kinds of failures during VER-
I’s execution are addressed. We first consider the failures of the
witnesses: In the earlier example, it is possible for all of B’s wit-
nesses to fail, so that no node can make a proper determination. We

overcome this key challenge precisely by allowing VERI to err, as
explained below.

First, we need AGG to maintain some additional information:
During AGG’s aggregation phase, we have each node learn the
maximum level among its local descendants. This can be easily
done by having nodes propagate upstream, along with the partial
sum, the maximum level it has seen among its local descendants.
Now in VERI, imagine that we can infer the distance x from B to
B’s farthest local descendants.8 If the root does not receive any de-
termination on whetherB is the tail of some LFC (implying that all
of B’s witnesses have failed), the root applies the following rule:
If x ≤ t, it claims that B is not the tail of an LFC. Otherwise it
claims that B is the tail of an LFC, and outputs false.

To see when the above rule gives a correct/wrong determination,
we separately consider two cases. First, x ≤ t implies that all of
B’s local descendants are B’s witnesses. They must have all failed
since all witnesses have failed. In turn, by definition B must not
be the tail of an LFC. Second, x > t implies that B has at least
t witnesses and all of them have failed. We still cannot determine
whether there exists an LFC. But since VERI is allowed to make
one-sided error when there are more than t edge failures (i.e., the
2nd and 3rd scenario in Table 2), VERI can simply output false in
such a case.
When to detect failures. We move on to consider additional fail-
ures during the detection of failed parents/children. Those fail-
ures may prevent the floodings of information about failed par-
ents/children from reaching the root. This is similar to flooded par-
tial sums getting lost in Section 4.2 and Figure 3. To deal with this,
VERI uses the following design similar to the one in AGG: The
root floods a single bit. If a node at level l does not receive this bit
or any message (claiming the detection of failed parents) from its
own parent within l + 1 rounds, it floods a message claiming that
its own parent is a failed parent. If B is the tail of an LFC, such
design guarantees (Lemma 20 in Appendix C) to inform the root
that either B or some of B’s local descendant is a failed parent.

Detection of failed children is similarly done by propagating a
single bit upstream along all the tree edges. Finally, VERI always
detects failed parents first and then detects failed children. This is
necessary for correctness, if additional failures may occur during
VERI. We leave the details on how this ordering is leveraged in our
proofs to Appendix C.

5.2 Complexity and Correctness of VERI

THEOREM 6. The time complexity and communication complex-
ity of VERI are no more than 8c flooding rounds andO((t+1) logN)
bits, respectively.

Proof: The pseudo-code in Algorithm 3 clearly shows that VER-
I always terminates within 5cd + 3 rounds, which are at most 8c
flooding rounds. For communication complexity, recall that in VER-
I, a node will flood a special symbol to terminate VERI once it has
sent over (5t+ 7)(10 + 3 logN) bits. 2
8Since B may have failed early on, we may not be able to actual-
ly get x. Nevertheless, one can achieve a similar functionality by
using the maximum level information from B’s descendants. See
Appendix C for details.



THEOREM 7. Consider a pair of AGG and VERI execution,
both parameterized by t. If there exists an LFC, then VERI must
output false. If there are at most t edge failures, then VERI must
output true.

Proof: See Appendix C.2

6. PROOF FOR THEOREM 1

THEOREM 1 (RESTATED). For any b ≥ 21c and 1 ≤ f ≤
N , we have:

FT0(SUMN , f, b) = O((
f

b
logN + logN) ·min(b, f, logN))

= O(
f

b
log2N + log2N).

Proof: We prove the theorem by constructing an upper bound pro-
tocol as in Algorithm 1. The following proves the time complexity,
communication complexity, and correctness of Algorithm 1.

For TC, Theorem 3 and 6 tell us that a pair of AGG and VERI
executions take no more than 19c flooding rounds, and hence Line
3 of Algorithm 1 can complete in time. At Line 6, the root will flood
a single bit to all nodes to initiate a brute-force protocol, taking c
flooding rounds. Upon receiving this bit, a node floods its id and
its input to all other nodes. Within c flooding rounds, the root is
guaranteed to receive all flooded messages initiated by nodes that
are still alive at the end of the protocol. The root then adds up the
input for each id, and outputs the sum. Hence Line 6 takes at most
2c flooding rounds. Putting it all together, the time complexity of
Algorithm 1 is no more than b flooding rounds.

For CC, by Theorem 4 and 7, if there are no more than t = b 2f
x
c

edge failures within an interval, then AGG will not abort and VERI
will output true. This will then allow Algorithm 1 to terminate
immediately after that interval at Line 4. Thus AGG and VERI
will be executed at most min(x, f + 1, logN) times at Line 3 of
Algorithm 1, since there are (i) total at most x intervals, (ii) at most
f edge failures and hence at most f + 1 intervals with failures, and
(iii) at most logN intervals selected. By Theorem 3 and 6, the CC
of AGG and VERI are both O((t + 1) logN). Hence the total CC
incurred at Line 3 is O((t+ 1) ·min(b, f, logN) · logN).

Next consider the CC incurred at Line 6. Since there are at most
f edge failures in all the x intervals, with probability at least 1

2
, a u-

niformly random interval contains no more than b 2f
x
c edge failures.

Hence with probability at least 1
2

, by Theorem 4 and 7, AGG will
not abort and VERI will output true, causing Algorithm 1 to ter-
minate in that interval. The probability of reaching Line 6 is thus at
most 1/2logN = 1/N . The brute-force protocol at Line 6 itself has
a CC ofO(N logN), implying that the CC (over average-case coin
flips) incurred at Line 6 is at most O( 1

N
·N logN) = O(logN).

Putting everything together, the CC of Algorithm 1 is:

O((t+ 1) ·min(b, f, logN) · logN) +O(logN)

= O((
f

b
logN + logN) ·min(b, f, logN))

= O(
f

b
log2N + log2N).

Finally, we prove that Algorithm 1 always produces a correct
sum result. If it outputs a sum at Line 6 from the brute-force pro-
tocol, the result is trivially correct. If it outputs the result generated
by AGG, then we know that AGG did not abort and VERI outputted
true. By Theorem 7, we know that there must have been no LFC.
In turn by Theorem 5, we know that the result generated by AGG
(if it did not abort) must be correct. 2

7. A NEW Ω( f
b log b

+ logN
log b

) LOWER BOUND
ON THE CC OF SUM(THEOREM 2)

Review of previous lower bound. Our previous work [4] obtained
a lower bound on SUM’s CC by reducing a two-party communica-
tion complexity problem UNIONSIZECP to SUM. In
UNIONSIZECPn,q , Alice has a string X of length n as her input.
Each character in the string is an integer in [0, q − 1] where q ≥ 2.
Bob similarly has a string Y as his input. X and Y satisfy the cycle
promise,9 in the sense that for all 1 ≤ i ≤ n, either Yi = Xi or
Yi = (Xi + 1) mod q. Here Xi and Yi are the ith character of X
and Y respectively. Alice and Bob aim to determine the quantity
|{i|Xi 6= 0 or Yi 6= 0}|. Our previous work [4] proved a lower
bound of Ω( n

q2
)− O(logn) on the CC of UNIONSIZECPn,q , and

then obtained a lower bound on SUM via a reduction from UNION-
SIZECP. Trivially adapting that lower bound to the model in this
paper gives us a lower bound of Ω( f

b2 log b
) in this paper’s setting.

