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ABSTRACT
Today, the utility of many replicated Internet services is
limited by availability rather than raw performance. To
better understand the e�ects of replica placement on avail-
ability, we propose the problem of minimal replication cost

for availability. Let replication cost be the cost associated
with replica deployment, dynamic replica creation and tear-
down at n candidate locations. Given client access patterns,
replica failure patterns, network partition patterns, a re-
quired consistency level and a target level of availability,
the minimal replication cost is the lower bound on a sys-

tem's replication cost. Solving this problem also answers
the dual question of optimal availability given a constraint
on replication cost.

We design the �rst algorithm we are aware of to solve the
problem, through reduction to integer linear programming

and enumeration of pruned serialization orders. Using prac-
tical faultloads and workloads, we demonstrate that the ex-
ponential complexity of our algorithm is tractable for prac-
tical problems with hundreds of candidate locations. The
lower bound computed by our algorithm is tight, but the

tightness can be sacri�ced by a proposed optimization for
large problems. We also show that with low replica creation
and teardown costs, the bound is close to tight in practical
problems even with the optimization.

1. INTRODUCTION
Replication has long been a key approach to achieving high
availability [5, 17, 23]. Today, wide-area replication is fur-
ther facilitated by web hosting services and content delivery

networks. A key issue in this environment is the placement
of replicas across a set of candidate locations. With chang-
ing network conditions and client access patterns, a system
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may also need to decide when replicas should be dynami-
cally created or torn down (i.e., dynamic replica placement).
Typically, replication systems strive to minimize replication
cost|the cost associated with replica deployment, creation
and teardown|while reaching a performance or availability
target (or to maximize performance and availability given a

constraint on replication cost).

Replica placement and replication cost have been widely
studied for performance [14, 16, 21, 25]. However, there
is much less research on replica placement for availability,
especially in WAN settings. Compared to optimal perfor-

mance, studying replica placement for availability requires
a fundamentally di�erent model to accommodate dynamic
network partition scenarios. Traditionally, availability stud-
ies have been restricted to the database context [3, 9]. Place-
ment has not been a primary concern in these settings be-

cause the studies typically focus on static, small-scale con-
�gurations. Given that the utility of many current network
services is limited by availability rather than raw perfor-
mance [11] (e.g., even a 1% improvement in availability can
provide 3.6 additional days of service uptime per year), we
believe that the problem of dynamic replica placement for

availability (or simultaneous performance and availability
targets) is important. To the best of our knowledge, our
study is the �rst to address the replica placement problem
for optimal availability in partitionable networks.

The interaction between availability and consistency makes

the problem of replica placement for availability challeng-
ing. Link failures in the Internet can result in complex net-
work partition scenarios. For example, in our experiments
we observe up to 18 coexisting partitions. In a partitioned
network, a particular consistency level (e.g., one-copy serial-
izability [4]) may restrict the set of acceptable accesses even

if all requests reach at least one replica. Such restrictions
rule out the trivial solution of placing one replica in each
partition, given the goal of minimizing overall replication
cost. Such e�ects become more signi�cant if the availability
target is not 100% and the system needs to decide which

partitions to sacri�ce. The set of acceptable accesses in one
partition depends on the consistency level, accesses being
accepted in other partitions and the history of system-wide
accepted accesses. Computing the globally optimal place-
ment thus becomes a complex combinatorial optimization
problem. Furthermore, to study the lower bound on repli-

cation cost, we cannot assume any speci�c consistency pro-
tocols (e.g., quorum protocols [3]) and we must study the



inherent impact of consistency on availability.

We now provide a more detailed description of the minimal
replication cost (for availability) problem. De�ne replication
cost to be the sum of the cost of replica creation, replica
teardown and replica usage. The network has n candidate
locations for replica deployment and m clients accessing the

service. A workload describes the time-stamped accesses
from all m clients. Both replicas and links in the network
may fail, which are fully described by a faultload. The sys-
tem may specify a required consistency level among replicas
using the TACT continuous consistency model [27]. Many
discrete consistency levels, including one-copy serializabil-

ity [4], linearizability [12] and delta consistency [24], can be
expressed as instances of continuous consistency. Availabil-
ity is de�ned to be the number of accepted accesses over
total submitted accesses in the workload. Given a work-
load, faultload, consistency level and an availability target,
the minimal replication cost (for availability) is the lower

bound on replication cost of any system that can reach the
availability target. Solving this problem essentially gives us
minimal replication cost as a function of an availability tar-
get, and thus also answers the following question: Given
a constraint on replication cost, what is the optimal avail-
ability?1 The end goal of this work is to allow researchers

to rigorously compare the costs of real replication systems
against optimal bounds and to provide insights into how
existing systems can be optimized for availability.

In this paper, we formalize the minimal replication cost

problem for availability and design an algorithm to solve
it. Given a faultload, we reduce the problem to an inte-
ger linear programming (IP) problem based on an evolution
graph. However, the reduction is dependent on the system's
serialization order and the number of serialization orders
grows exponentially with the number of accepted writes. To

make the search tractable, we de�ne a domination relation-
ship among serialization orders and aggressively prune non-
optimal serialization orders. We also prove that logical seri-
alization orders can be used to represent physical ones and
thus avoid enumerating all possible sets of accepted writes.
These techniques, together with our optimizations in Sec-

tion 6, reduce the number of serialization orders enumerated
from 10200;000 to well below 5; 000 in our target faultloads.
Finally, we obtain the minimal replication cost by enumer-
ating the resulting small set of logical serialization orders,
solving an IP for each order and �nally choosing the minimal
solution.

