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ABSTRACT
Counting the number of RFID tags, orRFID counting, is needed
by a wide array of important wireless applications. Motivated by
its paramount practical importance, researchers have developed
an impressive arsenal of techniques to improve the performance of
RFID counting (i.e., to reduce the time needed to do the counting).
This paper aims to gain deeper and fundamental insights in this
subject to facilitate future research on this topic.

As our central thesis, we find out that the overlooked key design
aspect for RFID counting protocols to achieve near-optimalper-
formance is a conceptual separation of a protocol into two phases.
The first phase uses small overhead to obtain a rough estimate,
and the second phase uses the rough estimate to further achieve an
accuracy target. Our thesis also indicates that other performance-
enhancing techniques or ideas proposed in the literature are only of
secondary importance. Guided by our central thesis, we manage to
design near-optimal protocols that are more efficient than existing
ones and simultaneously simpler than most of them.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless Communi-
cation; C.2.8 [Mobile Computing]: Algorithm/Protocol Design
and Analysis; C.3 [Special-Purpose and Application-Based Sys-
tems]: Real-time and embedded systems

General Terms
Algorithms, Design, Experimentation, Performance, Theory
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RFID; Counting; RFID counting protocols; Lower bounds; Two-
phase
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1. INTRODUCTION
Radio-frequency identification (RFID) technology uses RFID tags
and RFID readers (or simply calledtagsand readers) to monitor
objects in physical world. A tag is a low-cost microchip thatcan
be attached to an object. It can store some information (including
a unique ID) and can communicate with a reader through wire-
less channel. Over the past decade, RFID technology has enjoyed
significant growth. With more than3 billion tags sold in 2012,
RFID technology has by now impacted applications ranging from
inventory control, supply chain management, to people tracking. A
common basic functionality needed by many of these applications
is RFID counting— to count the number of tags and thus the num-
ber of tagged objects in certain physical area [17]. For example:

• Wal-Mart [2] puts tags on individual clothes. Here RFID count-
ing provides information about sales trend and speeds up the
restocking process.

• Purdue Pharma [4] has tagged millions of its tablet bottles.Here
RFID counting ensures the right amount of its products are pass-
ing through its manufacturing, packaging, and shipping process.

• Many events (e.g., TechEd [1] and Bonnaroo festival [3]) dis-
tribute RFID wristbands to their visitors. Here RFID counting
helps reveal the number of people around.

Often in such scenarios, it is desirable to simply count or just es-
timate the number of tags without explicitly identifying individual
tags. This helps to significantly reduce the processing time, pre-
serve people’s privacy, and avoid the cost incurred for handling a
large amount of unnecessary information. In addition to itsdirect
utility, RFID counting can also serve as a preprocessing step and
help other tasks. For example, even if one were still to identify
individual tags, knowing the rough number of tags can make the
identification process much more efficient [12, 20]. As another ex-
ample, one can use RFID counting to help find popular categories
in a large collection of tags [19].

In this paper, we will consider two common versions of RFID
counting problem. The firstsingle-set RFID countingproblem is
simply to count the number of tags in a given physical area, using
a single stationary reader whose radio range covers that entire area.
In the secondmultiple-set RFID countingproblem, the reader’s ra-
dio range cannot cover the whole area. Instead, the (single)reader
becomes mobile and sequentially visits a number of locations, so
that the union of the coverages at these locations can cover the
whole physical area. Note that the coverage at different locations
may overlap and hence double counting needs to be avoided.

In both versions of the problem, a key performance metric is the
amount of time needed to count or estimate the total number oftags,
which will be the focus of this work. Since exact results are often
not necessary for many applications (e.g., for the earlier example
application scenarios) and since the overhead of exact counting is



fundamentally high,1 as in most prior efforts [9, 12, 13, 16, 18, 24,
25], we will focus on approximate counting.

Previous efforts. Given the paramount practical importance of
RFID counting, there have been a steady stream of recent research
efforts on efficient RFID counting. To reduce the overhead (time)
needed to count (i.e., to improve theperformance), these efforts
have developed an impressive arsenal of novel techniques, such as
probabilistic framed ALOHA [12], multi-resolution probing [13],
lottery frame protocol [16], first non-empty slot based estimation [9],
probabilistic estimating tree [24], average run based estimation [18],
and zero-one estimator [25].

While these efforts all aim at reducing the overhead of RFID
counting, they often approach the problem from rather different
perspectives without being guided by a central principle. This has
led to ad hoc research outcomes where different researchersview
different aspects of RFID counting protocols as key. For example,
some researchers focus on using novel statistical quantities to es-
timate the count [9, 16, 18], some researchers put more emphasis
on obtaining optimal trade-offs among different protocol parame-
ters [13, 18], while others resort to gradually refining the parame-
ters via an adaptive iterative process [9, 12].

The fundamentals of the RFID counting problem get easily buried
among all these research outcomes — At this point, it is far from
clear whether all these techniques are equally important orwhether
one technique plays the dominant role. Such a lack of deep under-
standing hinders future research on RFID counting — if we would
like to advance the state of the art, should we combine all these
techniques despite the resulting complexity? Or should we focus
on improving one of them and ignore others?

Our goal. Given such a lack of fundamental understanding into the
RFID counting problem, this paper aims to gain deeper insights to
facilitate future research. Specifically, we aim to answer the fol-
lowing three key questions, none of which have been posed or an-
swered in prior efforts:

• Question 1:Given the long list of protocols in the literature, how
much room is there for further improvement?

• Question 2: What are the key aspects that determine a RFID
counting protocol’s performance? What are the techniques that
are only of secondary importance?

• Question 3:Guided by the answers to the earlier two questions,
can we easily design simple protocols that outperform existing
ones?

Our results. Our main contributions are precisely the answers to
these three questions:

• Answer 1: Lower bounds.To determine how much improvement
is still possible, we obtain strong lower bounds on the overhead
of RFID counting, by leveraging a recent breakthrough result on
communication complexity [5]. Our lower bounds show that itis
impossiblefor a single-set RFID counting protocol to use only
o( 1

ǫ2 log 1

ǫ

+ log log n) time slots for all inputs. Heren is the

number of tags to count, andǫ is the relative error on the final
output of the protocol (since we are considering approximate
counting). In eachtime slot, the reader may broadcastO(1) bits
to the tags, and all the tags combined can send backO(1) bits
to the reader. A similar lower bound is obtained for multiple-set
RFID counting.

We then compare these lower bounds with the asymptotic over-
head of existing protocols. Such comparison readily reveals that:

1As implied by our formal lower bound results in Section 3.

– For single-set RFID counting, some existing protocols’ per-
formance is already asymptotically close to optimal. Im-
provements are still possible though one should not expect
huge improvements.

– For multiple-set RFID counting, existing protocols’ perfor-
mance is further away from optimal. Larger improvements
hence seem still possible.

• Answer 2: The overlooked key design aspect for approaching
optimal performance.We identify that a key design aspect for
single-set RFID counting protocols to approach optimal perfor-
mance is to have two conceptual phases: The first phase uses
roughlyΘ(log log n) slots to obtain a rough estimate with con-
stant (e.g.,0.5) relative error, and the second phase uses roughly
Θ( 1

ǫ2 log 1

ǫ

) slots to eventually obtain a final estimate with the

desired relative error ofǫ. Our thesis further indicates that many
other performance-enhancing techniques or ideas proposedin
the literature are only of secondary importance. We also gener-
alize this answer to multiple-set RFID counting protocols.

It is worth noting that our answer to this question is quite sur-
prising because prior efforts [9, 12, 13, 16, 18, 24, 25] of-
ten view various other aspects of RFID counting protocols as
key, and have overlooked this two-phase aspect. Those efforts
also attribute their performance improvements to various clever
techniques on those aspects(e.g., the use of novel statistical
quantities to do the estimation, the use of complex optimization
techniques to tune various parameters, and the use of iterative
process to refine the estimation).Our answer implies that all
those design aspects are perhaps less important than originally
thought.

As direct evidence to support our claim, this paper carefully ex-
amines the source of performance gains in some existing RFID
counting protocols. For example, some recent protocols [9,18]
attribute their performance improvements over prior protocols
to the use of the novel statistical quantities to do the estimation.
Quite surprisingly, in our experiments, we find that these novel
quantity does not necessarily improve the performance of these
protocols: Replacing these novel quantities with some old quan-
tity from some earlier protocol [13] either improves the proto-
cols’ performance or provides comparable performance in our
experiments. We further show that the source of performance
gains in these protocols is their two-phase design, despitethat
such a two-phase design was not considered as the key.