Our new lower bound. This section presents a new lower bound
of Ω( f

b log b
+ logN

log b
) for SUM, and this factor-b improvement is nec-

essary to bring down the gap between the upper and lower bound to
polylog. The key to achieving this improvement is a stronger lower
bound of Ω(n

q
) − O(logn) on UNIONSIZECP. This lower bound

on UNIONSIZECP is almost tight, given the existing O(n
q

logn+

log q) upper bound [4].
To obtain this lower bound on UNIONSIZECP, we introduce a

new two-party problem called EQUALITYCPn,q , which is the same
as UNIONSIZECPn,q except that in EQUALITYCPn,q , Alice and
Bob aim to determine whether X equals Y . We are interested
in EQUALITYCPn,q because its rectangular properties are easier
to study. The following theorem establishes a reduction from E-
QUALITYCP to UNIONSIZECP, based on the following observa-
tion: Knowing the result of UNIONSIZECP, Alice and Bob can
infer whether there exists j such that Xj = q − 1 and Yj = 0.
If there exists such j, then X 6= Y and we are done. Otherwise
for 1 ≤ i ≤ n, we must have Yi = Xi or Yi = Xi + 1 (note
that there is no longer “mod q”). This implies that X = Y iff∑n

i=1Xi =
∑n

i=1 Yi.

THEOREM 8. R0(EQUALITYCPn,q) ≤ R0(UNIONSIZECPn,q)
+O(log q) +O(logn).

Proof: To solve EQUALITYCP, Alice and Bob first invoke the o-
racle UNIONSIZECP protocol on their inputs X and Y . Bob next
sends Alice

∑n
i=1 Yi, using logn + log q bits, and the occurrence

count (denoted as z) of the character 0 in Y , using logn bits. Al-
ice finally outputs that X equals Y iff

∑n
i=1Xi =

∑n
i=1 Yi and

UNIONSIZECP(X,Y ) equals n− z.
To show the correctness of the above protocol, note that if X =

Y , then the two conditions trivially hold. We next prove the reverse
direction. Since UNIONSIZECP(X,Y ) = n − z, for all i where
Yi = 0, we have Xi = 0. In turn, there does not exist i such that
Xi = q−1 and Yi = 0. With this additional property, together with
the cycle promise, we know that for 1 ≤ i ≤ n, either Yi = Xi

or Yi = Xi + 1 (note that there is no longer “mod q”). Hence
X must equal to Y since otherwise

∑n
i=1 Yi would be larger than∑n

i=1Xi. 2
Next we apply an existing strong result on the Sperner capacity

of directed graphs [3] to obtain a lower bound on the CC of E-
QUALITYCP. That result was originally stated in the context of a
directed coding graph, and the following instantiates it in our spe-
cific context:
9The cycle promise described here is called the “alternative form”
of the cycle promise in [4].



THEOREM 9. (Adapted from Theorem 3.2 in [3].) Let S be a
subset of {0, 1, 2, ..., q − 1}n with the following property: For all
V,W ∈ S where V 6= W , there i) exists i such that Vi 6= Wi

and Vi 6= (Wi + 1) mod q, and ii) exists j such that Wj 6= Vj

and Wj 6= (Vj + 1) mod q. Then |S| ≤ (rank(M))n for any
q × q matrix M, where Mi,i = 1 for all i, Mi,j = 0 for all (j −
i) mod q ∈ {2, 3, ..., q − 1}, and all other entries in M (i.e., M1,2,
M2,3, ..., Mq−1,q , and Mq,1) can be arbitrary real numbers.

THEOREM 10.

R0(EQUALITYCPn,q) = Ω(
n

q
− logn− log log q).

Proof: Our definition of R0 allows public coins and only requires

Alice to know the result. We define Rpri
0 to be the same as R0

except that only private coins are allowed and both Alice and Bob
are required to know the result. Using arguments based on rectan-

gles [11], Lemma 11 next proves that Rpri
0 (EQUALITYCPn,q) ≥

n
q−1

. The theorem follows since i) only one bit is needed for Al-
ice to inform Bob the result, and ii) a public coin protocol using
k bits here can always be simulated via private coins while using
O(k + log log(qn · qn)) = O(k + logn+ log log q) bits [15]. 2

LEMMA 11. Rpri
0 (EQUALITYCPn,q) ≥ n

q−1
.

Proof sketch: It is well known [11]10 that for any (partial) function

h : X ×Y → {0, 1},Rpri
0 (h) ≥ N(h) ≥ logC1(h). Here N(h)

is the non-deterministic communication complexity, and C1(h) is
the smallest number of monochromatic rectangles needed to cover
(possibly with intersections) all the 1-entries in the matrix corre-
sponding to h. The matrix Z corresponding to EQUALITYCPn,q

is a qn × qn matrix. All 1-entries in Z are on the main diago-
nal. The remainder of Z consists of 0-entries and undefined entries
that correspond to input pairs not satisfying the cycle promise. In
any given covering of all the 1-entries using monochromatic rect-
angles, consider any two 1-entries ZV,V (i.e., the entry for X = V
and Y = V ) and ZW,W in any rectangle used in the covering. For
the rectangle to be monochromatic, ZW,V and ZV,W must not be 0-
entries and hence must be undefined entries. This means that there
i) exists i such that Vi 6= Wi and Vi 6= (Wi + 1) mod q, and ii)
exists j such that Wj 6= Vj and Wj 6= (Vj + 1) mod q.

Applying Theorem 9 tells us that the number of 1-entries in such
a monochromatic rectangle is upper bounded by (rank(M))n for
any q×q matrix M satisfying the properties specified in Theorem 9.
We want to find such an M with a small rank, by properly choosing
the values of M1,2, M2,3, ..., Mq−1,q , and Mq,1. We set all of them
to be −1. We claim that the rank of such an M is exactly q− 1. To
see why, note that adding up all the q rows gives us an all-zero row,
and hence rank(M) ≤ q − 1. It is also easy to verify that the first
q − 1 rows are linearly independent. Hence rank(M) = q − 1,
implying that the number of 1-entries in a monochromatic rectan-
gle of Z is upper bounded by (q − 1)n. Finally, because the total

number of 1-entries in Z is qn, we haveRpri
0 (EQUALITYCPn,q) ≥

log(qn/(q − 1)n) = n log(1 + 1
q−1

) ≥ n
q−1

. 2

THEOREM 12. R0(UNIONSIZECPn,q) = Ω(n
q

)−O(logn).

Proof: The equation trivially holds for n ≤ q. For n > q, combin-
ing Theorem 8 and 10 directly yields the result. 2

10The result was originally stated for functions, though it trivially
applies to partial functions as well.

The Ω( f
b log b

) term in Theorem 2 then follows naturally from
Theorem 12 and the known reduction [4] from UNIONSIZECP to
SUM. The extra Ω( logN

log b
) term in Theorem 2 comes from the Ω(N)

domain size of the sum result. By results in [7], sending Ω(logN)
bits of information to the root within b flooding rounds (and hence
within b rounds under the worst-case topology) requires sending
Ω( logN

log b
) actual bits. We defer the full proof of Theorem 2 to Ap-

pendix D.
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Algorithm 2 The AGG Protocol. Following are some additional comments on the pseudo-code. By default, the sender of a message always
attaches its id on the message (not shown in the pseudo-code), allowing the receiver to infer the sender. A “ ” field in a received message
means that we do not care about the value of that field. The pseudo-code allows a node to send multiple messages in a single round. In actual
implementation, all these messages should be combined into one, and can thus be sent in one round. The pseudo-code invokes the flood
primitive in several places, whose (trivial) implementation is not included in the pseudo-code. For a node to flood a message, the node sends
the message to its neighbors. Any node receiving a flooded message simply forwards that message upon first receiving that message. The
initiating node is called the source of the flooding. Note that if a node receives a second flooded message (potentially initiated by a different
source) with the same content, the node will not forward it again. Finally, each node in AGG keeps track of the total number of bits it has
sent. Once the number reaches (11t+ 14)(logN + 5), a node will flood a special symbol to cause all nodes to abort AGG. This mechanism
is not shown in the pseudo-code, for clarity.
1: /* Tree Construction Phase (total 2cd+ 1 rounds) */
2: if (I am the root) then
3: level = 0; parent = null; children = ∅; ancestor[i] = null for all i ∈ [1, 2t];
4: send 〈tree_construct, level, ancestor〉 in round 1 of this phase;
5: else
6: wait to receive the first message (with arbitrary tie breaking if multiple messages received in the same round) in the form of