Our algorithm is the �rst that we are aware of to solve the
minimal replication cost problem for availability. The algo-
rithm can be combined with the replica placement for perfor-
mance [21] to solve the problem with dual performance and

availability targets (details available in the full version [28] of
this paper). The lower bound computed by our algorithm is
tight, but the tightness can be sacri�ced if we use an impor-
tant optimization for large problems. Using faultloads based
on Internet-like topologies [29] and workloads based on web
client traces [8, 19], we show that with low replica creation

and teardown costs, the bound is close to tight even with
all our optimizations. While our algorithm is exponential

1We do not use this alternative form of the problem so that
we can add a dual performance target.
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Figure 1: An example with three candidate locations

(A, B and C) for placing replicas and two clients (X
and Y ). W1, W2, W3 and W4 are writes submitted by
clients, while R1, R2 and R3 are reads.

([28] proves that the problem is NP-hard), we demonstrate
that the complexity is tractable for practical problems with
hundreds of candidate locations and day-long workloads and
faultloads.

The next section gives a simple example and describes re-
lated work. We formalize the minimal replication cost prob-
lem in Section 3. Section 4 solves the special case of the
problem under one-copy serializability [4] (1SR) and lin-
earizability [12] (LIN). We then generalize to continuous

consistency in Section 5. Section 6 discusses two important
optimizations and Section 7 presents our experience based
on practical faultloads and workloads. Finally, Section 8
presents our conclusions.

2. BACKGROUND
2.1 Motivating Example
To further illustrate the minimal replication cost problem
and the challenges in solving it, in Figure 1 we give a con-
crete example with three candidate locations and two clients.
For simplicity, we only consider network partitions with no

replica failures.2 The system goes through three partition
scenarios, and we annotate what accesses are submitted by
the clients during each scenario. If no consistency is re-
quired, then the minimal replication cost (assuming we only
consider usage cost) can be determined trivially. In this ex-
ample, the minimal cost for 100% availability is achieved

when we place a replica at A throughout the execution and
a replica at C during the second partition scenario.

However, the previous placement becomes suboptimal if we
enforce LIN for the execution. To ensure LIN, during the
second partition scenario, only one of the two replicas at A

and C will be able to accept accesses. Furthermore, if we
allow the replica at C to accept W4 and R2, then R3 can-
not be accepted during Scenario 3 by a potential replica at
either A or B, because the replica will not see W4 before
processing R3. Since some of the replicas cannot accept ac-
cesses anyway, in order to achieve minimal cost, they should

not be deployed. However, whether a replica can accept an
access depends on the previous execution of the system. For

2In fact, Section 4 will show that replica failures can be
modeled as network partitions.



example, we can have the replica at C reject W4 while still

accepting R2, to allow the future acceptance of R3. This
will help increase availability if R2 and R3 both represent
many reads instead of a single read. Thus, we see that con-
sistency requirements restrict the set of accesses that can be
accepted and the acceptable sets of accesses by each par-
tition are inter-dependent. Continuous consistency further

increases the challenge by allowing a bounded amount of
inconsistency.

2.2 Related Work
Under the assumption of 1SR, Coan et.al. [9] derive tight
availability upper bounds for two-way partition scenarios
without replication cost constraints, avoiding much of the
complexity with complex partition scenarios. Johnson et.al.
[13] prove that for update transactions and a single data

item, replication provides little availability bene�ts relative
to an optimally placed centralized server under 1SR. Replica
placement studies in Farsite [6, 10] and RMS [18] target
replication on local-area networks and thus assume no net-
work partitions.

Recently, several studies solve the replica placement prob-
lem for optimal performance [14, 16, 21, 25]. These stud-
ies address di�erent versions of the problem by imposing
various constraints (e.g., number of replicas [16, 21], stor-
age space [14] and bandwidth [25]) on the replication sys-

tem. More speci�cally, Li et.al. [16] study optimal replica
placement in tree topologies. The assumption on topology
allows the authors to develop a polynomial algorithm us-
ing dynamic programming. Optimal replica placement in
arbitrary topologies can be trivially reduced to a facility
location problem as in [21]. Similar to our approach, Qiu

et.al. [21] use IP to solve the problem and then mainly con-
centrate on comparing the optimal placement against vari-
ous placement heuristics. However, because their work does
not consider dynamic network partition scenarios or consis-
tency, the reduction to IP is trivial. For example, there is
no need for evolution graphs or considering di�erent serial-

ization orders. The studies on space-constrained [14] and
bandwidth-constrained [25] replica placement are based on
the assumption of a simpli�ed hierarchical distance model.
However, the studies also impose constraints on the capacity
of replicas, resulting in a di�erent challenge. By reducing
the placement problem to min-cost ow, polynomial place-

ment algorithms are designed for both problems. There is
no straightforward way to extend their results to availability,
since dynamic network partition scenarios cannot be eas-
ily accommodated in the min-cost ow problem. Finally,
consistency is not considered in their studies, which greatly

simpli�es the problem.