• Answer 3: Simple & more efficient RFID counting protocols.
Guided by our answers to the earlier two questions, we set outto
search for more efficient RFID counting protocols while keeping
our design as simple as possible. We manage to design such
protocols by simply putting together a few basic building blocks
(with some rather minor adaptations) from the literature. We do
not claim novelty on these building blocks – instead, we aim to
show that simply putting them together in aproper manneras
guided by our earlier answers is already sufficient to outperform
existing protocols. This serves as an ultimate validation of the
utility of our earlier findings.

Specifically, our RFID counting protocols are significantlysim-
pler than most existing protocols — for example, we do not need
iterative refinement or to solve optimization problems to tune
parameters. Despite the simplicity, our experiments show that
our single-set (multiple-set) RFID counting protocol is around
100% (500%) faster than the best existing single-set (multiple-
set) RFID counting protocol. Furthermore, our protocols are
near-optimaland are within a smallO(log 1

ǫ
) factor from the

lower bounds, for both single-set and multiple-set RFID count-
ing.
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Figure 1: A multiple-set RFID counting example: A mobile
reader sequentially visits three locations.

Roadmap. The next section formalizes the RFID counting prob-
lem. Section 3 proves lower bounds on the overhead of single-set
and multiple-set RFID counting. Section 4 reviews major exist-
ing RFID counting protocols. Section 5 presents our thesis on the
overlooked key design aspect of RFID counting. Section 6 pro-
vides direct and immediate evidence to support our thesis byex-
amining the source of performance gain of some recent protocols.
Section 7 demonstrates the utility of our insights by applying them
to construct new protocols that are both simple and more efficient.
Section 8 and Section 9 discuss variant models and related work.
We conclude in Section 10.

2. PROBLEM FORMULATION
This section formalizes the RFID counting problem. We define

the overhead of RFID counting protocols mainly for later studying
the asymptotic lower bound on the problem and the asymptoticup-
per bound achieved by the protocols. Hence our formulation here
will only be concerned with asymptotic overhead.

Single-set and multiple-set RFID counting.In thesingle-set RFID
countingproblem, the reader covers a certain physical area. LetS
denote the set of tags in that area, and letn = |S|. The goal of
the counting protocol is to produce an estimaten̂ for n, so that
Pr(|n̂ − n| ≤ ǫn) ≥ 1 − δ, with the probability taken over the
random coin flips done by the randomized protocol. Hereǫ andδ
captures the target estimation quality, and should be specified by
the end user. We also refer toǫ as therelative errorof n̂. We call
n̂ as having(ǫ, δ) estimation qualityand calln̂ itself as an(ǫ, δ)
estimate.

In themultiple-set RFID countingproblem (Figure 1), a mobile
reader sequentially visitsk locations exactly once.2 At location i,
the reader’s radio range covers a setSi of tags. Letni = |Si|. The
goal of the counting protocol is to produce an(ǫ, δ)-approximation
n̂ for n, wheren = |S1∪S2∪...∪Sk|. Usuallyn 6= n1+n2+...+
nk since theSi’s may overlap. Note that such formulation of the
multiple-set RFID counting problem implicitly but fully captures
more general application scenarios. For example, it also captures
the setting where a static reader takes a sequence of snapshots of
mobile tags and then counts the total number of tags.

Since we aim for(ǫ, δ) estimation quality, the RFID counting
protocols are essentially Monte Carlo randomized algorithms [15].
In our reasoning on asymptotic overhead, we will adopt the follow-
ing standard way of treatingδ in Monte Carlo algorithms [15]: We
will only require the protocol to achieve constantδ (e.g.,0.2). It is
well-known that to achieve a smallerδ, one can repeat the protocol
O(log 1

δ
) times and then take the median of theO(log 1

δ
) outputs

as the final output. A constantδ helps simplify our discussion.

Abstracting RFID counting protocols. In an RFID counting pro-
tocol, the reader communicates with tags in synchronized time slots.
In Section 1, we explained that in each time slot the reader and the

2Some researchers (e.g., [18]) consider asimpler variant of the
problem by assumingparallel access to all sets through multiple
readers. Section 8 discusses this simpler variant.

tags can exchangeO(1) bits. Without loss of generality, from now
on, we will assume that in each time slot the reader may sendO(1)
bits to the tags, while all the tags collectively can either send a
single bit of “1” or send nothing.3 Such treatment is without loss
of generality because our formalization here is only for reasoning
about asymptotic overhead — one can easily useO(1) slots to send
O(1) bits. We say that a tagrespondsin a slot iff it sends back a
“1” bit. If there exists at least one tag responding in a slot,the slot
becomesnon-empty. Otherwise the slot isempty.

Now consider a given slot. Since the tags are distributed, each
tag will need to unilaterally determine whether it will respond,
based on its id, random numbers generated locally, and its current
state (since the protocol may be stateful), and the bits received from
the reader. For our formal reasoning later, it will be convenient to
imagine that in each slot the reader conceptually specifies aboolean
predicate functionf . A tag responds in the slot iff it satisfies the
predicatef . Note that the RFID counting protocol may be stateful
— this is captured by allowing the functionf to take the local state
(i.e., local variables) of the tag as an input as well.

Measure of goodness.Our measure of goodness (orperformance)
of an RFID counting protocol is the amount of time it needs. When
studying asymptotic behavior, this is the same as the total number
of slots used by the protocol. Hence we define theasymptotic over-
headof a protocol to beO(x), if for all inputs, it needsO(x) slots
on expectation for achieving the accuracy target. Here the expecta-
tion is taken over the coin flips done by the randomized protocol.

3. LOWER BOUNDS ON THE OVERHEAD
OF RFID COUNTING PROTOCOLS

We first consider single-set RFID counting, and then generalize
to multiple-set RFID counting.

Single-set Counting: Lower bound as a function ofǫ. We will
use a standardreductionapproach to obtain our novel lower bound
on the overhead of a RFID protocol. For readers not familiar with
reduction, following is a quick explanation. To prove that aprob-
lemA (in our case, the RFID counting problem) is hard and hence
to obtain a lower bound for the complexity of any protocol that
solvesA, a common approach (calledreduction) in complexity re-
search is to establish a connection with another hard problem B.
Namely, one first shows that any protocol for solvingA can be
used, as a black box sub-procedure, to solveB. Next sinceB is
hard, any protocol for solvingB must incur large overhead. This in
turn can be translated back to reason about the hardness ofA.

The key step/challenge in reduction is to choose a properB and
then to show how to construct a protocol for solvingB, given any
protocol for solvingA. We choose theHamming Distance Estima-
tion (HDE) problem as the hard problemB. HDE is a two-party
communication complexity problem, where the two parties Alice
and Bob are givenn-bit stringsx andy as input respectively. They
would like to estimate the hamming distance betweenx andy, with
(ǫ, δ) estimation quality, while minimizing the number of bits they
need to exchange. A recent breakthrough result by Chakrabarti
and Regev [5] implies that even for a constantδ, solving the HDE
problem requiresΩ(1/ǫ2) bits of communication between Alice
and Bob (forǫ ≥ 1/

√
n).

With HDE as problemB, our goal now is to design a protocol
for solving HDE, using any given RFID counting protocolP as a
building block. To do so, Alice and Bob will locallysimulatean
execution ofP . Specifically, they will simulaten RFID tags, with
IDs from1 throughn. We want tagi to bepresentand be included

3Some protocols (e.g., [12]) assume that the reader can further dis-
tinguish whether a single tag or multiple tags send a bit. We will
cover this extended model in Section 8.



in the RFID counting result iffx[i] 6= y[i]. All other tagsj where
x[j] = y[j] should beabsentand will not be included in the count.
This will make the RFID count to exactly equal the hamming dis-
tance betweenx andy, hence solving the HDE problem once we
know the count.

Now to properly simulate the execution ofP with those present
tags, Alice/Bob needs to determine which slots in the simulated
execution ofP are empty. Doing so enables Alice/Bob to simu-
late the responses received in all these slots and feed thoseinto P
to obtain the final count. For each slot, we will show that Alice
and Bob can determine whether it is empty by only exchanging
O(log 1

ǫ
) bits. Consider the first slot.P must have specified a

predicatef for the first slot. Alice/Bob can thus locally determine
the set of tags (e.g., tag2, 6, and7) that satisfyf . Next Alice
computes a short fingerprint of sizeO(log 1

ǫ
) for the (potentially

long) stringx[2]x[6]x[7] and sends to Bob. Bob similarly computes
the fingerprint overy[2]y[6]y[7] and compares the two fingerprints.
For now assume no fingerprint collisions (collisions will beprop-
erly addressed in our proof). Then the two fingerprints differ iff
x[2] 6= y[2] or x[6] 6= y[6] or x[7] 6= y[7], which in turn is equiv-
alent to tag2 or tag6 or tag7 being present, and also equivalent
to the first slot being non-empty. Alice and Bob now have success-
fully determined whether the first slot is empty or not. Emptiness
of later slots can be sequentially determined in a similar way.