〈tree_construct, sender_level, sender_ancestor〉 from any node u;
// the node is now activated, and knows that the current round is round sender_level + 2 of this phase;
// the node can then determine the starting round of all the remaining phases in AGG and VERI;

7: let r = sender_level + 2 be the current round of this phase;
8: level = sender_level + 1; parent = u; children = ∅;
9: ancestor[1] = parent; ancestor[i] = sender_ancestor[i− 1] for all i ∈ [2, 2t];

10: send 〈ack, parent〉 in round r of this phase;
11: send 〈tree_construct, level, ancestor〉 in round r + 1 of this phase;
12: end if
13: upon receiving message in the form of 〈ack, my_id〉 from any node v: children = children

⋃
{v};

14: /* Aggregation Phase (total 2cd+ 1 rounds) */
15: psum = my_input; max_level = level; // psum is for “partial sum”
16: for all v ∈ children do
17: if (in round cd− level + 1 of this phase, receive message 〈aggregation, sender_psum, sender_max_level〉 from node v) then
18: psum = psum+ sender_psum; max_level = max(max_level, sender_max_level);
19: else
20: flood 〈critical_failure, v〉 in round cd− level + 1 of this phase;
21: end if
22: end for
23: send 〈aggregation, psum, max_level〉 in round cd− level + 1 of this phase;

24: /* Speculative Flooding Phase (total 2cd+ 1 rounds) */
25: if (I am the root) then flood 〈flooded_psum, my_id, psum〉 in round 1 of this phase;
26: if (I am not the root and no message from parent is received in round level + 1 of this phase) then
27: flood 〈flooded_psum, my_id, psum〉 in round level + 1 of this phase;
28: end if

29: /* Partial Sum Selection Phase (total cd+ 1 rounds) */
30: ancestor[0] = my_id;
31: for all message received in the form of 〈flooded_psum, source_id, 〉 do
32: let i ∈ [0, 2t] be the smallest i such that ancestor[i] = source_id; let i =∞ if such i does not exist;
33: let j ∈ [0, 2t] be the smallest j such that ancestor[j] is the root or 〈critical_failure, ancestor[j]〉 has been received;

let j =∞ if such j does not exist;
34: dom = I have received a message 〈flooded_psum, ancestor[k], 〉 with k ∈ [i+ 1, j]; // dom is for “dominated”
35: if (i ≤ t) and (i ≤ j) then // I am a witness
36: if (j =∞) then flood 〈dominated, source_id〉 in round 1 of this phase;
37: if (j 6=∞ and dom) then flood 〈dominated, source_id〉 in round 1 of this phase;
38: if (j 6=∞ and (!dom)) then flood 〈compulsory‖optional, source_id〉 in round 1 of this phase;
39: end if
40: end for

41: /* Output Phase (only executed by the root) */
42: sum = 0;
43: for all received message in the form of 〈flooded_psum, source_id, source_psum〉 do
44: if (〈compulsory‖optional, source_id〉 has been received) then sum = sum+ source_psum;

// messages 〈dominated, source_id〉 are not actually needed, and we sent those only for clarity
45: end for
46: output sum;



Algorithm 3 The VERI Protocol. The initial values of the variables parent, children, ancestor, level, and max_level are all from the
previous AGG execution. All the comments in the caption of Algorithm 2 apply to Algorithm 3 as well, except the following: In VERI, once
a node has sent (5t+ 7)(10 + 3 logN) bits, it will flood a special symbol to terminate VERI and cause the root to output false. It is worth
noting that VERI detects failed parents first, and then failed children. This ordering is intentional and is necessary for correctness – the proofs
for Theorem 21 and Lemma 23 rely on such ordering.
1: /* Failed Parent Detection Phase (total 2cd+ 1 rounds) */
2: if (I am the root) then
3: flood 〈detect_failed_parent〉 in round 1 of this phase;
4: else
5: if (no message from parent is received in round level + 1 of this phase) then
6: flood 〈failed_parent, parent, max_level − level + 1〉 in round level + 1 of this phase;
7: end if
8: end if

9: /* Failed Child Detection Phase (total 2cd+ 1 rounds) */
10: if (children = ∅) then // I am a leaf
11: flood 〈detect_failed_child〉 in round cd− level + 1 of this phase;
12: else
13: for all node v ∈ children do
14: if (no message from node v is received in round cd− level + 1 of this phase) then
15: flood 〈failed_child, v〉 in round cd− level + 1 of this phase;
16: end if
17: end for
18: end if

19: /* LFC Detection Phase (total cd+ 1 rounds) */
20: for all received messages in the form of 〈failed_parent, v, 〉 do
21: let i ∈ [0, 2t] be the smallest i such that ancestor[i] = v; let i =∞ if such i does not exist;
22: let j ∈ [0, 2t] be the smallest j such that ancestor[j] is either the root or 〈critical_failure, ancestor[j]〉 was previously received in

AGG; let j =∞ if such j does not exist;
23: if (i ≤ t and i ≤ j) then // I am a witness
24: let k ∈ [i, 2t] be the smallest k such that i) 〈failed_child, ancestor[k]〉 has been received, or ii) ancestor[k] is the root, or

iii) 〈critical_failure, ancestor[k]〉 was previously received in AGG; let k =∞ if such k does not exist;
25: if (k − i+ 1 ≥ t) then
26: flood 〈LFC_tail, v〉 in round 1 of this phase;
27: else
28: flood 〈not_LFC_tail, v〉 in round 1 of this phase;
29: end if
30: end if
31: end for

32: /* Output Phase (only executed by the root) */
33: if (I have received message 〈LFC_tail, v〉 for any node v) then output false; // LFC exists
34: for all received message in the form of 〈failed_parent, v, x〉 where x ≥ t do
35: if (〈not_LFC_tail, v〉 has not been received) then output false; // LFC may exist — VERI may have one-sided error here
36: end for
37: output true; // no LFC



APPENDIX
A. DEALING WITH UNKNOWN f

Our upper bound protocol in Algorithm 1 assumes that f (i.e.,
the upper bound on the number of edge failures) is known to the
protocol. It is trivial to generalize it to deal with unknown f , using
the standard doubling trick.

Specifically, given b flooding rounds where b ≥ 19c logN+21c,
we divide the first b − 2c flooding rounds into 1 + logN blocks.
In the ith block, our guess for f will be f = 2i−1. Each block
is further divided into x = b b−2c

19c(1+logN)
c = Θ( b

logN
) intervals.

Within the ith block, the nodes uniformly randomly select logN
intervals. In each selected interval, we again run AGG and VERI,
with t = b 2·2

i−1

x
c. As before, if AGG does not abort and VERI

outputs true, the protocol terminates. Finally, if the protocol does
not terminate within the first b−2c flooding rounds, we again resort
to the brute-force protocol.

The correctness of the above generalized protocol is
obvious. Next we show that the CC of the protocol is
O(( f

b
log2N + log2N) · min(b, f, logN)), which is still with-

in polylog factor from our lower bound. For blocks 1 through
dlog fe + 1, by same argument as earlier, the total CC incurred
is:

dlog fe+1∑
i=1

O

((⌊
2 · 2i−1

x

⌋
+ 1

)
· logN ·min(b, f, logN)

)
= O

((
f

x
+ log f + 1

)
· logN ·min(b, f, logN)

)
Next in block dlog fe + 1 and later blocks, our guess on f (i.e.,
2i−1) already reaches the actual f . By same argument as earlier,
the protocol will terminate in each of these blocks independently
with at least 1 − 1

N
probability. Hence the CC incurred in block

dlog fe+ 2 and later blocks is at most:

logN+1∑
i=dlog fe+2

1

N i−dlog fe−1
·O
((⌊

2 · 2i−1

x

⌋
+ 1

)
· logN

· min(b, f, logN)
)

= O

(
1

N
·
(
f

x
+ 1

)
· logN ·min(b, f, logN)

)
Finally, the probability of the protocol of reaching the last 2c flood-
ing rounds is at most 1

N
. Hence the CC incurred in the last 2c

flooding rounds is at most O( 1
N
·N logN) = O(logN). Adding

the three part up and we get the CC of the protocol as:

O

((
f

x
+ log f + 1 +

1

N
·
(
f

x
+ 1

))
· logN

·min(b, f, logN)
)

+O(logN)

= O

((
f

b
log2N + log2N

)
·min(b, f, logN)

)
B. PROOF FOR THEOREM 4 AND 5

Throughout this section, unless otherwise mentioned, nodes on
a tree path from node A to node B includes all nodes on the path
as well as the two end points A and B. All “Phases” and “Lines”
in the proofs, by default, refer to phases and lines in Algorithm 2.