In this work, we use the consistency model developed in
our earlier e�orts [27], which de�nes the TACT continuous
consistency model and argues for its generality and practi-
cality. The domination de�nition among serialization orders

in Section 5.1 is adapted from a slightly di�erent version in
our previous work [26] on real replication system availabil-
ity. This earlier work assumes reads are always accepted
and discusses the best availability for writes given a �xed
replica set. By assuming reads are always accepted, the
study excludes protocols that can disable one partition to

allow progress in other partitions. Furthermore, in [26] we

concentrate on comparing the achieved availability of vari-

ous consistency protocols against the best availability and
show how the protocols can be optimized. On the other
hand, this work focuses on the minimal replication cost for
dynamic replica placement given n candidate locations, and
determines which replicas should be disable to achieve opti-
mal availability.

3. PROBLEM FORMULATION

3.1 Failure Model and Availability Definition
For simplicity, we refer to application data as a database,
though the data can actually be stored in a database, �le
system, persistent objects, etc. The database is replicated
in full at multiple replicas. Replicas may be dynamically

created or torn down and we assume that a replica loses its
state when torn down. However, if a replica crashes and
then recovers, it is assumed to recover its state for stable
storage. To prevent permanent data loss, we assume at least
one replica in the system at all times. Each replica may ac-
cept reads and writes from clients, both called accesses. Our

reads and writes are query transactions and update trans-
actions in database terminology. For simplicity, we assume
the database has only one data item.

Both replicas and the network may experience fail-stop fail-

ures. We assume that network failures are symmetric. With-
out loss of generality, we also assume reachability among
machines is transitive for the purpose of calculating lower
bound. With the symmetry and transitivity assumptions,
network failures break the network into partitions. A fault-
load, which is a trace of timestamped failure events and re-

covery events for replicas and the network, fully speci�es the
failure pattern. For example, a failure event may describe
how the network is partitioned. We do not explicitly dis-
cuss network topology, since it is already abstracted in the
faultload.

We de�ne Availability = accepted accesses = submitted
accesses. A submitted access from a client is an accepted
access if the client can reach some replica that can accept
the access. Notice a functioning replica may not always be
able to accept an access due to consistency requirements.
For instance, assuming a quorum protocol, replicas unable

to collect the necessary quorum must reject an access. A
workload fully describes the time-stamped accesses submit-
ted from clients, i.e., when and which client submits which
access.

Our faultload approach signi�cantly di�ers from traditional
approaches of studying availability [10, 13] where failures
are probabilistically modeled instead of deterministically de-
scribed. We apply this approach because, unlike replica
failures, there is currently no convincing way to mathemat-
ically model the occurrences of network partitions. It is

also NP-hard [22] to derive the partition model from link
and node failure models. With the faultload approach, the
lower bound on cost depends on faultloads instead of failure
models. One advantage of our approach is that the lower
bound theory is independent of the faultloads, while stud-
ies based on speci�c probabilistic failure models are usually

di�cult to extend to other failure models.



3.2 Replication Cost Model and Problem Def-
inition

The most straightforward de�nition for replication cost is
the number of replicas. However, this de�nition cannot dis-
tinguish how long a replica is needed at a location under
dynamic replica placement. Thus, we use the following gen-

eral de�nition as the replication cost of an execution. For
each candidate location i, the cost de�nition takes into ac-
count the usage cost(��usagei), creation cost(�� createi)
and teardown cost(� teardowni) of replica incarnations at
that location:

Cost =

nX

i=1

(� � usagei + � � createi +  � teardowni)

In the equation, usagei is the total time that locationi has a
replica and � is the cost per unit time. The variable createi
denotes the number of replica creations at locationi and �
is the creation cost. Similarly, teardowni and  represent
replica teardown costs. With di�erent �, � and  values, the
cost function can emulate di�erent metrics. For example,

with � and  being zero, the cost function becomes the
number of replicas. The values of �, � and  can also vary
from location to location in a straightforward manner.

We can now formally de�ne the minimal replication cost
problem: Given 1) n candidate locations for placing repli-

cas; 2) a workload; 3) a faultload; 4) desired consistency
level (1SR, LIN or continuous consistency [27]); and 5) an
availability target to achieve, what is the lower bound on
replication cost?

4. MINIMAL REPLICATION COST UNDER
1SR AND LIN

As discussed earlier, the main challenge in the minimal repli-
cation cost problem is the interaction between availability
and consistency. Generally speaking, the higher the consis-
tency level, the lower the availability, and thus the higher

the replication cost to achieve a given availability target.
Traditionally, system designers are forced to make a binary
decision between two extremes of consistency, 1SR/LIN or
no consistency at all, each with its own associated tradeo�s.
A number of e�orts [15, 20, 27] argue for the bene�ts of a
continuous consistency model, where consistency is quanti-

�ed and dynamically adjustable. For example, in a tra�c
monitoring system with continuous consistency, the appli-
cation can specify the maximum allowed staleness of the
tra�c data. In a distributed game, users may specify the
maximum allowed error in the observed position of various

objects in the virtual world to trade accuracy for perfor-
mance and availability. A full discussion of the bene�ts and
applicability of continuous consistency is beyond the scope
of this paper. For our study, a continuous model allows a
more complete exploration of the problem space. As spe-
cial cases, our theory still applies to traditional consistency

models such as 1SR and LIN.