Formalizing the above intuition will lead to the following theo-
rem, whose proof is in our technical report [6]:

THEOREM 1. No single-set RFID counting protocol can output
an(ǫ, 0.2) estimate witho( 1

ǫ2 log 1

ǫ

) overhead, forǫ ∈ [1/
√

n, 0.5].

Single-set Counting: Lower bound as a function ofn. One natu-
rally expects that the number of slots needed by an RFID counting
protocol will increase withn as well. For example, to approxi-
mate every possible tag count between1 to n within a relative error
of 0.5, a deterministic RFID counting protocol needs to be ready to
outputΩ(log n) different values, withat leastone in each of ranges
[1, 2], [4, 8], [16, 32], ... TheseΩ(log n) different values require at
leastΩ(log log n) bits (i.e., slots used by the RFID counting pro-
tocol) to encode. To extend this argument to randomized RFID
counting protocols with(ǫ, δ) guarantee, we leverage Yao’s well-
known minimax principle [22] on the complexity of randomized
algorithms. Doing so will eventually yield a similarlog log lower
bound (see our technical report [6] for full proof):

THEOREM 2. No single-set RFID counting protocol can output
an (ǫ, 0.2) estimate witho(log log n) overhead, forǫ ≤ 0.5.

Single-set Counting: Putting everything together.
COROLLARY 3. No single-set RFID counting protocol can out-

put an(ǫ, 0.2) estimate witho( 1

ǫ2 log 1

ǫ

+ log log n) overhead, for

ǫ ∈ [1/
√

n, 0.5].
This corollary also implies the difficulty of exact counting: Ex-
act counting is no easier that approximate counting withǫ = 1√

n
,

whereo( n
log n

) overhead is already impossible.

Multiple-set Counting: Lower bounds. Recall that in multiple-
set RFID counting, the RFID reader sequentially sees a sequence of
(potentially overlapping) setsS1, S2, ...,Sk. The goal is to estimate
the size of the union of all these sets. We can show that in the
worst case, to estimate the size of the union, it is actuallynecessary
for the protocol to estimate with similar accuracy the size (ni) of
each individual setSi. Formalize such intuition, together with our
single-set RFID counting lower bound, would lead to the following
theorem, whose proof is in our technical report [6]:

THEOREM 4. No multiple-set RFID counting protocol can out-
put an(ǫ, 0.2) estimate witho(

Pk
i=1(

1

ǫ2 log 1

ǫ

+ log log ni)) over-

head, forǫ ∈ [1/
p

min{n1, n2, . . . , nk}, 0.25].

Key implications of our lower bounds — how much room is
there for further improving RFID counting protocols? As we
will show in Section 5, in terms of asymptotic overhead, the best
existing single-set RFID counting protocol incurs an overhead of
O( 1

ǫ2
+ log log n). This is already close to our lower bound. Im-

provements may still be possible though one should not expect
huge improvements. For multiple-set RFID counting, the best ex-
isting protocol incurs an overhead ofO( k

ǫ2
log log(

Pk
i=1 ni)). It

exhibits a larger gap from our lower bound — in particular, this
overhead is multiplicative while our lower bound is additive. Hence
significant asymptotic improvement seems still possible.

4. REVIEW OF THE MAIN IDEAS IN
EXISTING PROTOCOLS

This section concisely reviews major RFID counting protocols
in the literature (Table 1). This serves to set up the stage for our
later discussion on which design aspects are key for RFID count-
ing protocols. For each protocol, we will highlight which design
aspects are believed by the original authors as the key aspects of
that protocol. Throughout this section, we useñ to denote a rough
estimate onn (e.g., with constant relative error), and̂n to denote
the final estimation onn with ǫ relative error.

These protocols adopt some common concepts. Each of these
protocols is comprised of a sequence oftrials, where each trial is
a sequence of slots. At the beginning of a trial, the reader sends a
command to the tags. This causes the tags to initialize theirlocal
state machines and potentially load new random numbers. Next in
each slot within that trial, a tag will respond or not respondbased
on the command, its local state, and its random number. For all
existing protocols, a tag does not carry state across trial boundary.
Due to the processing needed at the beginning of a trial, in certain
physical implementations of RFID systems, a trial may incuran
additionalper-trial overhead. If there is indeed such overhead, this
extra overhead will be in addition to the time needed for all the slots
in that trial [7].

The number of slots in a trial is called thelengthof the trial. Re-
call that a slot is either empty or non-empty, depending on whether
there is at least one tag responding in that slot. A non-emptyslot is
called acollisionslot iff at least two tags respond in that slot.

One simple way of running a trial, as adopted by multiple pro-
tocols, is to start a trial of lengthl and let each tagparticipate in
that trial with a certain probabilityp, with totalnp tags participat-
ing on expectation. Here we say a tagparticipatesin such a trial
iff it chooses a uniformly random slot within that trial and then re-
sponds in that slot, and we call such a trial aballs-and-bins trial.
The value ofn can then be estimated from various statistical quan-
tities on the status of the slots. A basic principle, which will help
us understand these protocols, is that usually we want to usea p
value such thatnp is on the same order asl. This ensures that we
see a healthy mixture of empty and non-empty slots in the trials,
maximizing the amount of information carried aboutn. Besides
such balls-and-bins trials, existing protocols have also developed
alternative ways to use the slots of a trial, as will be described later
in the corresponding protocols.

Unified probabilistic estimation (UPE) [12]. In UPE, all trials
are balls-and-bins trials with the same length (e.g.,30). In the first
trial, all tags participate. Depending on the number of empty slots
observed in this trial, the protocol will branch into several different
execution paths. We will focus on the most important execution
path, which corresponds to largen and where the protocol observes
no empty slots in the first trial. In such a case, the protocol proceeds
sequentially to the second trial, the third trial, and so on,with each
tag participating withp = 0.1i−1 probability in theith trial. This
process stops once the protocol sees an empty slot in a trial.The



Protocol Venue Key source of performance gains, as believedby the authors
UPE [12] MobiCom’06 i) proper randomization; ii) use of empty and collision slots for estimation
EZB [13] INFOCOM’07 i) multi-resolution probing; ii) various parameter optimization techniques
LOF [16] PerCom’08 / TPDS’11 small length of the trials
(Enhanced) FNEB [9] INFOCOM’10 use of the indices of the firstnon-empty slots for estimation
PET [24] ICDCS’11 / TMC’12 use of the binary search to find the index of the last nonempty slot
ART [18] MobiCom’12 use of the average run length of non-empty slots for estimation
ZOE [25] INFOCOM’13 i) each trial has a single slot; ii) two-phase design

Table 1: Major Existing RFID Counting Protocols

protocol then generates a rough estimateñ based on the currentp
and the number of collision slots in the current trial (i.e.,the trial
with at least one empty slot), and the first phase ends. In each
trial of the second phase, the protocol uses the rough estimate ñ
so far to calculate an optimalp, and has each tag participate with
probabilityp. Next using the new information received in this trial,
the protocol amends̃n. This iterative process continues until the
protocol believes that the estimation accuracy ofñ is high enough.

The authors [12] attribute UPE’s performance to the proper use
of randomization, i.e., carefully choosing the probability for tags to
participate in trials (calledprobabilistic framed ALOHAscheme),
and the unified use of empty slots and collision slots to do thees-
timation. The basic idea of randomization has been inherited by
virtually all follow-up research on the problem. Despite that UPE
does have a rough estimation phase followed by an accurate estima-
tion phase, this two-phase design is not mentioned as a key aspect
of UPE by the authors. Multiple later protocols, including the au-
thors’ own follow-up work [13], abandon this two-phase approach.

Enhanced zero based estimator (EZB) [13].EZB partitions the
entire domain for the possible values ofn into logarithmic number
of narrow ranges:[1, r), [r, r2), [r2, r3), . . .. Herer is some pa-
rameter to be explained later. Each of these narrow ranges has the
property that the max of the range is at mostr times larger than
the min. EZB works on each range sequentially and independently.
For each range, EZB uses a certain number of balls-and-bins tri-
als with a certain length. In each such trial, tags participate with
some probabilityp. Here the number of trials and trial length are
the same for all ranges, while the value ofp depends on the range.
Finally for each range, EZB uses the number of empty slots in the
trials, together with the probabilityp, to estimaten. EZB then com-
bines all estimates from all ranges to obtain the final output. EZB
uses various involved optimization techniques to choose the opti-
mal values for the various parameters such asr andp. Intuitively,
EZB works because the countn must be in one of these ranges.
Since each range is narrow, one can pick a singlep value such that
for any valuex within that range,xp is on the same order as the
length of the trial. This enablesn to be properly estimated, as long
asn is in that range.