LEMMA 13. At the end of the Tree Construction Phase in AGG,
there exists a distributed aggregation tree in the system where each

node on the tree knows its children, parent, and 2t ancestors. Fur-
thermore, if a node in the system is not included in this aggregation
tree, then it must have failed by the end of the Tree Construction
Phase.

Proof: Trivial from the pseudo-code. 2
From now on, whenever we refer to a node, by default we mean

a node in the above aggregation tree. By the above lemma, nodes
not on the tree must have failed by the end of AGG and hence their
inputs do not need to be included in the sum result.

LEMMA 14. Consider any flooding done in any phase in the
AGG protocol. If the flooded message is initiated or received by a
node that is still alive at the end of the phase, then all nodes that
are still alive at the end of the phase will have received the message
by the end of the phase.

Proof: In AGG, flooded messages are initiated at Line 20, 27, 36,
37, and 38. One can easily verify that in all cases, there are at
least cd + 1 rounds (including the round during which the flood
is initiated) remaining in the corresponding phase. Within those
cd + 1 rounds, such flooding is either seen by all live nodes, or
is completely smothered by failures and does not reach any of the
remaining live nodes. But since the message is initiated or received
by a node that is still alive at the end of the phase, it is impossible
for the flooding to be completely smothered. 2

LEMMA 15. If Z is an invisible critical failure, then all of Z’s
local ancestors must have failed by the end of the Aggregation
Phase in AGG.

Proof: Prove by contradiction and assume that Z’s local ancestor
A is still alive. Let Y be the node with the smallest level on the
tree path from Z to A such that Y is a critical failure. In fact in
this case, Y must be an invisible critical failure. Y can be Z itself,
but Y must not be A since A is still alive. In the next we will
prove that Y ’s parent will initiate a flooding claiming that Y is a
critical failure, and this flooded message will successfully reach
A. Since A is alive even at the end of the Aggregation Phase, by
Lemma 14, this flooding will be forwarded by A and eventually
reach the root. This will imply that Y is a visible critical failure
instead of an invisible one, leading to a contradiction.

To see why Y ’s parent will initiate a flooding and why such
flooding will successfully reach A, consider any give node B on
the tree path from Y ’s parent to A. Let l be B’s level. By defi-
nition of Y , B must not be a critical failure, and hence B is alive
during round cd− l + 1 at Line 23. Hence Y ’s parent will initiate
a flooding of message 〈critical_failure, Y 〉 at Line 20. Furthermore,
this flooded message will be properly relayed by every node on the
path from Y ’s parent to A. 2

The next lemma shows that our design on when to do speculative
floodings has the following nice property: If a live nodeB does not
flood its own partial sum, then it must have forwarded a “better”
partial sum that includes all those inputs included by B’s partial
sum. In other words, we never run into the situation where we need
B’s partial sum but B did not flood it.

LEMMA 16. Consider any node B that is alive by the end of
the Speculative Flooding Phase of AGG and whose level is l. Then
in round (l + 1) of the Speculative Flooding Phase, B must either
flood its own partial sum at Line 27 or forward a partial sum (of
its local ancestor) that includes all those inputs included by B’s
partial sum.

Proof: We will prove, via a simple induction, that if B doesn’t
flood its own partial sum then B must have forwarded a partial



sum of one of its local ancestors. By definition of a local ancestor
and by Lemma 15, we know that such a partial sum includes all
those inputs included by B’s partial sum.

Let l be B’s level. The induction base for l = 0 is trivial. As-
sume that our claim holds for l = k − 1, and consider the node
B at level k. If B does not flood its own partial at Line 27 of the
AGG protocol, thenB must have received a message contains some
partial sums from its parent A at Line 26. Since B is alive by the
end of the Speculative Flooding Phase, B must not be a critical
failure and hence A must be B’s local ancestor. Also, all of A’s lo-
cal ancestors must be B’s local ancestors. If the message contains
A’s partial sum, we are done. If the source of this flooded message
is not A, by inductive hypothesis, A must have forwarded (in the
message) a partial sum of one of A’s local ancestors. Since A’s
local ancestors must beB’s local ancestors, we are done as well. 2

LEMMA 17. The union of all compulsory partial sums and any
subset of optional partial sums must form a representative set.

Proof: Let the given union be S. We need to prove that for any
node B, if B is alive at (has failed by) the end of the VERI exe-
cution that immediately follows AGG, then S contains exactly one
(at most one) representative of B. We first prove that S contains at
most one representative of B, via a contradiction. A representative
of B is either B’s partial sum or B’s local ancestor’s partial sum.
Hence if S contains two partial sums s1 and s2 that are both rep-
resentatives of B, then one of s1 and s2 must be dominated. This
contradicts to the fact that S contains no dominated partial sums.

We next prove that if B is alive at the end of the VERI execution
that immediately follows AGG, then S contains at least one repre-
sentative of B. By Lemma 16, B must either flood its own partial
or forward a partial sum that includes B’s input. In either case, the
partial sum flooded or forwarded is B’s representative. Since B
is alive at the end of the VERI execution that immediately follows
AGG, by Lemma 14, this partial sum will be received by the root.
Now consider the set containing all of B’s representatives that are
received by the root. This set is hence non-empty. There must be
at least one partial sum in this set that is non-dominated. We claim
that this non-dominated partial sum must be compulsory. To see
why, note that this partial sum must be from either B or B’s local
ancestor. Since B is alive at the end of the VERI execution that
immediately follows AGG, this non-dominated partial sum must be
compulsory. By definition of S, this compulsory partial sum must
be in S. 2

The next lemma proves that if there is no LFC, then the labels
(i.e., “compulsory‖optional” and “dominated”) assigned by the wit-
nesses on the partial sums are always correct:

LEMMA 18. Consider all partial sums received by the root at
Line 43. If there is no LFC, then at Line 44:

• For every dominated partial sum from a nodeB, the root does
not receive 〈compulsory‖optional, B〉.
• For every compulsory partial sum from a node B, the root

receives 〈compulsory‖optional, B〉.

Proof:
We prove the two cases one by one:

• Prove by contradiction, and assume that the root receives
〈compulsory‖optional, B〉 flooded by a node C. By Line 35,
C is at most t hops away from B, and C must be either B’s
local descendant orB itself. SinceB’s partial sum s1 is dom-
inated, then there must exists another partial sum s2 (seen
by the root and hence all nodes in the system) that is from

B’s local ancestor A. If C does not see the local root of
the fragment among its 2t ancestors, C will have j = ∞
at Line 33 and thus will not flood 〈compulsory‖optional, B〉
at Line 38. If C sees the local root among its 2t ancestors, C
must also seeA among its local ancestors. This means that the
dom variable at Line 34 is true, and hence C will not flood
〈compulsory‖optional, B〉 at Line 38 either. Contradiction.