We use the TACT continuous consistency model [27] in this
study because of its generality. We have shown [27] that
many previous consistency models, including 1SR, LIN, con-
ict matrix [2], N-ignorant system [15], delta consistency [24]

and quasi-copy caching [1], can be expressed as instances of

the model. We have also demonstrated how a wide range of

applications (e.g., bulletin boards and airline reservations)
can utilize the model.

For clarity, we discuss the simple cases of 1SR and LIN in
this section and extend to continuous consistency in the next
section.

4.1 Effects of Dynamic Replica Placement
Our replication model allows replicas to be dynamically cre-
ated and torn down. To depict the possible behavior of a
location, we divide the execution into intervals, which are
periods of time during which network connectivity does not
change. The faultload determines the maximal length of the

intervals, but intervals can be in�nitely short. We assume
that replicas can only be created or torn down at the bound-
ary of intervals, so we can discretize dynamic replica deploy-
ment. Using short intervals (e.g., on the order of seconds)
will help reduce the error introduced by this discretization
process. We will quantify this error for practical scenarios

in Section 7.

We use a boolean variable depk;i to denote whether a replica
is deployed at locationi during intervalk. For simplicity,
we assume that replica creation is instantaneous. Replica
creation delay (i.e., the delay before a replica can accept

accesses after its creation) can easily be accomodated by
properly adjusting replica creation cost. For example, if the
time needed to create a replica is 5 minutes, we can increase
replica creation cost by 5 minute*replica. It can be easily
proven that solving the problem with the new replica cre-
ation cost assuming instantaneous replica creation is equiv-

elant to solving the orginial problem with non-zero replica
creation delay.

At each interval, the accesses in one partition may be ac-
cepted only if there is at least one replica in that parti-

tion. Notice that we need not separately address replica
failures because they are equivalent to one-node partitions
(under the assumption that failed replicas can recover their
states from stable storage). Let writesk;m be the number
of writes accepted by partitionm during intervalk, and let
wsubmitk;m be the number of writes submitted from clients.

Let deptnk;m = _fdepk;ijlocationi 2 partitionm during
intervalkg, which denotes whether partitionm has at least
one replica deployed during intervalk. To avoid excessive
notation, we use boolean variables as binary variables in
arithmetic operations and we have: writesk;m � deptnk;m�
wsubmitk;m. Similar constraint can be constructed for reads.

These constraints and the objective (replication cost) for the
IP problem can all be expressed linearly (see [28]). The only
constraints missing here are consistency constraints, which
will be discussed next. In fact, solving such an IP problem
without consistency constraints results in the minimal repli-
cation cost when no consistency is required (or for read-only

services).

4.2 Effects of 1SR and LIN
1SR requires the execution of the replication system to be
equivalent to a serial execution on a single database. With
1SR, a replica can always accept reads. However, during
any interval, only one partition (the primary partition) can

accept writes (remember we assume a single data item in
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Figure 2: The evolution graph of Figure 1.

the database). Furthermore, two consecutive primary par-
titions must intersect, so that the writes accepted by the
primary in one interval can be transmitted to the primary
in the subsequent interval. We now formalize and prove the
restrictions imposed by 1SR3.

Definition 1. The evolution graph of a faultload is
a directed graph constructed as follows: For each interval
in the faultload, add a node to the graph for each parti-

tion in that interval. Let nodek;m correspond to intervalk,
partitionm. An edge from nodek;m to nodek0;m0 is added if
k0 = k+1 and partitionm0 intersects with partitionm at one
or more candidate locations. A node in the evolution graph
is an ancestor of another node if there is a path from the

former to the latter.

Figure 2 illustrates the evolution graph of the execution in
Figure 1. For clarity, we do not plot client machines. Each

box in the �gure represents a partition, and beside each box
we annotate those accesses submitted within the partition.

Lemma 1. Given any execution that satis�es 1SR, let S

be the set of all (interval, partition) tuples where the parti-
tion accepts at least one write during the interval. Then S
is covered by a path in the evolution graph, i.e., all nodes in
S belong to a particular path.

Proof: See [28]. 2

Based on this lemma, we only need to enumerate all possible
paths in the evolution graph to determine which partitions
can accept writes. Notice we actually only enumerate those
longest paths, i.e., the paths whose length equals to the

total number of intervals. For each path, we dictate that
the nodes not covered by the path cannot accept any writes.
Adding these further constraints to our IP problem results
in a minimal cost for each possible path. The minimal cost
across all possible paths will be the minimal replication cost.

LIN is strictly stronger than 1SR in that it requires the ex-
ecution to be equivalent to a serial execution on a single

3Such formalization based on evolution graphs may not be
necessary for the simple case of 1SR, but we still use such
formalization to prepare for continuous consistency.

database where the accesses are ordered in the same order

as they are accepted by the system. A system under 1SR
can always accept reads because reads can be \serialized" to
the beginning of the execution. With LIN, a read needs to
observe all writes that are accepted before the read. In Fig-
ure 2, C's acceptance of W4 prevents A from accepting R3

because after W4 is accepted, A becomes \inconsistent" and

cannot process any access until it sees W4. With the same
discretization technique as before, we use ablek;i to denote
whether locationi is consistent (\able" to accept accesses)
during intervalk. Formally, suppose nodek;m is the node
in the evolution graph containing locationi in intervalk.
Let unseenk;i be the set of writes accepted by all nodes

nodek0;m0 such that i) k0 � k; ii) nodek0;m0 6= nodek;m and
iii) nodek0;m0 is not an ancestor of nodek;m. LIN dictates
that if ablek;i = 1, unseenk;i must be empty. We can ex-
press this requirement in linear form using a constantMAX
that is large enough (e.g., MAX can be the total number of
writes in the workload): junseenk;ij � (1�ablek;i)�MAX.