The authors [13] attribute EZB’s performance gain to its unique
narrow range design (calledmulti-resolution probing) and the vari-
ous parameter optimization techniques.

First non-empty slots based estimator (FNEB) and enhanced
FNEB [9]. Enhanced FNEB has two phases, while FNEB is ex-
actly the same as the second phase of enhanced FNEB, so we only
review enhanced FNEB. A trial in enhanced FNEB is similar to a
balls-and-bins trial as it lets each tag uniformly randomlychoose
an integer from the range of1 to l′. Herel′ is some parameter to
be explained later. Different from a balls-and-bins trial,a trial here
does not usel′ slots to sequentially scan the whole range. Instead, it
does so only for the first few slots. If any of them is non-empty(i.e.,
its index is chosen by some tag), the trial ends immediately and re-
turns the index of that slot. Otherwise, the trial continueswith a
binary search to find the smallest integerj that has been chosen by
at least one tag. Imagine the protocol uses a balls-and-binstrial,

thejth slot would be the first non-empty slot it sees. Thereforej is
still called the index of the first non-empty slot here.

To start, enhanced FNEB requires the user to input an upper
bound onn. The protocol determines thel′ used in its first trial
by solving an optimization problem parameterized with thisupper
bound. The protocol then uses the index of the first non-emptyslot
in its first trial to generate a rough estimateñ. Intuitively, this in-
dex carries information aboutn since for a givenl′, the larger the
value ofn, the smaller this index will likely be. Next the protocol
determines thel′ used in its second trial by solving the same opti-
mization problem, this time parameterized with the rough estimate
ñ. The second trial then proceeds in the same way as the first trial,
and amends̃n. This iterative process continues until the protocol
believes that the estimation quality ofñ is good enough. Next the
protocol moves on to the second phase where all trials use thesame
value ofl′, which is obtained by solving the optimization problem
again but parameterized using theñ from the first phase. The pro-
tocol then combines the first non-empty slot information from all
of its second-phase trials to produce a final estimate.

The authors [9] consider their use of the first non-empty slots
as the key improvement of (enhanced) FNEB over prior protocols.
This design enables (enhanced) FNEB to end a trial as soon as it
finds the index of the first non-empty slot. Despite that enhanced
FNEB has two phases, these two phases are introduced by the au-
thors only as an “enhancement” instead of a key design aspect.

Lottery frame protocol (LOF) [16]. LOF consists of multiple
independent trials. For each trial, a tag randomly chooses aslot ac-
cording to a geometric distribution where theith slot is chosen with
1
2i probability. A tag then responds in its chosen slot. LOF finds
the indexj of the first empty slot by sequentially going through the
slots. A trial ends immediately and returnsj when the protocol sees
the first empty slot. The value ofj carries useful information about
n: On expectation,n

2i tags respond in theith slot, andj tends to
take a value aroundlog(n). Finally, LOF combines the information
obtained from all of its trials to produce a final estimate.

The authors [16] attribute LOF’s improvement over prior proto-
cols to its small trial length.

Probabilistic estimating tree (PET) [24]. Similar to LOF, PET
does a sequence of independenttrials, where in each trial each tag
randomly chooses a positive integeri according to the same ge-
ometric distribution as LOF. But instead of determining thej in
LOF, PET finds the maximumj′ such that there exists some tag
choosingj′. The intuition why suchj′ carries useful information
aboutn is similar toj as in LOF. In addition, PET (implicitly) re-
quires an upper boundx on the maximumj′. These two changes
enable PET to perform a more efficient binary search on the slot in-
dex range of[1, x] to find the maximumj′, instead of sequentially
going through the slots. In the first slot of this binary search, PET
asks all tags whose chosen integer falls within[x/2, x] to respond.
If the slot is empty (non-empty respectively), PET can then focus
on the range of[1, x/2] ([x/2, x] respectively) in the next slot.

The authors [24] attribute PET’s improvement over prior proto-
cols to the efficient way of using binary search to determine the
maximumj′.



Average run based tag estimation (ART) [18].The first trial in
ART is roughly the same as a trial in LOF. ART uses this trial to
obtain a rough estimatẽn onn. The quality of this rough estimate
is low since different from LOF which uses many trials to estimate,
ART only uses a single trial. All the following trials are balls-and-
bins trials, where each tag participates independently with certain
probabilityp. The length of these trials and thep used in these tri-
als are all the same. ART then observes which slots in each trial
are non-empty. Next it calculates the averagerun lengthof non-
empty slots (i.e., the average length of sequences of consecutive
non-empty slots), and uses such information to generate a final es-
timate. Such average run length carries information aboutn since
the larger the value ofn, the more non-empty slots, and the larger
the average run length. The total number of trials, the length of the
trials, and the probabilityp used in ART are determined by solving
an involved optimization problem with the rough estimateñ being
an input parameter.

The authors [18] attribute ART’s improvement over prior proto-
cols to its novel use of run length to do the estimation. WhileART
does have two phases (with the first phase having a single trial), the
authors neither emphasize this aspect nor attribute ART’s perfor-
mance gain to this aspect.

Zero-One Estimator (ZOE) [25]. ZOE is independent of and con-
current with our work. ZOE has two explicit phases, where thefirst
phase gets a rough estimateñ and the second one obtains the final
estimate. As a key design decision, each trial in ZOE has a single
slot, so we directly describe slots here. In its first phase, ZOE aims
to find aj such that if all tags participate in a slot with a probability
of 1/2j , the probability of the slot being empty is around1/e. To
find such aj efficiently, ZOE (implicitly) requires an upper bound
x on the number of tags so that it can does a binary search over
[0, log x]. Each step of the binary search uses a constant number of
slots. In each such slot, the tags respond with probability of 1/2i

wherei is the current value tested in the binary search. The proto-
col then observes the fraction of empty slots, and determines how
to continue the binary search. With a suitablej found by the first
phase, ZOE’s second phase uses a certain number of slots where the
tags participate in each slot with probability of1/2j . The number
of slots needed in the second phase is determined by the required
estimation quality. ZOE eventually estimatesn from the fraction
of empty slots observed in the second phase.

The authors [25] attribute ZOE’s improvement over prior proto-
cols to the following two design aspects: i) each trial having only a
single slot so that this slot can potentially collect information from
all tags, and ii) having two explicit phases. While this concur-
rent work of ZOE does emphasize the importance of its two-phase
design, the thesis identified in this paper is still not discovered in
ZOE: ZOE believes that its unique design of each trial havinga sin-
gle slot is also key to ZOE’s performance. Our thesis, on the other
hand, suggests that the two-phase design is the key while other as-
pects are only secondary. Guided by our thesis, a protocol designer
would not be overly concerned with sticking to ZOE’s idea of hav-
ing a single slot in each trial. Section 7.3 will show thatnot having
a single slot in each trial, as in our protocol, enables us to get better
performance in our experiments.

5. WHICH DESIGN ASPECTS ARE KEY?
So far we have reviewed major RFID counting protocols in the

literature, each with its own unique techniques. Given sucha myr-
iad of interesting techniques, which techniques are the actual dom-
inant factors for good performance? Which techniques are less im-
portant? If one would like to outperform the state-of-the-art, which
existing technique should one builds upon? To answer these ques-

UPE [12] –
EZB [13] O( 1

ǫ2
log n)

LOF [16] O( 1
ǫ2

log n)
FNEB [9] O( 1

ǫ2
log n)

Enhanced FNEB [9] O( 1
ǫ2

+ log n)
PET [24] O( 1

ǫ2
log log n)

ART [18] O( 1
ǫ2

+ log n)
ZOE [25] O( 1

ǫ2
+ log log n)

Table 2: Asymptotic Overhead of Single-Set Protocols

tions, we aim to identify the key aspects of efficient RFID counting
protocols.

While experimental study can help reveal about which aspects in
these protocols are more important than others, we notice that what
we are looking for could very well be buried deep under the vast
amount of experimental data. Thus we start by first systematically
investigating and comparing the asymptotic overhead of these pro-
tocols, with respect to then andǫ. Interestingly, as we will soon
see, such a simple investigation already sheds much light onto the
question.