• We first claim that there exists a node C that is still alive at
the end of the AGG and C satisfies the conditions at Line 35
(i.e., C must be B’s witness). To see why, note that since B’s
partial sum is compulsory, B must have a local descendant D
that is still alive at the end of the corresponding VERI execu-
tion. Now consider the tree path from D to B. There must
be a node C that is within t hops of B and that is still alive at
the end of AGG, since otherwise together with the existence
of D, we would have an LFC. Such a C obviously satisfies
the conditions at Line 35.
Next we prove, via a contradiction, that C must see the local
root of C’s fragment among C’s 2t ancestors. If C does not
see the local root, then there are at least 2t − t = t nodes
on the tree path from B to the local root (excluding B and
the local root). Since B’s partial sum is compulsory, B must
have a local descendant D that is still alive at the end of the
corresponding VERI execution. Now we can claim that there
must exists a node A on the tree path from B to the local root
(excluding B and the local root) that is still alive at the end of
AGG. This is true because otherwise we would have an LFC.
Next by Lemma 16, A must have flooded its own partial sum
or a partial sum of one of its local ancestors. By Lemma 14,
the flooded partial sum will be received by the root in time.
Since this partial sum is fromB’s local ancestor, it means that
B’s partial sum is dominated, leading to a contradiction.
Hence C must see its local root within its 2t ancestors and C
will have j 6= ∞ at Line 33. Since B’s partial sum is com-
pulsory, the root (and C as well) must have not seen anoth-
er partial sum from one of B’s local ancestors. This means
that the dom variable at Line 34 is false for C. Now C
has satisfied the conditions at Line 38, and thus will flood
〈compulsory‖optional, B〉. Finally, since C is still alive at the
end of the AGG, by Lemma 14, such flooding will reach the
root.

2

THEOREM 5 (RESTATED). If there is no LFC, then AGG ei-
ther outputs a correct result or aborts.

Proof: We prove that if there is no LFC and if AGG does not
abort, then it outputs a correct sum. AGG computes a final output
by summing up all source_psum’s in messages 〈flooded_psum,
source_id, source_psum〉 (Line 43) where 〈compulsory‖optional,
source_id〉 has been received (Line 44). By Lemma 17 and 18, al-
l these source_psum’s exactly form a representative set S. Each
partial sum in S is the sum of the inputs from some of the nodes. By
definition of a representative set, for any node B that is still alive
at (has failed by) the end of the VERI execution that immediately
follows AGG, S must contain exactly one (at most one) partial sum
(i.e., B’s representative) that includes the input of B. Hence the
sum of all the partial sums in S includes B’s input exactly once if
B is still alive at the end of the VERI execution that immediately
follows AGG, or at most once if B has failed. Finally, the sum of
all the partial sums in S obviously does not include the input of any
nodes that are not in the aggregation tree. By Lemma 13, nodes that
are not on the aggregation tree must have failed by the end of the



Tree Construction Phase and hence there is no need to include their
inputs. All these imply that the sum result must be correct. 2

THEOREM 4 (RESTATED). If there are at most t edge failures
during the execution of AGG, then AGG never aborts and always
outputs a correct result.

Proof: No more than t edge failures implies no LFC. Hence by
Theorem 5, it suffices to prove that no node sends (11t+14)(logN+
5) bits to abort AGG. Algorithm 2 shows that in AGG a node may
i) send messages at Line 10, 11, and 23, and ii) initiate floodings at
Line 20, 25, 27, 36, 37, and 38. One can easily verify that Line 10,
11, and 23 incur at most 10 + 2 logN , 10 + 2 logN + 2t logN ,
and 10 + 3 logN bits respectively. Note that here the 10 bits are
sufficient to encode the type of each message. Also, each message
needs to reserve logN bits for the sender’s id.

Next because there are at most t edge failures, the total sizes
of all the messages flooded at Line 20, 25, and 27 are t(10 +
2 logN), 10 + 3 logN , and t(10 + 3 logN) bits, respectively.
Finally, at Line 36, 37, and 38, a node may flood either 〈dominated,
source_id〉 or 〈compulsory‖optional, source_id〉 for each received
〈flooded_psum, source_id, source_psum〉. Because the number
of distinct source_id is at most t+ 1, the number of flooded mes-
sages with distinct contents will be at most 2t+ 2. Since each such
message has no more than 10 + 2 logN bits, all those floodings at
Line 36, 37, and 38 incur at most (2t + 2)(10 + 2 logN) bits for
each node. Adding all these numbers up yields exactly 60 + 40t+
14 logN+11t logN bits, which is less than (11t+14)(logN+5)
bits. 2

C. PROOF FOR THEOREM 7
Throughout this section, we use X.level and X.max_level to

denote the value of the local variables level and max_level on
node X at the end of the AGG execution, respectively. Same as
Appendix B, whenever we refer to a node in this section, by default
we mean a node in the aggregation tree as constructed in the AGG
execution. Also nodes on a tree path from node A to node B, by
default, includes all nodes on the path as well as the two end points
A and B. All “Phases” and “Lines” in the proofs, by default, refer
to phases and lines in Algorithm 3.

LEMMA 19. Consider any flooding done in any phase in the
VERI protocol. If the flooded message is initiated or received by a
node that is still alive at the end of the phase, then all nodes that
are still alive at the end of the phase will receive the message by
the end of the phase.

Proof: In VERI, floodings are potentially initiated at Line 3, 6, 11,
15, 26, and 28. One can easily verify that in all cases, there are at
least cd+ 1 rounds (including the round during which the flooding
is initiated) remaining in the corresponding phase. Within those
cd + 1 rounds, such flooding is either seen by all live nodes, or
is completely smothered by failures and does not reach any of the
remaining live nodes. But since the message is initiated or received
by a node that is still alive at the end of the phase, it is impossible
for the flooding to be completely smothered. 2

The next lemma formalizes the property of the Failed Parent De-
tection Phase. The lemma shows if a node B has failed and if it
has a live descendant F , then the protocol is guaranteed to find a
failed parent C on the tree path between B and F . (Note that the
protocol does not necessarily find B itself as a failed parent, due to
additional failures during VERI’s execution.)

LEMMA 20. Consider a nodeB and any of its local descendant
F . If B failed before the Failed Parent Detection Phase starts and
if F is still alive at the end of that phase, then there must exist a
node C such that: i) C is on the tree path from F to B, ii) all
nodes on the tree path from C to B have failed by the end of the
phase, and iii) every node that is alive at the end of the phase has
received the message 〈failed_parent, C, x〉 by the end of that phase
with x ≥ F.level − C.level.

Proof: Let E be the node with the smallest level on the tree path
from F toB, such thatE is still alive at the end of the phase. Since
F is alive, such E must exist. Let C be the node on the tree path
from E to B with the largest level that did not send the message
which it is supposed to send in round C.level + 1. (Note that this
intended message can either be a new flooding initiated by C itself
at Line 6 or it can be a message received from C’s parent and then
forwarded byC.) C must exist since at leastB, which failed before
the phase starts, did not send the message. C already satisfies the
first two properties needed in the lemma. The next proves that C
satisfy the last property as well.

Let D be C’s child that on the tree path from E to B. D must
exist since C cannot be E which is alive at the end of the phase.
Since C did not send any message in round C.level + 1, D will
flood 〈failed_parent,C, x〉where x = D.max_level−D.level+1
at Line 6. By definition ofC, all nodes on the tree path fromE toD
manage to send the messages that they are supposed to send during
the corresponding rounds. Hence the message 〈failed_parent,C, x〉
will reach E. Finally, because E is alive at the end of the phase,
Lemma 19 tells us that the every node that is alive by the end of the
phase will receive 〈failed_parent, C, x〉.

We still need to show x ≥ F.level − C.level. By the definition
of C, D is still alive at the end of the previous AGG execution. By
Lemma 15, there are no (invisible) critical failures on the tree path
from F to D. This implies that D.max_level ≥ F.max_level ≥
F.level, and x = D.max_level − D.level + 1 ≥ F.level −
D.level + 1 = F.level − C.level. 2

Next we use the above lemma to prove the following theorem:

THEOREM 21. If there exists an LFC, VERI must output false.