The variable ablek;i has a similar e�ect on availability as
deptk;i. Let abletnk;m = _fablek;ijlocationi 2 partitionm
intervalkg and we have: writesk;m � abletnk;m�
wsubmitk;m. A similar constraint on reads can be con-
structed. As for 1SR, we solve an IP problem for each path

enumerated from the evolution graph. The full version of
this paper [28] proves the correctness and tightness of the
lower bound.

5. MINIMAL REPLICATION COST UNDER
CONTINUOUS CONSISTENCY

In this section, we extend our previous results to continuous
consistency. For brevity, we will not rigorously de�ne and
justify the various metrics in the TACT continuous consis-
tency model [27]. Rather, we focus on the model's e�ects on
minimal replication cost. In TACT, consistency is quanti�ed
using three per-replica metrics: order error, numerical error

and staleness. By setting di�erent bounds on the three met-
rics, the model achieves di�erent semantics. For example,
zero order error is equivalent to 1SR, while requiring zero
numerical error and zero order error corresponds to LIN.

5.1 Effects of Order Error
Order error can be viewed as a relaxation from 1SR. Recall

that 1SR allows at most one primary partition in each inter-
val in order to maintain a total order (serialization order)
among all accepted writes. Non-zero order error bounds al-
low the system to relax this total order requirement. More
speci�cally, order error is the number of writes that are out

of order (according to the serialization order) at each replica.
Consider the following example at the end of the second in-
terval in Figure 2. Suppose the system has accepted four
writes,W1,W2,W3 andW4 and the replica at location A has
seenW1,W2 andW3. With serialization orderW1W4W2W3,
the replica has two out of order writes, W2 and W3, since

it does not see W4 and the two writes are ordered after W4

in the serialization order. Order error can be decreased by
�lling in \holes" in the serialization order. If A seesW4 later
on, all writes will become in order.

A non-zero order error bound allows non-primary partitions

to accept writes, and Lemma 1 no longer holds. We now



need to explicitly check the order error at each replica. For-

mally, suppose the node containing locationi of intervalk in
the evolution graph is nodek;m. Let seenk;i be the set of
writes accepted by nodek;m and all its ancestors. In other
words, we partition all writes accepted by the system by the
end of intervalk into two disjoint sets unseenk;i and seenk;i,
for any valid i. Let appliedk;i be the set of writes that a po-

tential replica at locationi applies to its local database at the
end of intervalk, which can be any subset of seenk;i. Let
inorderk;i be the set of writes in seenk;i that are in order
(according to a given serialization order). The replica's or-
der error then equals jappliedk;i� inorderk;ij and it must be
within speci�ed bound boundOE if the replica is considered

consistent4:

appliedk;i � seenk;i (1)

jappliedk;i � inorderk;ij �

boundOE + (1� ablek;i)�MAX (2)

In the inequalities, inorderk;i depends on the serialization
order. Enumerating all possible serialization orders is im-
practical, given that they can be any total order of accepted
writes. Furthermore, we do not yet know the exact set of

accepted writes. In the following, we will gradually distill
\better" serialization orders, with the ultimately goal of re-
ducing the set to a small size for practical problems. We
further show it is possible to enumerate those orders with-
out even knowing which writes are accepted.

We �rst �x the set of accepted writes and de�ne the \better"
relationship among serialization orders. Directly de�ning
\better" serialization orders that result in lower replication
cost can be confusing. Instead, we de�ne that with \better"
serialization orders, more writes will be \in order":

Definition 2. Given an evolution graph and the set of
accepted writes, serialization orders D1 dominates serial-
ization order D2 if the inorderk;i based on D1 is a super set
of the inorderk;i based on D2, for any valid k and i.

It is easy to see that this de�nition does result in \better"
serialization orders in terms of replication cost, since any
execution that uses D2 can also use D1 without violating

any of the constraints (see [28] for formal proof).

Our �rst step of distilling serialization orders is based on
the ancestor partial order among writes. A write W1 is an
ancestor of another write W2 if either i) the node in the
evolution graph accepting W1 is an ancestor of the node

accepting W2 or ii) W1 and W2 are accepted by the same
node and W1 is accepted before W2. Intuitively, since the
ancestors of a write are always seen before the write itself,
it is \better" to place the ancestors before the write in the
serialization order. We construct ANCESTOR, which is

the set of serialization orders that are compatible with the
ancestor partial order. In Figure 2, a serialization order for
W1, W2, W3 and W4 can be any of the 24 possible permuta-
tions of the four writes, while ANCESTOR only contains

4Setting appliedk;i to ; will trivially satisfy the constraints,
but the constraint on numerical error in the next section
rules out this trivial solution.

W1W2W3W4,W1W2W4W3 andW1W4W2W3. The following

lemma sketches why ANCESTOR dominates all serializa-
tion orders, with full proof in [28].

Lemma 2. For any serialization order D, there exists an-
other serialization order D0 2 ANCESTOR such that D0

dominates D.