It is worth noting that such a systematic comparison of the asymp-
totic behavior has never been done before: The end-to-end perfor-
mance of some protocols [12, 18] has not been formally analyzed,
while the performance of other protocols [9, 13, 16, 24] has been
analyzed and presented in a rather detailed form. These morepre-
cise but complex forms unfortunately prevent a direct comparison
across the protocols and bury the key insights we are searching for.

Asymptotic overhead of single-set RFID counting protocols.
UPE [12] and ART [18] do not come with end-to-end overhead
analysis. We find that the estimator used by UPE is biased, hence
UPE cannot be used whenǫ is small. This is consistent with the
findings by the original authors of UPE in their follow-up work [13]
and will be validated by our experiments in Section 7.3. We have
analyzed ART by ourselves, which shows that it usesO(log n)
slots in the first phase andO( 1

ǫ2
) slots in the second phase. This

implies a total overhead ofO( 1
ǫ2

+ log n). For space limitation,
we leave the full analysis, which is straightforward and uses rather
standard approaches, to our technical report [6].

The other existing protocols, i.e., EZB [13], (enhanced) FNEB [9],
LOF [16], PET [24], and ZOE [25], all come with detailed analy-
sis on the number of slots needed. Here all we do is to simplify
their more precise results to asymptotic forms (with adaption to
our formulation when necessary), for later comparison. More de-
tails about these protocols can be found in our technical report [6].

Table 2 summarizes the asymptotic overhead of these single-set
RFID counting protocols. At this point, it is clear that the protocols
have either additive overhead or multiplicative overhead.Additive
overhead is obviously lower, and it comes from a conceptual sepa-
ration of two phases in these protocols, with the first phase taking
O(log n) or O(log log n) slots and the second phase takingO( 1

ǫ2
)

slots. Thelog n andlog log n term are about16 and4 respectively,
for n = 100, 000. (Whenn is small, almost all known protocols
can complete fast, so further improvement is less interesting.) Un-
less the hidden constant in a multiplicative overhead protocol is
comparably smaller, additive overhead protocol will be more effi-
cient. Our experiments in Section 7 will show that this is indeed
the case.

Bring our lower bound from Section 3 into the picture makes this
key observation even clearer. There we proved that it is impossible
to reduce the overhead of a single-set RFID counting protocol to
o( 1

ǫ2 log 1

ǫ

+ log log n). Now it is clear thatΘ(log log n) slots are

for the first phase, while the remainingΘ( 1

ǫ2 log 1

ǫ

) slots are for the

second phase.



Our thesis. Our observations above lead us to conjecture the fol-
lowing thesis, which will be validated in the remainder of this pa-
per:

The key design aspect for single-set RFID counting proto-
cols to achieve near-optimal performance is to have two phases,
where the first phase uses roughlyΘ(log log n) slots to obtain
a rough estimate with constant (e.g.,0.5) relative error, and
the second phase uses roughlyΘ( 1

ǫ2 log 1

ǫ

) slots to eventually

obtain a final estimate with the desired relative error ofǫ. Fur-
thermore, other techniques/ideas proposed in the literature are
only of secondary importance.

While this thesis is almost obvious from our discussion so far,
somewhat surprisingly, it has never been identified by any ofthe
previous efforts (including the concurrent work on ZOE [25]). In-
stead, existing protocols often overlook the two-phase design and
often attribute their improvements to a diverse set of design aspects
other that the two-phase design. Our thesis implies that allthe fol-
lowing design aspects, emphasized by previous efforts, arefar less
important than originally thought:

• using various novel statistical quantities to do the estimation
(such as using the average run length in ART [18] and using
the index of the first non-empty slot in FNEB [9]);

• using an iterative process to refine the estimation over manyit-
erations (such as in UPE [12] and enhanced FNEB [9]);

• using complex optimization techniques to tune various parame-
ters (e.g., to trade off the trial length with the number of trials as
in EZB [13], FNEB [9], and ART [18]);

• using a single slot in each trial as in ZOE [25].

Generalizing to multiple-set RFID counting protocols. We nat-
urally generalize our thesis to the multiple-set setting: There the
protocol should have two phases at each locationi for 1 ≤ i ≤ k,
where the first phase uses roughlyΘ(log log ni) slots to obtain
a rough estimate, and the second phase uses roughlyΘ( 1

ǫ2 log 1

ǫ

)

slots.
Existing multiple-set RFID counting protocols4 (EZB, FNEB5,

LOF6, and PET) all focus on other aspects of the protocol instead
of having the above two phases, and incur multiplicative overhead.
Specifically, EZB, LOF, and FNEB all incurO( k

ǫ2
log(

Pk
i=1 ni))

overhead, while PET incursO( k
ǫ2

log log(
Pk

i=1 ni)) overhead.
Such multiplicative overhead contrasts sharply with the additive
overhead of our new SRCM protocol (Section 7.2), which has ap-
plied our thesis on the two-phase design. Hence in the multiple-set
setting, these previous efforts have not even implicitly applied our
thesis.

6. SOURCE OF PERFORMANCE GAIN
— TWO CASE STUDIES

An ultimate way of validating our thesis is to see whether apply-
ing such a design principle enables new protocols that are signifi-
cantly better than existing ones. We will do so later in Section 7.
This section instead aims to provide direct and immediate evidence
to support our thesis, by carefully examining the source of per-
formance gains in existing protocols. We will focus on two recent

4Other protocols are not for the multiple-set RFID counting prob-
lem. Among those, ART only works for a simpler variant of the
multiple-set problem (see Section 8).
5Enhanced FNEB no longer works in the multiple-set problem.
6Here LOF requires an upper boundx on the number of tags, and
can no longer end a trial when it sees the first empty slot.

protocols, ART [18] and enhanced FNEB [9], as two prominent ex-
amples. As reviewed in Section 4, ART uses the average run length
of non-empty slots as agaugefor estimation and attributes its per-
formance gain over prior protocols to this unique gauge. Similarly,
the authors of enhanced FNEB [9] consider the novel use of thefirst
non-empty slots as agaugebeing the key source of performance
gain.

We will show that quite surprisingly, in our experiments, these
two novel gauges do not necessarily improve the performanceof
ART and enhanced FNEB: Replacing these two novel gauges with
a simple gauge (i.e., the number of empty slots in balls-and-bins
trials) from the earlier EZB protocol [13] either improves the per-
formance or provides comparable performance in our experiments.
We further show that the actual source of performance gains in
these two protocols is their (implicit) two-phase design, despite that
such a two-phase design was not considered as the key.

6.1 Source of Performance Gain in ART
For all experimental results presented in this section, we usen =

100, 000 and a constantδ = 0.2 unless otherwise mentioned — we
have performed extensive experiments under other settings(e.g.,
with smallern) and observe similar trends (see our technical report
[6]). Our evaluation in this subsection adopts the same setting as
the original ART paper [18]. Specifically, we assume that each slot
takes0.3ms, and each trial incurs an additional overhead of1ms.

ART outperforms EZB. To identify the source of performance
gain in ART [18], for clarity, we focus on ART’s performance gain
when compared with a specific prior protocol EZB [13]. As a sanity
check, we first perform experiments to see whether ART indeed
outperforms EZB, as claimed in [18]. Figure 2 summarizes our
experimental results, showing the amount of time needed forART
and EZB to achieve a certain target relative errorǫ. Consistent with
[18], we observe that ART significantly outperforms EZB — more
than200% faster.

ART’s novel gauge and ART’s performance. Next we proceed
to test whether this performance gain comes from ART’s novelrun
length based gauge. To do so, we keep everything else unmodified
in ART except that we replace ART’s novel run length based gauge
with the old gauge in EZB. This old gauge in EZB is based on the
number of empty slots. We call this protocol as the revised ART.
If the run length based gauge were indeed the source of ART’s per-
formance gain, the revised ART should perform significantlyworse
than ART. Quite surprisingly, as shown in Figure 2, the revised
ART actually outperforms the original ART.

Resolving the contradiction. To resolve such contradiction with
the claims from [18] that ART’s novel gauge is the source of per-
formance gain, we trace back and examine the reasoning in that
work. There the authors [18] compare the variance of ART’s aver-
age run length based gauge with the variance of other old gauges,
including the gauge in EZB (and hence the gauge in revised ART).
They show that the variance of ART’s gauge is smaller, leading to
the conclusion that ART’s gauge is the source of performancegain.
Again as a sanity check, we examine the variance of ART’s gauge
and EZB’s gauge as observed in our experiments. Consistent with
[18], we also observe that ART’s gauge has smaller variance (Table
3). On the other hand, however, we find that smaller variance of a
gauge does not necessarily translate to better accuracy of the final
estimate. Table 3 also presents the variance of the final estimate
as generated by ART and revised ART (which uses EZB’s gauge).
Despite ART’s gauge has smaller variance than EZB’s, the vari-
ance of ART’s final estimate is actually larger than that of revised
ART’s final estimate. Note that this is consistent with the better
performance of revised ART as we observed in Figure 2.