Proof: Let A and B be the head and tail of the given LFC, re-
spectively. By definition of LFC, B has a local descendant F that
is still alive at the end of VERI. By Lemma 20, there exist a n-
ode C on the tree path from F to B such that i) all nodes on the
tree path from C to B have failed by the end of that phase, and ii)
every node that is alive at the end of the Failed Parent Detection
Phase receives 〈failed_parent, C, x〉 by the end of that phase where
x ≥ F.level − C.level.

We first claim that the root may receive the message 〈LFC_tail,
C〉 but will never receive the message 〈not_LFC_tail, C〉, as proved
in the following. For the message 〈failed_parent, C, x〉, consider
any node D that satisfies Line 23 (i.e., D is C’s witness). Since
all nodes on the tree path from C to A have failed by the end of
the Failed Parent Detection Phase, none of those nodes will flood
〈failed_child, 〉 at Line 15.11 There are at least t nodes on the tree
path from C to A. Thus at Line 25, D will have k− i+ 1 ≥ t and
hence D will never flood 〈not_LFC_tail, C〉 at Line 28.

Now if the root does receive the message 〈LFC_tail, C〉, then it
will output false at Line 33 and we are done. Next consider the
case where the root does not receive 〈LFC_tail, C〉. We claim that
this implies that all of C’s witnesses have failed by the end of the

11Note that the argument here relies on the fact that the Failed Parent
Detection Phase is before the Failed Child Detection Phase.



LFC Detection Phase. Prove by contradiction and assume that C’s
witness D is still alive. D must have received 〈failed_parent, C,
x〉 with x ≥ F.level − C.level. Since D is a witness, it must
satisfy the conditions at Line 23. It will either executed Line 26
or 28. By arguments in the previous paragraph, D will not flood
〈not_LFC_tail,C〉 and henceDmust flood 〈LFC_tail,C〉 at Line 26.
Since D is still alive at the end of the LFC Detection Phase, Lem-
ma 19 tells us that the root will receive this message flooded by D,
leading to a contradiction. Because F is still alive and is C’s local
descendant, and since all of C’s witnesses have failed, it implies
that F.level − C.level ≥ t + 1 and thus x ≥ t + 1. Thus the
message 〈failed_parent, C, x〉 must satisfy the condition of x ≥ t
at Line 34. Finally, since the root never receives 〈not_LFC_tail, C〉
by our earlier argument, it will output false at Line 35. 2

The next lemma formalizes the property of the Failed Child De-
tection Phase. The lemma shows if a nodeD has failed, then unless
all nodes fromD to its local root have failed, the protocol is guaran-
teed to find a failed childC on the tree path betweenD and its local
root. (Note that the protocol does not necessarily find D itself as a
failed child, due to additional failures during VERI’s execution.)

LEMMA 22. For any nodeD that failed before the Failed Child
Detection Phase starts, there must exist a node C such that: i) C
is on the tree path from D to D’s local root, ii) all nodes on the
tree path from D to C have failed by the end of the phase, and iii)
either C is D’s local root or every node that is alive at the end of
the phase receives 〈failed_child, C〉 by the end of the phase.

Proof: If all nodes on the tree path from D to its local root has
failed by the end of the phase, the lemma trivially hold with C
being the local root. Otherwise let A be the node with the largest
level on the tree path from D to its local root, such that A is still
alive at the end of the phase.

Let C be the node on the tree path fromD toA with the smallest
level that did not send the message which it is supposed to send
in round cd − C.level + 1. (Note that this intended message can
either be a new flooding initiated by C itself at Line 15 or it can be
some message received from C’s children and then forwarded by
C.) C must exist since at least D, which failed before the phase
starts, will not send the message. C already satisfies the first two
properties needed in the lemma. The next proves that C satisfy the
last property as well.

Let B be C’s parent. B is on the tree path from D to A since
C cannot be A which is alive at the end of the phase. Since C
did not send any message in round cd− C.level + 1, B will flood
〈failed_child, C〉 at Line 15. By definition of C, all nodes on the
tree path from B to A manage to send the messages that they are
supposed to send at the corresponding rounds. Hence the message
〈failed_child, C〉 will reachA. Finally, becauseA is alive at the end
of the phase, Lemma 19 tells us that the every node that is alive at
the end of the phase will receive 〈failed_child, C〉. 2

Leveraging the above lemma, we can now prove the following
lemma. This lemma claims that if there are no more than t edge
failures, then no node will ever flood 〈LFC_tail, 〉, and some node
may flood 〈not_LFC_tail, 〉.

LEMMA 23. Consider any pair of AGG and VERI executions
during which the total number of edge failures is no more that t.
For any node D such that the root has received 〈failed_parent, D,
〉 by the end of the Failed Parent Detection Phase, no node will

ever flood 〈LFC_tail, D〉. Furthermore, if a witness of D is still
alive at the end of the VERI execution, then that witness will flood
〈not_LFC_tail, D〉 at Line 28.

Proof: For the root to receive 〈failed_parent, D, 〉, some node
must have flooded this message earlier at Line 6. For such flooding
to be initiated, the condition at Line 5 must be met, implying that
D has failed before the Failed Child Detection Phase.12 Lemma 22
tells us that there exists node C on the tree path from D to its local
root such that i) all nodes on the tree path from D to C have failed
by the end of the Failed Child Detection Phase, and ii) either C is
D’s local root or 〈failed_child, C〉 is received by all nodes which is
alive at the end of the Failed Child Detection Phase. Since C has
failed by the end of the phase, it must not be the root and hence it
has a parent.

If all of D’s witnesses failed before the Failed Child Detection
Phase starts, the lemma trivially holds. Otherwise let E be any
witness of D’s which is still alive at the beginning of the Failed
Child Detection Phase. E cannot be D since D failed before the
phase starts, and thus D has at least one child. Together with the
earlier fact that C has a parent and the given condition that there
are no more than t edge failures, this implies that C is at most
t − 2 hops away from D. Finally, recall that either C is the D’s
local root (and hence E’s local root) or the message 〈failed_child,
C〉 is received by E. Hence at Line 24, E will find a k such that
k − i ≤ t − 2. Such a value of k does not satisfy the condition
at Line 25, preventing E from flooding 〈LFC_tail, D〉. In fact with
such a value of k, if E is alive at the end of the VERI execution, E
must flood 〈not_LFC_tail, D〉 at Line 28. 2

Next we use the above lemma to prove the following theorem:

THEOREM 24. If there are no more than t total edge failures
(during the executions of AGG and VERI), then VERI must output
true.

Proof: Prove by contradiction and assume that VERI outputs false.
VERI may output false only in three cases. The first case is at
Line 33, where the root receives 〈LFC_tail, D〉 for some node D.
For the root to receive this message, there must have been some
node E that floods 〈LFC_tail, D〉 at Line 26. For E to do so, it
must see the message 〈failed_parent, D, 〉, which must also be
seen by the root. Apply Lemma 23 and we know that no node will
ever flood 〈LFC_tail,D〉. This contradicts with the fact that the root
later receives this message.

The second case where VERI outputs false is at Line 35. This
means that the root receives a message 〈failed_parent, D, x〉 with
x ≥ t, and it does not receive any message 〈not_LFC_tail, D〉.
Let D’s child E be the node that initially flooded the message
〈failed_parent, D, x〉 at Line 6. Hence x = E.max_level −
E.level + 1 ≥ t. Thus E has at least t − 1 local descendants,
and in turn D has at least t+ 1 witnesses (i.e., D, E, and E’s near-
est t−1 local descendants). Since there are at most t edge failures,
D must have at least one witness C that is still alive at the end
of the VERI execution. Lemma 23 then tells us that C will flood
〈not_LFC_tail, D〉, and Lemma 19 tells us that such flooding will
reach all live nodes. This contradicts with the fact that the root does
not receive 〈not_LFC_tail, D〉.