Proof sketch: We re-arrange D step by step until it be-
comes compatible with ancestor order, while ensuring that
the new serialization order dominates D. Consider any two
writes W1 and W2, where W1 is an ancestor of W2. Sup-
pose W2 precedes W1 in D = S1W2S2W1S3, where S1,

S2 and S3 are arbitrary write sequences. We construct
D0 = S1W1W2S2S3. It is easy to see that D0 dominates
D because W1 is an ancestor of W2 and any location that
sees W2 must have seen W1.

Next, careful global re-arrangements can be done according

to the topological ordering of the writes, so that each step
does not introduce new conicts with ancestor order. Fi-
nally, we have a serialization order that dominates D and
that is compatible with the ancestor order. 2

For our next step of distillation, de�ne CLUSTER to be

the set of serialization orders that are in ANCESTOR and
where writes accepted by the same node in the evolution
graph cluster together. In our previous example with four
writes, CLUSTER only contains W1W2W3W4 and
W1W4W2W3, since W2 and W3 are accepted by the same
node and thus cluster together. The intuition of this step is

that for writes accepted by the same node, either all or none
of them belong to seenk;i (for any k and i), thus it never
hurts to cluster them together. The following lemma shows
that CLUSTER dominates ANCESTOR, with full proof
in [28].

Lemma 3. For any serialization order D 2 ANCESTOR,
there exists another serialization order D0 2 CLUSTER
such that D0 dominates D.

Proof sketch: We will again adjust D step by step un-
til it is in CLUSTER, while ensuring the new serializa-

tion order dominates D. Without loss of generality, suppose
D = S1W1S2W2 : : : SnWnSn+1, whereW1,W2, : : : , andWn

are the writes accepted by the same node in the evolution
graph. We construct D0 = S1W1W2 : : :WnS2S3 : : : SnSn+1.
Because D is compatible with ancestor order, it can be

shown that no writes in S2, S3, : : : , Sn are ancestors of
W1, W2, : : : , or Wn. Thus D0 is compatible with ances-
tor order also. To prove that D0 dominates D, notice our
adjustment \pushes back" the sequences S2, S3, : : : , Sn
toward the end of the serialization order. If a write W ,
W 2 fS2 [ S3 [ : : : [ Sng, is in order based on D, the lo-

cation must have seen W1. Since W1, W2, : : : , Wn are all
accepted by the same node in the evolution graph, we know
the location must have seen all of them. It is then easy to
see W is in order based on D0.

We have shown thatD0 dominatesD. Apply the previous re-

arrangement for each node in the evolution graph and we will



obtain a serialization order in CLUSTER that dominates

D. 2

Hence, a small set of serialization orders, CLUSTER, dom-
inates all serialization orders. However, the set CLUSTER
depends on the set of accepted writes. To avoid considering
di�erent sets of accepted writes, we use the concept of logical

writes and logical serialization orders (a sequence of logical
writes). We let each node nodek;m in the evolution graph
accept a logical write that stands for writesk;m number of
physical writes. A location's order error is computed to be
the total number of physical writes in out-of-order logical
writes. If all logical writes stand for one or more physical

writes, this is equivalent to using physical serialization or-
ders. However, since some of the logical writes may stand
for zero physical writes, false \holes" may appear in the se-
quence. Fortunately, we can show that this does not a�ect
correctness:

Lemma 4. Given a logical serialization order D =
Y1Y2 : : : Yn 2 CLUSTER, suppose logical serialization or-
der D1 = X1X2 : : : Xm is obtained by deleting those logi-

cal writes in Y1Y2 : : : Yn that stand for zero physical writes.
Then there exists another logical serialization order D2 2

CLUSTER, such that D2 dominates5 D1.

Proof sketch: We construct D2 = Z1X1Z2X2 : : :
ZmXmZm+1 from D by \pushing" all logical writes in D
that stand for zero writes as far back as possible without vio-
lating ancestor order. It then follows that D2 2 CLUSTER
since we carefully preserve ancestor order. Next, we show

that for any physical write in Xi, if it is considered in order
based on D1, it must be considered in order based on D2.
This is true because the logical writes in Zi are all ancestors
of Xi for 1 � i � m, and if a location sees X1X2 : : : Xj , it
must have seen Z1X1Z2X2 : : : ZjXj for 1 � j � m. 2

With the previous lemma, we know it is safe to use logi-
cal serialization orders in place of physical ones and the set
CLUSTER is actually the set of all topological orderings of
the evolution graph as a DAG.

5.2 Effects of Numerical Error and Staleness
Numerical error can be viewed as a relaxation from LIN.
Informally, numerical error is the number of \missing" writes
on a replica. LIN requires numerical error to be zero for

all consistent replicas. With continuous consistency and a
numerical error bound of, for example, 2, if C accepts W4 in
Figure 2, A may still accept R3 because its numerical error
is only one.

Formally, using our previous notations, the numerical er-

ror of the replica at locationi at the end of intervalk is
junseenk;ij + jseenk;ij � jappliedk;ij . Suppose boundNE is
the maximal allowed numerical error, we have:

junseenk;ij+ jseenk;ij � jappliedk;ij �

boundNE + (1� ablek;i)�MAX (3)

5Here we slightly abuse the de�nition of \dominate", since
D1 and D2 contain di�erent sets of logical writes. However,
the meaning should be clear from the context.
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is fully connected
Intervals when the network

Original Faultload

Figure 3: Splitting a faultload into sub-faultloads.