 0

 10

 20

 30

 40

 50

 60

 0.01  0.02  0.03  0.04  0.05

tim
e 

(s
ec

on
ds

)

ε

EZB
ART

Revised ART

Figure 2: Time needed to achieve relative
error ǫ under δ = 0.2.

ART
Revised
ART

With 2000 time slots:
Var(gauge) 0.080 4.8

Var(n̂)
12
×106

8.0
×106

With 4000 time slots:
Var(gauge) 0.045 2.4

Var(n̂)
7.0
×106

3.9
×106

Table 3: Variances of gauges
and estimates under ART and
revised ART.
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The fundamental reason behind these results is that in orderfor
the final estimate to have better accuracy, the gauge needs tonot
only have small variance but also besensitiveto the count. In other
words, under different number (n) of tags, the value of the gauge
should ideally be very different. This ensures that we can easily
differentiate differentn even if the value of the gauge is a bit off
from its expectation. In fact, if we were not concerned with such
sensitivity, it would be trivial to design a gauge with zero variance:
We simply let the value of the gauge always be a constant regard-
less of whatn is. Clearly such gauge cannot be used to accurately
estimaten. Hence the reason that the variance of ART’s final es-
timate is larger is exactly that ART’s gauge is less sensitive than
EZB’s. Intuitively, such insensitivity can even be partly observed
from the fact that under practical parameters, the value of ART’s
gauge has a smaller domain that EZB’s.

The actual source of performance gain.It will shed much light
onto the problem if we view the revised ART protocol from a dif-
ferent perspective. Namely, one can alternatively view therevised
ART protocol as a variant of the EZB protocol — the only main
difference between these two is that EZB does not have a rough
estimate from a first phase. Thus EZB has to divide the possible
domain forn into O(log n) narrow ranges and process them se-
quentially. In comparison, revised ART has a rough estimatefrom
its first phase to identify the correct range to process.

Hence one can view revised ART as adding a first phase to EZB.
This implies that the performance gain of revised ART over EZB
comes from having two phases as suggested by our thesis. In turn,
this is also the source of the performance gain in ART.

6.2 Source of Performance Gain in Enhanced
FNEB

Using the same approach as above, we continue to examine the
source of the performance gain of enhanced FNEB [9] over EZB.
Here our evaluation adopts the same setting as [9], where each
slot still takes0.3ms (as in [18]) but there is no per-trial overhead.
As shown in Figure 3, our experiments first confirm that enhanced
FNEB significantly outperforms EZB. To test whether this perfor-
mance gain comes from FNEB’s unique first non-empty slot gauge,
we revise the enhanced FNEB by using EZB’s gauge in its sec-
ond phase while keeping all other design in enhanced FNEB un-
changed. Our revised version of enhanced FNEB provides compa-
rable performance as the enhanced FNEB (specifically, our revised
protocol outperforms enhanced FNEB slightly by around6%), show-
ing that FNEB’s novel gauge does not necessarily improve itsper-
formance.

The original authors of (enhanced) FNEB [9] attribute the per-
formance gain to their novel gauge, because they believe that such
gauge enables (enhanced) FNEB to end a trial as soon as it sees
the first non-empty slot and thus reduces the number of slots per

trial. While this is obviously true, the total overhead of a protocol
also depends on the number of trials needed. For example, when
δ = 0.2, to achieveǫ = 0.01, enhanced FNEB uses on average
around2 slots per trial but it needs to invoke around16, 000 trials.
To achieve the same estimation quality with EZB’s gauge, each trial
uses242 slots and only around120 trials are needed. Hence the to-
tal number of slots needed by EZB’s gauge is comparable to that
needed by FNEB’s gauge.

Exactly as in the case of revised ART, here one can alternatively
view the revised version of enhanced FNEB as adding a first phase
to EZB. This directly leads to our conclusion that the actualsource
of the performance gain in enhanced FNEB is having two phases
as suggested in our thesis.

7. DESIGNING BETTER RFID COUNTING
PROTOCOLS

Guided by our thesis in Section 5, this section aims to design
new RFID counting protocols that are more efficient than exist-
ing ones and also simultaneously simpler than most of them. We
will design our protocols by simply putting together various basic
building blocks in the literature. We donot claim novelty on these
building blocks – instead, we aim to show that simply puttingthem
together in aproper manneras guided by our thesis is already suf-
ficient to outperform existing protocols. This serves as an ultimate
validation of the utility of our thesis.

7.1 SRCS: Our Simple RFID Counting
Protocol for Single-Set

For single-set RFID counting, our thesis suggests that the proto-
col should have two conceptual phases, the first one does a rough
estimation, while the second one generates the final estimate. When
designing these two phases, we will use as simple building blocks
as possible. This is because: i) more complex designs tend tohave
larger hidden constants, and ii) our thesis indicates that other per-
formance tricks only have minor effects in further improving per-
formance.

Our SRCS protocol. Algorithm 1 summarizes the main steps of
our SRCS protocol. The first phase of our SRCS protocol is exactly
the same as the simple LOF protocol [16] as reviewed in Section 4.
Recall that LOF does a sequence of independent trials with each
trial usingO(log n) slots. Forδ = 0.2, our protocol invokes LOF
to do10 trials, using totalO(log n) slots. It then uses LOF’s output
as the rough estimatẽn. By LOF’s analysis [16],̃n’s relative error
is below0.5 with at least 9

10
probability.Given such ãn, the second

phase of SRCS (as we will soon describe) guarantees to output an
estimatên of relative error belowǫ with probability of 8

9
. Combin-

ing the guarantees from these two phases ensures thatn̂’s relative
error is belowǫ with probability of 9

10
× 8

9
, which corresponds to



Algorithm 1 Our SRC S protocol (for δ = 0.2)
1: Invoke LOF with10 trials to getñ;
2: Start a balls-and-bins trial of lengthl, and let each tagpartici-

pate in the trialwith probabilityp = min{1, 1.6l/ñ};
3: Count the number of empty slotsz in the trial;
4: Outputln(z/l)/ ln(1 − p/l).

δ = 0.2. To achieve aδ smaller than0.2, one can sequentially
invoke m (m being some odd integer) independent instances of
Algorithm 1 and then take the median of their outputs as the fi-
nal output. Asymptotically, it is well-known thatm = O(log 1

δ
)

suffices [15]. Obtaining a concrete value ofm for a certain target
δ is not hard: Each instance of Algorithm 1 has1 − 0.2 = 0.8
probability to generate a “good” result with at mostǫ relative error.
For the median to have at mostǫ relative error, it suffices to have
at least(m + 1)/2 good results among them results. With all in-
stances being independent, we simply pick the smallestm such that
Pm

i=(m+1)/2

`

m
i

´

× 0.8i × 0.2m−i ≥ 1 − δ. Sincem is usually

small (e.g.,m only needs to be41 even forδ = 10−5), the value
of m can be trivially determined via brute-force calculation.

The second phase of SRCS simply consists of a single trial with
l slots, and each tag participates in this trial (i.e., responds in a uni-
formly random slot in the trial) independently with probability p.
We will explain the two parametersl andp later. The expected frac-
tion of empty slots in this trial will thus be(1−p/l)n. Our protocol
determines the observed number of empty slots in this trial,denoted
by z. Obviously,z directly carries information aboutn. The pro-
tocol finally generates the final estimaten̂ by solving the equation
(1 − p/l)n̂ = z/l, which leads tôn = ln(z/l)/ ln(1 − p/l). The
second phase of our protocol is rather similar to subprocedures used
in UPE [12] and EZB [13]. The only (minor) difference is that we
further simplify the design and use a single trial instead ofdoing
multiple trials. This simplification actually also slightly improves
our performance: By putting all slots into the same trial, whether a
slot is empty becomes negatively correlated with each other. Such
negative correlation makes the total number of empty slots concen-
trate better near its expected value.

The parameterl is uniquely determined by the target relative er-
ror of ǫ, and there are two ways to do so. The first approach is to
setl = 65

(1−0.04ǫ)2
, which isO( 1

ǫ2
) (see the proof of Theorem 5 in

our technical report [6], where we have proved that suchl is suf-
ficiently large).The second approach is to directly construct a nu-
merical lookup table. This lookup table is constructed by running
the algorithm under a wide range ofn values, and then observing
the l needed to achieve a certainǫ. See our technical report [6] for
a sample table. Between the two approaches, since mathematical
analysis is often a loose approximation, in practice, usinga lookup
table usually offers superior performance. The parameterp is set to
bemin{1, 1.6l/ñ}, so that the expected number of tags responding
is on the same order asl. The constant1.6 here provides the best
estimation performance (see analysis in [12, 13]).