The last case where VERI outputs false is when some node
has sent (5t + 7)(10 + 3 logN) bits and hence floods a special
symbol to terminate VERI. We will show that this will not happen,
by carefully count the total number of bits sent by each node. In
VERI, nodes only communicate by floodings. A node may initiate
floodings at Line 3, 6, 11, 15, 26, and 28. The size of the flooded
messages is always no larger than (10 + 3 logN). Here 10 bits is
sufficient to encode the message type. Also, each message needs
to allocate logN bits for the sender’s id. At each line except Line

12Note that the argument here relies on the fact that the Failed Parent
Detection Phase is before the Failed Child Detection Phase.



11, the total number of floodings initiated system-wide is at most
(t + 1). At Line 11, each leaf initiates a flooding for the message
〈detect_failed_child〉. By our design, since all these floodings have
the same content, a node will only forward the first such message
received. Thus this is equivalent to a single flooding, in terms of the
number of bits sent by each node. Taking all the above into account,
a node will send at most (5t+ 6)(10 + 3 logN) bits, which is less
than (5t+ 7)(10 + 3 logN) bits. 2

Directly combining Theorem 21 and 24, we have:

THEOREM 7 (RESTATED). Consider a pair of AGG and VER-
I execution, both parameterized by t. If there exists an LFC, then
VERI must output false. If there are at most t edge failures, then
VERI must output true.

D. PROOF FOR THEOREM 2

D.1 Lower Bound on the CC of UNIONSIZECP
with Synchronous Rounds

We need to first convert the result in Theorem 12 to a setting
with synchronous rounds [7], to allow for the later reduction from
UNIONSIZECP to SUM. In this setting with synchronous round-
s [7], Alice and Bob still aim to solve UNIONSIZECP except that
now they proceed in in synchronous rounds. In each round, Al-
ice and Bob may either send or not send a message to the other
party. We allow the two parties to simultaneously send message
in a round. The time complexity (TC) of a (Las Vegas) protocol for
solving UNIONSIZECP in such a setting is defined as the number of
rounds needed, over the worst-case input and worst-case coin flips.
The protocol’s communication complexity (CC) is still defined to
be the number of bits sent by Alice and Bob, over the worst-case
input and average-case coin flips. The communication complex-
ity of UNIONSIZECP under this synchronous setting, denoted as
Rsyn

0 (UNIONSIZECP, a), is the smallest CC across all all proto-
cols for solving UNIONSIZECP whose TC is at most a rounds. Fol-
lowing is a known relation between the setting with synchronous
rounds and the classic setting without:

LEMMA 25. (From [7] and [4].) For any two-party communi-
cation complexity problem Π and any a ≥ 2,R0(Π) = Rsyn

0 (Π, a)·
O(log a).

COROLLARY 26. Rsyn
0 (UNIONSIZECPn,q, a) = Ω( n

q log a
)−

O( logn
log a

).

Proof: Directly from Theorem 12 and Lemma 25. 2

D.2 Reduction from UNIONSIZECP to SUM
This section will prove the following lemma:

LEMMA 27. Consider any b ≥ 1, N ≥ 14, and 8 ≤ f ≤ N .
Let n = b f−2

6
c and q = 5b. We have:

Rsyn
0 (UNIONSIZECPn,q, 5b) ≤ 2FT0(SUMN , f, b)

We will prove this lemma by showing that any oracle protocol for
solving SUM (for the given b, N , and f ) can be used to solve any
UNIONSIZECPn,q instance (for the corresponding n and q). Note
that this proof is almost identical to the one in our own previous
work [4], except some minor changes which are done because of
some minor differences between this paper’s model and the model
in [4]. We thus do not claim novelty in this lemma or any of the
discussions in this section – we include such discussions only for
the sake of completeness.

D.2.1 The Original Form of The Cycle Promise
To facilitate the reduction from UNIONSIZECP to SUM, we need

to use the original form [4] of the cycle promise. In UNIONSIZECPn,q

as defined in Section 7, Alice’s and Bob’s inputs X and Y satis-
fy the cycle promise in the sense that for all 1 ≤ i ≤ n, either
Yi = Xi or Yi = (Xi + 1) mod q. With the original form of the
cycle promise, for all 1 ≤ i ≤ n, we instead have i) Yi = 0 or
Yi = 1 if Xi = 0, ii) Yi = q− 2 or Yi = q− 1 if Xi = q− 1, and
iii) Yi = Xi − 1 or Yi = Xi + 1 if 0 < Xi < q − 1.

As shown in [4], the CC of UNIONSIZECP under the cycle promise
in Section 7 is exactly the same as the CC of UNIONSIZECP under
the above original form of the cycle promise. Hence all our earlier
lower bounds on the CC of UNIONSIZECP continue to apply when
we consider this alternative form of the cycle promise. We will use
this alternative form from now on.

D.2.2 Mapping a UNIONSIZECP Instance to a SUM In-
stance

We now construct the reduction from UNIONSIZECP to SUM.
Given any UNIONSIZECPn,q instance where n = b f−2

6
c and q =

5b, we map it to the SUM problem on the topology in Figure 4.
The topology has n parallel chains of nodes with 5 nodes on each
chain. We connect one end of each chain to a node α, and the other
end of each chain to a node β. We also connect α and β using an
edge. We let α be the root of the topology. Finally, we connect
N − 5n − 4 dummy nodes directly to β so that the total number
of nodes (including the 2 dummy nodes described next) is exactly
N . We further attach a chain of 2 dummy nodes to α so that the
diameter of the initial topology is 5. Together with our design of
the failure adversary later, these 2 dummy nodes will ensure that
the diameter of the topology is always 5 in all rounds, meaning that
the failures will not affect the diameter. This will make our lower
bound construction as general as possible — more specifically, the
construction will hold for all possible c (c ≥ 1) values.

Next we describe the input values and the oblivious failure ad-
versary. For all 1 ≤ i ≤ n, consider the ith chain in the topology,
and let the 5 nodes on the chain be v1 through v5, in order of in-
creasing distance from α. The binary input to the middle node v3
is 0 if Xi = 0 and Yi = 0, otherwise the input to v3 is 1. The
inputs to all other nodes in the topology are always zero. The node
v1 fails at the beginning of round (Xi + 3) iff Xi is even, and v4
fails at the beginning of round (Xi + 3) iff Xi is odd. Similarly,
the node v5 fails at the beginning of round (Yi + 3) iff Yi is even,
and v2 fails at the beginning of round (Yi + 3) iff Yi is odd. Final-
ly, the 2 dummy nodes attached to α fail at the beginning of round
1. There are no other failures in the system. One can easily verify
that the total number of edge failures (including edges incidental to
disconnected nodes) is at most 6n+ 2 ≤ f .

Alice and Bob in UNIONSIZECP will together simulate the exe-
cution of the SUM oracle protocol on this topology, or more specif-
ically, on each node in this topology. Furthermore, whenever Alice
properly simulates α (i.e., properly simulate the execution of the
SUM oracle protocol on node α), Alice will forward to Bob all
messages sent by α. Similarly, whenever Bob properly simulates
β, Bob forwards to Alice all messages sent by β.

In each round, we always have Alice (Bob) simulate all those
nodes that Alice (Bob) is able to properly simulate using local in-
formation and messages received from the other party. Alice can
properly simulate the SUM execution on a node in a round only if
Alice knows i) the initial input of the node, ii) whether the node
has failed by that round, and iii) the messages sent to the node from
its neighbors up to the that round. Knowing only X , Alice thus
will not be able to simulate all nodes in the topology since i) some
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Figure 4: Lower bound topology for SUM. Since the topology can be viewed as a “distributed input” to the SUM problem, such a lower bound
topology is analogous to a worst-case input commonly used for proving lower bounds.

nodes’ inputs depend on Y , ii) some nodes’ failure time depends
on Y , iii) some nodes may receive messages from nodes that Alice
cannot simulate. Also because of these factors, the set of nodes that
Alice can simulate will shrink over time. The same applies to Bob.