The third metric in the consistency model, staleness, bounds
the age of missing writes. For any write W accepted at wall
clock time t, a replica must see W by time t + boundST
in order to be consistent, where boundST is the bound on

staleness. For any intervalk, de�ne endtime(intervalk) to
be the wall clock time that intervalk ends. Then a consis-
tent replica in intervalk must see all writes accepted before
time endtime(intervalk) � boundST . Without loss of gen-
erality, we assume endtime(intervalk) � boundST falls on
the boundary of two intervals: We can always split the in-

terval if it falls in the middle of an interval. De�ne stalek
to be the set of all writes accepted during intervalk0 such
that endtime(intervalk)� endtime(intervalk0) � boundST .
Given that for locationi in intervalk, the set of missing
writes are unseenk;i [ (seenk;i � appliedk;i), staleness im-
poses the following constraint:

j(unseenk;i [ (seenk;i � appliedk;i)) \ stalekj

� (1� ablek;i)�MAX (4)

Inequality 1, 2, 3 and 4 are the new inequalities for the
IP problem under continuous consistency. Finally, we com-
pute the minimal replication cost under continuous consis-
tency by enumerating logical serialization orders based on
the evolution graph. We construct an IP problem for each

order enumerated, and choose the smallest cost across all
serialization orders as the lower bound. The full version of
this paper [28] proves the correctness and tightness of the
lower bound.

6. OPTIMIZATIONS
Because we enumerate serialization orders and use IP in
our algorithm, the worst case complexity of the algorithm is
exponential. In this section, we present two important opti-
mizations to make the computation tractable for relatively
large problems. First, we observe that many candidate loca-

tions (up to 90% of all candidate locations depending on the
faultload) are always connected with each other throughout
practical faultloads. Intuitively, these locations are \equiva-
lent" and we can delete all but one, thus reducing the num-
ber of binary variables in the IP problem by up to 10 fold.
Since IP solvers have exponential complexity, this reduction

is signi�cant. The formal correctness proof for this opti-
mization is available in [28].

The second optimization we apply is to calculate local opti-
mal values instead of a global optimal value, by \splitting"
a long faultload into many sub-faultloads. Our algorithm

implicitly assumes that at the beginning of the execution,



Failure Inter-Arrival Failure Duration Failure Inter-Arrival Failure Duration
Faultload Mean for Node Mean for Node Mean for Link Mean for Link

FL100:0.1% 5 days 1 minute 20 weeks 1 minute

FL100:0.5% 1 day 1 minute 4 weeks 1 minute

FL100:1% 12 hours 1 minute 2 weeks 1 minute

FL100:3% 12 hours 3 minutes 2 weeks 3 minutes

FL600:1% 12 hours 1 minute 2 weeks 1 minute

Table 1: Parameters used in generating our faultloads.

the replicas are fully \in sync." To make sure such assump-
tion is satis�ed at the beginning of each sub-faultload, we
can only split the faultload at intervals when the network is
fully connected (Figure 3). In order words, all sub-faultloads
(except the last one) should end with a fully-connected inter-
val. During any fully-connected interval, inconsistency can

be fully resolved and thus the replicas are fully \in sync"
again. In our experiments, we split one-day long faultloads
into 20 to 50 sub-faultloads, which helps to reduce the size
of CLUSTER by up to 1020 fold in large problems. Because
replication cost is a summation, the sum of local minimal
costs is a lower bound on global replication cost. However,

because we do not include replica creation/teardown cost
across sub-faultloads, the bound is no longer tight. To see
how close to tight the bound is, we add the worst-case cre-
ation/teardown cost across the sub-faultloads to the lower
bound, and obtain an achievable replication cost. The closer
it is to the lower bound, the closer to tight the lower bound

is. In the next section, we will discuss how close to tight the
bound is in practical problems.

7. EXPERIMENTAL RESULTS
We implemented our algorithm and present the results in
this section. The main purpose of this section is to validate
the practicality of our algorithm and we defer the evalua-
tion of replication cost under various con�gurations to the
full version [28] of this paper. This section: i) shows that

the exponential complexity of our algorithm is tractable in
practical cases; ii) demonstrates that the error introduced
by discretization is small; iii) shows that the minimal repli-
cation cost is close to tight under low replica creation and
teardown costs.

We �rst describe our experimental con�guration. Because
there are no Internet traces that measure the connectiv-
ity matrix among hundreds of nodes, we obtain our fault-
loads using an event-driven simulator based on Internet-like
topologies [29]. The sample Internet topologies only con-

tain routers. For each router in the topology, we attach
two end machines, one as a candidate location for replicas,
and another as a client. We then inject failure and recovery
events to the nodes and links in the topology and fault-
loads are generated by computing the connected compo-
nents of the graph as a function of time. Both failure inter-

arrival time and duration are exponentially distributed. We
use two di�erent topologies, one with 100 candidate loca-
tions, and the other has 600 candidate locations. We vary
the parameters in the failure model and obtain a series
of faultloads: \FL100:0.1%", \FL100:0.5%", \FL100:1%",
\FL100:3%" and \FL600:1%". For example, the faultload

\FL100:0.5%" is one based on 100 candidate locations, with

an average path failure rate of 0.5%. The average path fail-
ure rate describes how often two nodes in the network cannot
communicate on average. We center the failure rate around
1% because one recent study [7] shows a 1.5-2% average
failure rate in today's Internet. Table 1 summarizes the
parameters we use for the exponential distributions. For

node failures, we also use a correlation model. Whenever
a node fails, we assume that the entire domain where the
node resides completely fails (because of correlated failures)
with 1% probability and that its adjacent nodes fail with 5%
probability. All our faultloads are one-day long. For work-
loads, we use two publicly available web client traces [8, 19]

and a synthetic one based on a Poisson distribution of re-
quest arrivals. We vary required consistency level from LIN
to no consistency and the availability target from 99% to
100%.