The following theorem summarizes the end-to-end guaranteeof
our SRCS protocol, whose proof is in our technical report [6]:

THEOREM 5. Our SRCS protocol outputs an(ǫ, 0.2) estimate
with O( 1

ǫ2
+ log n) overhead.

Incurring O(log log n) slots in the first phase.The first phase of
the design above incursO(log n) slots. It is possible to use only
O(log log n) slots by using a revised version of PET protocol [24]
instead.As reviewed in Section 4, PET does a sequence of inde-
pendent trials. In each trial, each tag randomly chooses a positive
integer according to a geometric distribution. Given a proper upper
boundx (from the end user) onn, PET uses a binary search over
[1, log x] to find the maximumj′ such that there exists some tag

choosingj′. Hence the number of slots incurred in PET for each
trial is O(log log x). It is possible forx to be much larger thann,
in which case this will still not give usO(log log n) complexity.
To always haveO(log log n) complexity, we slightly modify PET
so that the user does not inputx: In each trial before the binary
search, the protocol uses some extra slots. In theith extra slot,
tags that have chosen an integer larger than or equal to2i−1 will
respond. This process stops once the protocol observes an empty
slot. Let the correspondingi in this empty slot bey. Next the
protocol does a binary search as before, except that now the bi-
nary search is done over[1, 2y−1] instead of[1, log x]. This binary
search will take anothery slots at most. It can be easily shown that
y = O(log log n) on expectation. Hence the total overhead will
beO(log log n) slots. See our technical report [6] for more details
and the pseudo-code.

Under practical settings, however, the overhead for the second
phase usually dominates and such improvement will be negligible.
But we will need this revised PET later in our multi-set protocol.

7.2 SRCM : Our Simple RFID Counting
Protocol for Multiple-Set

For multiple-set counting, our thesis suggests that the protocol
should have two conceptual phases at each locationi for 1 ≤ i ≤ k.
We will focus on achieving the two phases in a simple way.
Protocol intuition. Recall that SRCS conceptually works by throw-
ing np (on expectation) balls uniformly randomly intol bins. The
value ofn can then be inferred from the fraction of empty bins.
We would like to design SRCM in a similarly simple way, i.e., by
throwingnp balls (on expectation) intol bins, wheren is the total
number of tags in all sets (if there is no overlapping betweensets,
n = n1+n2+. . .+nk). The value ofl can still be determined byǫ
and our Theorem 6 later shows thatl = O(1/ǫ2). Imagine for now
that magically, we can also properly setp to bemin{1, 1.6l/ñ},
whereñ is a rough estimate forn with constant relative error. With
such value forp, the problem becomes trivial: At each location,
the protocol simply does a balls-and-bins trial with participation
probability of p, so that on expectation there arenp balls in to-
tal. The protocol records the outcome at each location and merges
these results for producing a final estimate. The merging is done by
considering a bin occupied as long as it is occupied in any of the
k locations. Note that this already takes care of potential overlaps
between thek sets – as long as we use the same random seed when
doing these experiments, the same tag will always be hashed into
the same bin, even if it appears in multiple sets.

So far we have assumed that the protocol can properly setp.
However in the multiple-set setting, the protocol seesS1, S2, ...,Sk

sequentially and it is not possible to obtainñ until the last location.
Observe however that at locationi, the protocol can easily get a
rough estimatẽn′

i for the size ofS1∪S2 . . .∪Si (by merging all the
first phase results up to locationi). Definepi = min{1, 1.6l/ñ′

i}
and we obviously havepi ≥ p (note thatpk = p). Next note that
these values ofp andpi do not need to be accurate, since the rough
estimate is rough in the first place. Hence let us assume, without
loss of generality, that they are both in the form of1/2x for some
integerx. If not, we simply round them to the nearest value with
such a form. When the reader finishes the first phase for theith set,
it knowspi but notp. Conceptually for setSi, the protocol will do
the balls-and-bins trial with participation probabilities pi,

pi

2
, pi

4
,

pi

8
, ..., and so on. This ensures that one of the participation proba-

bility will equal p, regardless of whatp is. After processing all sets,
we can then decide the proper value ofp and use the combined re-
sult for the corresponding trial to obtain the final estimate.

Naively doing the above trials with the infinite sequence of par-
ticipation probabilities will result in infinite overhead.One can
easily make things correlated to avoid this: For each participation
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Figure 4: An example run of SRSM with two reader loca-
tions: Each column corresponds to a bin (note that the same
bins appear at both locations), and each row corresponds to a
participation probability. A filled (non-filled) rectangle means
an occupied (non-occupied) bin. At a given location, once a
bin becomes non-occupied at a certain participation probabil-
ity, there is no need to further examine smaller probabilities
for this bin. In this example, the second phase of SRSM starts
at the participation probability of 1 and 1

2
respectively at the

first and the second location. SRCM eventually merges the out-
comes at the participation probability of 1

2
from the two loca-

tions to estimate|S1 ∪ S2|.

probability except the first one, a tag flips a fair coin and partici-
pate iff the coin flip result is head and the tag participated in the
previous participation probability. This would mean that in this se-
quence, a tag will keep participation, and then stop participating
after a certain probability. In turn, this means that for a given bin
in this sequence of experiments, it will initially be occupied and
then will never be occupied again after a certain participation prob-
ability (Figure 4). This enables the protocol to do the following:
Instead of checking all bins for a given probability, the protocol it-
erates through the bins. For each bin, the protocol checks whether
it is occupied, for all the probabilities in the sequence. Note that the
protocol can stop once the bin becomes empty. The rough estimate
from SRCM ’s first phase ensures that its second phase sees a con-
stant number of balls in each bin on expectation. From the mean
of geometric distributions, one can easily see that on average, it
only needs to move down the sequence of participation probabili-
ties O(1) steps for a given bin to become empty. Hence the total
number of slots needed is justO(1) · l = O( 1

ǫ2
).7

Our SRCM protocol. Our SRCM protocol implements the above
intuitions. Algorithm 2 summarizes the main steps of our SRCM

protocol (forδ = 0.2). To achieve aδ smaller than0.2, exactly
as for SRCS , one only needs to sequentially invoke multiple in-
dependent instances of Algorithm 2 and then take the median re-
sult. See Section 7.1 for how to determine the number of instances
needed. For the parameterl, the only difference between SRCM

and SRCS is that the participation probability used in SRCM needs
to be rounded to the form of1/2x. Taking this into account, we can
either mathematically setl = 205

(1−0.013ǫ)2
, which isO( 1

ǫ2
) (see the

proof of our Theorem 6 in our technical report [6]), or find itsvalue
from a numerical lookup table. The lookup table is constructed by
running the algorithm under a wide range ofn values and then ob-
serving thel needed to achieve a certainǫ. Note thatl does not
depend on the number of sets and how the sets overlap (see more
detailed reasoning in our technical report [6]), one only need to run
the algorithm against a single set.

Given l, each tag determines which bin it will choose, and also
the smallest participation probability for which it will still partic-

7A less efficient design would be to iterate through the sequence
of participation probabilities. For each probability, onechecks all
bins. The process stops if all bins are empty. Such a design would
need on expectationO( log(1/ǫ)

ǫ2
) slots.

Algorithm 2 Our SRC M protocol (for δ = 0.2)
1: Each tag uniformly randomly chooses a bin out ofl bins, and

chooses a positive integery according to a geometric distribu-
tion with mean of2;

2: Initialize A to an array ofl elements with values of−1. A[j]
will record the largesty chosen by a tag in thejth bin;

3: for each setSi do
4: Invoke revised PET with30 trials, and merge its outcome

with previous revised PET outcomes to get a rough estimate
ñ′

i for the size ofS1 ∪ S2 . . . ∪ Si;
5: Find an integerx that minimizes|1/2x −min{1, 1.6l/ñ′

i}|;
6: for j = 1 to l do
7: h = x;
8: while truedo
9: Let all tags in thejth bin withy ≥ h respond;

10: if (See a non-empty slot)then
11: A[j] = max{A[j], h};
12: h = h + 1;
13: else
14: Break;
15: end if
16: end while
17: end for
18: end for

19: Consider thex used for the last set and letz be the number of
elements inA with value no less thanx;

20: Outputln(z/l)/ ln(1 − 2−x/l).

ipate. At location i, our SRCM protocol has two phases. For a
constantδ = 0.2, the first phase invokes the revised PET proto-
col (with 30 trials), which was described at the end of Section 7.1.
This incurs totalO(log log ni) slots. SRCM then merges all the
first phase results it sees so far to get a rough estimateñ′

i for the
size ofS1 ∪ S2 . . . ∪ Si. Such merging is possible since PET, and
therefore the revised PET, is able to do multiple-set RFID count-
ing. By PET’s analysis [24], the relative error ofñ′

i is below0.5
with at least 9

10
probability. The second phase now determinespi

based oñn′
i in exactly the same way as in our SRCS protocol. We

then roundpi to the nearest1/2x for some integerx. The protocol
then iterates through thel bins. For each bin, the protocol uses a
sequence of slots, which corresponds to participation probabilities
pi,

pi

2
, pi

4
, ... For each slot, those tags who select this bin and still

participate at the current participation probability willrespond. The
protocol records all such information and stops once an empty slot
is observed. It then proceeds to the next bin.