The next will prove that Alice can properly simulate α, at least
up to round 5b. Since the time complexity of the SUM protocol is
b flooding rounds and since our topology’s diameter is always 5,
the root (i.e., α) must have generated a correct sum result by round
5b. Alice can then directly use this sum result as the answer to
UNIONSIZECP.

D.2.3 Proof for Lemma 27
We will use the formal framework from [4] to prove that Alice

can properly simulate α. The following gives a concise review of
this framework. All definitions here are with respect to a given
input X of Alice’s. A node v is an epicenter if i) v’s initial input is
not uniquely determined by X or ii) its failure time is not uniquely
determined by X . In the former case, the occurrence time of that
epicenter is defined to be round 1. In the latter case, the occurrence
time is defined to be v’s earliest failure time, across all valid Y ’s
given the currentX . If a node’s failure time is uniquely determined
byX , we say that the node fails stably. A node v is spoiled in round
r if there exists a path from some epicenter u (occurring at round
r0 where r0 ≤ r) to v where:

• the length of the path is at most r − r0 hops,

• except potentially v, the path does not include α or β,

• for any node w on the path whose distance to u is i, w has not
failed stably before round r0 + i+ 1.

Intuitively, the path in the above definition is a potential path for
the epicenter to causally affect v. Such a path cannot traverse α or
β because Alice and Bob already forward each other messages sent
by α or β. Furthermore, the path should not have been “blocked”
by stable failures. For a more detailed discussion, we refer the
reader to [4]. We similarly define corresponding concepts for Bob’s
input Y .

The following lemma, directly adapted from [4], shows that Al-
ice and Bob can properly simulate all unspoiled nodes as long as α
and β are unspoiled:

LEMMA 28. (Adapted from [4].) Consider the mapping from
any given UNIONSIZECPn,q instance to a SUM instance as de-
scribed in the previous section. Let X and Y be Alice’s and Bob’s
input, respectively. Let R be any positive integer such that i) α is
not spoiled in round R with respect to Alice’s input X , and ii) β is
not spoiled in round R with respect to Bob’s input Y . Then for all
0 ≤ r ≤ R, Alice (Bob) can properly simulate the execution of the

SUM oracle protocol in round r on all nodes that are not spoiled in
round r with respect to Alice’s input X (Bob’s input Y ).

Using the above lemma, to prove that Alice can properly simulate
α up to round 5b, we only need to show that α and β are not spoiled
in round 5b.

LEMMA 29. Consider the mapping from any given
UNIONSIZECPn,q instance to a SUM instance as described in the
previous section. For any input X of Alice’s, α is not spoiled in
round 5b. Similarly, for any input Y of Bob’s, β is not spoiled in
round 5b.

Proof: Given the symmetry, we only need to prove that α is not
spoiled in round 5b. All following discussions are with respect to
Alice’s input X . We prove the claim by considering all the epicen-
ters with respect to Alice’s input X . The dummy nodes, α, and β
obviously are never epicenters. For any 1 ≤ i ≤ n, consider the ith
chain in the topology and let the nodes on the chain be v1 through
v5, in order of increasing distance from α.

We exhaustively consider three cases for the value of Xi. First,
if Xi = 0, then v3 may have an initial input of either 0 or 1 and
hence is an epicenter. v3 has two paths to α, one via β and the
other via v1. The first path cannot cause α to be spoiled. On the
second path, when Xi = 0, v1 fails stably in round 3. Hence the
second path cannot cause α to be spoiled either. Next, v2 and v5
are epicenters as well, since their failure time (or more precisely,
whether they fail) depends on the value of Yi. The occurrence time
for the two epicenters of v2 and v5 is round 4 and 3, respectively.
Again because v1 fails stably in round 3, these two epicenters will
not cause α to be spoiled.

Second, if Xi = q− 1, then Yi may be either q− 1 or q− 2, and
v2 and v5 are the only possible epicenters on the chain. If q − 1 is
odd, then their occurrence times are q + 2 and q + 1, respectively.
Since q + 2 > q + 1 > 5b, these epicenters cannot cause α to be
spoiled in round 5b. The case for even q − 1 is similar.

The last case is when Xi ∈ [1, q− 2]. If Xi is odd, then Yi must
be even and v5 is the only epicenter on that chain. This epicenter
has an occurrence time of round (Xi−1)+3 = Xi+2. As before,
this epicenter cannot cause α to be spoiled via β. Furthermore, v4
fails stably at round Xi + 3, preventing this epicenter from causing
α to be spoiled via v1. The case for even Xi is similar. 2



LEMMA 27 (RESTATED). Consider any b ≥ 1, N ≥ 14, and
8 ≤ f ≤ N . Let n = b f−2

6
c and q = 5b. We have:

Rsyn
0 (UNIONSIZECPn,q, 5b) ≤ 2FT0(SUMN , f, b)

Proof: Consider the mapping from any UNIONSIZECPn,q instance
(where n = b f−2

6
c and q = 5b) to a SUM instance as described in

the previous section. It is easy to verify that in our construction, the
failure adversary has introduced at most 6n+ 2 ≤ f edge failures.

By Lemma 28 and Lemma 29, we know that Alice can properly
simulate α up to round 5b. The time complexity of the SUM oracle
is b flooding rounds, and the diameter of the topology is always 5
in all rounds. Hence α must generate a correct sum result by round
5b. This result is also the correct result for UNIONSIZECP, given
how we assign the initial inputs of the nodes in the topology. Hence
Alice and Bob solve UNIONSIZECP correctly.

Finally, the total number of bits sent by Alice and Bob in the
reduction is no more than the total number of bits sent by α and β
in the SUM oracle protocol. The lemma thus follows. 2

D.3 Proof for Theorem 2

THEOREM 2 (RESTATED). For any b ≥ 1 and 1 ≤ f ≤ N ,
we have:

FT0(SUMN , f, b) = Ω(
f

b log b
+

logN

log b
).

Proof: First, consider a trivial topology where the root has only a
single neighbor A and all other nodes directly connect to A. Note
that the domain size of SUM’s output is Θ(N). In this topology,
even if A already knows the SUM result, sending this result to the
root within b flooding rounds still requires Ω( logN

log b
) bits (by Lem-

ma 25). Hence there exists c1 > 0, such that the CC of SUM is at
least c1 logN

log(5b)
.

For f ∈ [1, 7], we trivially have:

FT0(SUMN , f, b) = Ω

(
logN

log b

)
= Ω

(
f

b log b
+

logN

log b

)

Next we only need to consider f ∈ [8, N ]. Corollary 26 tells us
that there exists c2 > 0 and c3 > 0 such that

Rsyn
0 (UNIONSIZECPn,q, a) ≥ c2

n

q log a
− c3

logn

log a

For any sufficiently largeN and f ∈ [8, N ], invoke Lemma 27 and
we have:

FT0(SUMN , f, b) ≥ 1

2
Rsyn

0 (UNIONSIZECPb f−2
6
c,5b, 5b)

≥
c2b f−2

6
c

10b log(5b)
−
c3 logb f−2

6
c

2 log(5b)

≥
c2b f−2

6
c

10b log(5b)
− c3 logN

log(5b)

Combining with our earlier lower bound of c1 logN
log(5b)

, we have

FT0(SUMN , f, b) =
c1

2c1 + c3
· FT0(SUMN , f, b)

+
c1 + c3
2c1 + c3

· FT0(SUMN , f, b)

≥ c1
2c1 + c3

·

(
c2b f−2

6
c

10b log(5b)
− c3 logN

log(5b)

)

+
c1 + c3
2c1 + c3

· c1 logN

log(5b)

=
c1c2

2c1 + c3
·
b f−2

6
c

10b log(5b)

+
c21

2c1 + c3
· logN

log(5b)

= Ω

(
f

b log b
+

logN

log b

)
2