The computational complexity of our algorithm is largely de-

termined by the number of serialization orders enumerated
and the size of the IP problems. Both factors are a�ected by
the number of intervals in the sub-faultloads, which in turn
depends on how often the candidate locations become fully
connected with each other. Because the complexity of the
algorithm is exponential, the time to solve the problem for

a faultload is often dominated by the time to solve for the
longest sub-faultload. For our faultloads, the length of the
longest sub-faultload varies from 10 to 60 intervals (roughly
10 to 60 minutes in realtime). Given a sub-faultload, the size
of the IP problem is determined by the number of candidate

locations after applying the optimization in Section 6. In
our experiments, the optimization can reduce the number
of candidate locations from hundreds to tens, since many
of them are connected with each other throughout a single
sub-faultload. With a �xed sub-faultload, the number of
enumerated serialization orders is mainly determined by the

number of partitions containing writes and their ancestor
relations. For partitions without submitted writes, we do
not need to introduce logical writes for them. In our sub-
faultloads, the total number of partitions varies from 20 to
844, among which 7 to 98 partitions have writes. At any sin-
gle point of time, there are usually only a small number of

partitions coexist, with the maximum number ranging from
4 to 18 depending on the faultload. The full version of this
paper [28] provides full characterization of each faultload
based on these metrics.

For all faultloads with 100 candidate locations, our algo-

rithm enumerates less than 5,000 serialization orders and
the total number of variables in each IP problem is on the
order of thousands. These �gures are consistent with the
number of intervals, the number of candidate locations and
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the number of partitions described earlier. The computation
time ranges from 10 minutes to 12 hours on a Sun Ultra-5
workstation. The variation on computation time across ex-
periments is large, mainly because the IP solving time is

highly dependent on the parameters. For \FL600:1%", the
problem can be solved within one day with the NASA [19]
workload. With other workloads, the algorithm does not �n-
ish after three days' computation. From our experiments,
we believe our algorithm's complexity is tractable for prac-
tical problems with hundreds of candidate locations. Many

further optimizations can be applied to solve larger problems
(e.g., use approximate IP solvers).

In our algorithm, we use discrete variables depk;i and ablek;i
for each interval and location to approximate a continuous

process. With this discretization technique, the shorter the
interval length, the more accurate the results. Figure 4 plots
the minimal replication cost and achievable replication cost
as a function of the maximal length of an interval under
\FL100:1%", the ClarkNet [8] workload, LIN and 99.7%
availability target (highest availability achievable under this

con�guration). The lower bound curve is roughly at, mean-
ing the error introduced by discretization is small. Results
for other con�gurations are similar. The �gure also shows
that with larger interval length and fewer sub-faultloads,
the bound becomes tighter. Based on these results, we set
the maximum interval length to 60 seconds in all our other

experiments.

The original tightness of our lower bound is broken by the

sub-faultload optimization in Section 6 and we now study
how close to tight the bound is with the optimization. Let
tightness factor be the ratio between achievable replication
cost and the replication cost lower bound. The closer the
tightness factor is to 1.0, the closer to tight the bound is.
Our �rst set of experiments use 5 replica*minute creation

cost and zero teardown cost, which means the cost for creat-
ing a replica is equivalent to the cost of using it for 5 minutes.
For all con�gurations, the tightness factor is consistently
below 1:20. We also experiment with di�erent creation and
teardown costs, and observe a roughly linear relationship be-
tween creation/teardown cost and tightness factor. Figure 5

presents the results under \FL100:1%", the ClarkNet [8]
workload, no consistency and 100% availability target. Re-
sults on other con�gurations are similar. The tightness of
the bound can be improved by using longer sub-faultloads,
which also increases computation complexity. The one-hour
long sub-faultloads we use provide some intuition behind the

results: The minimal replication cost for each sub-faultload
is on the order of one hour*replica, while the extra cre-
ation and teardown cost at the sub-faultload boundary is
on the order of 5 replica*minute. In summary, we believe
the bound is fairly close to tight under low replica creation
and teardown cost.

8. CONCLUSIONS
Motivated by replicated Internet services, web hosting ser-
vices and content delivery networks, we propose and for-
malize the problem of minimal replication cost for a given
availability target. Through pruned serialization order enu-

meration and integer linear programming, we design the �rst
algorithm we are aware of to solve this problem. The lower
bound can help guide future design of replication systems.
Based on Internet-like topologies and web client traces, we
demonstrate that the exponential complexity of the algo-
rithm is tractable for practical problems with hundreds of

candidate locations. We also show that the bound is close
to tight in practical problems with low replica creation and
teardown cost.
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