At the last (kth) location, SRCM can merge the first phase re-
sults from all thek sets to obtain a rough estimate for the size of
the union of allk sets, and it can compute a proper participation
probabilityp based on this rough estimate. By our design, SRCM

must have collected the information regarding whether eachbin is
empty underp for every location. SRCM then combines such in-
formation by setting a bin to be empty iff it is empty in all sets (see
Figure 4). Letz denote the number of empty bins in the combinedl
bins, SRCM generates the final estimaten̂ by solving the equation
(1− p/l)n̂ = z/l. See our technical report [6] for the proof for the
following theorem about the end-to-end guarantee of our SRCM

protocol:
THEOREM 6. Our SRCM protocol outputs an(ǫ, 0.2) estimate

with O(
Pk

i=1(
1
ǫ2

+ log log ni)) overhead.

7.3 Evaluation Results
We conduct extensive simulations to compare the overhead of

our protocols against all major existing protocols in the literature,
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Figure 5: Overhead of single-set
protocols (n = 10, 000).
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protocols (n = 100, 000).
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Figure 7: Overhead of multiple-set
protocols (n = 100, 000 and k = 10).

including UPE, EZB, (enhanced) FNEB, LOF, PET, ART, and ZOE.
As in Section 6, we consider a constantδ = 0.2 to simplify our
discussion — we observe similar trends under all other values ofδ.
When comparing the performance of these protocols, for eachex-
periment, we first choose a time budget, then we simulate the pro-
tocols and observe their achieved relative errorǫ given such budget
(i.e., overhead). This evaluation methodology is also taken by re-
cent prior work [25]. An alternative evaluation methodology would
be to compare the overhead of different protocols when achieving
the same targetǫ. We do not take this method since for several
two-phase protocols (e.g., [18, 25]), when they mathematically de-
cide the number of slots needed in their second phase, they assume
a perfect estimate from their first phase. Since the estimatefrom
the first phase is only a rough estimate, following their calculation
will actually achieve a relative error that is somewhat larger than
the targetǫ. This will make the comparison inconsistent across the
protocols. Unless otherwise mentioned, all our experiments use the
following parameters derived from EPCglobal C1G2 standard[7]:
a slot in UPE takes0.8ms8, a slot in all other protocols takes0.4ms,
and for all protocols each trial incurs an extra overhead of1ms.

Comparing SRCS with existing single-set protocols. Figure 5
and Figure 6 present the overhead of our SRCS protocol against
the overhead of existing single-set RFID counting protocols, for
tag count of10, 000 and100, 000 respectively. As shown in the
figures, SRCS is significantly (more than1000%) faster than EZB,
PET, and LOF. This is because asymptotically SRCS incurs addi-
tive overhead while EZB, PET, and LOF all incur multiplicative
overhead (see Section 5). SRCS is at least100% faster than ART,
ZOE, and enhanced FNEB (eFNEB for short in the figures) in all
of our settings. The difference between SRCS and these three pro-
tocols is relatively moderate, since all of them incur additive over-
head. For each of them:SRCS is faster than ART, partly because
the novel gauge used by ART does not perform as well as the sim-
pler gauge used by SRCS (see Section 6), and partly because the
quality of the rough estimate in ART is overly low. SRCS is faster
than ZOE for the following two reasons. First, recall that ZOE
uses a single slot for each trial, while SRCS puts all its slots in the
second phase into a single trial. Therefore for the second phase
of SRCS , whether a slot is empty becomes negatively correlated
with each other. Such negative correlation makes the total num-
ber of empty slots concentrate better near its expected value and
thus provides higher estimation equality, as compared to a design
using independent slots like ZOE. Second, each slot in ZOE needs
to incur per-trial overhead since each of them corresponds to an
individual trial, while the per-trial overhead is incurredmuch less
often in SRCS . For enhanced FNEB, recall that each of its trials
also only uses a small number of slots. Therefore, the same two
reasons that explain why SRCS is faster than ZOE also apply here.

8UPE requires a tag to send more bits in a slot to detect collision.

In addition, the quality of the rough estimate in enhanced FNEB is
also lower than desirable.Finally, our results show that UPE can-
not support relative errorǫ < 0.03 due to its biased estimator. This
is consistent with the findings by the original authors [13].

As we see, the overhead difference between SRCS and some ex-
isting protocols is partly due to the existence of per-trialoverhead.
To understand how significant this factor is, we have furthercom-
pared the protocols when there is no per-trial overhead. We find
SRCS continues to have the lowest overhead among all protocols.
For example, whenǫ = 0.01, SRCS is 20% to 100% faster than
the most efficient existing protocol, i.e., ZOE. See detailed results
in our technical report [6].

Comparing SRCM with existing multiple-set protocols. Fig-
ure 7 presents the overhead of our SRCM protocol against exist-
ing multiple-set RFID counting protocols. We perform extensive
experiments under different values ofn andk, as well as differ-
ent ways that the sets overlap with each other. Since they allshow
similar trends, Figure 7 presents a concrete setting, wherea total of
n = 100, 000 tags (with index from1 to 100, 000) are distributed
over k = 10 overlapping sets.For i = 1, . . . , 9, the ith set is
comprised of11, 000 tags with index from(i− 1) × 10000 + 1 to
i × 10000 + 1000. The last set is comprised of10, 000 tags with
index from90001 to 100000. In this setting, our SRCM protocol
is around500% faster than the most efficient existing multiple-set
protocol, i.e., PET. In particular, while all existing protocols require
more than10 minutes to provide an estimate with relative errorǫ of
0.01, our SRCM protocol can achieve the same estimation quality
in 2 minutes. The significant difference between SRCM and ex-
isting multiple-set protocols is mainly because asymptotically all
existing multiple-set protocols incur multiplicative overhead, while
SRCM incurs additive overhead (see Section 5).

Same to the single-set experiments, the overhead of multiple-set
protocols partly comes from the per-trial overhead. To understand
the significance of this factor here, we again evaluate a setting with-
out per-trial overhead. We find that SRCM continues to be300%
faster than the most efficient existing protocol (see our technical
report [6] for details).

8. VARIANT MODELS
This section discusses some variants of RFID counting problem.

A simpler variant of multiple-set problem. Some researchers
(e.g., [18]) consider a simpler variant of the multiple-setRFID
counting problem, where multiple readers jointly cover an area.
These readers together count the total number of tags under their
coverage. One can actually solve this simpler variant of ourmultiple-
set problem usingany single-set RFID counting protocol. Recall
that a single-set protocol specifies a predicate for each slot. Roughly
speaking, all readers send the same predicate to their sets.Together
the readers return an empty slot to the single-set protocol iff every



reader sees an empty slot. Note that this takes care of potential
overlaps between sets, as long as a tag behaves identically for the
same predicate from different readers.

Capability to detect collision. Some protocols (e.g., [12]) assume
a reader can further detect collision, i.e., whether there are multiple
tags responding in a non-empty slot. Though the reader becomes
more capable in this variant model, we can still obtain a similarly
strong lower bound result (with a smalllog 1

ǫ
difference) as our

original model. See our technical report [6] for the proof.

Programmable tags vs. non-programmable tags.Same as many
recent research efforts on RFID systems (e.g., [9, 16, 20, 24, 25]),
our SRCS and SRCM protocol target programmable RFID tags that
can run customized code. There have also been research work (e.g.,
[18]) that focuses on non-programmable RFID tags. These non-
programmable tags can participate in a protocol only via a pre-
determined way (e.g., only via framed slotted Aloha as specified
in C1G2 [7]). We are currently working on adapting SRCS and
SRCM to non-programmable tags. We already have initial designs
for adapted SRCS and SRCM , as well as promising preliminary re-
sults, though a full discussion into the subject is beyond the scope
of this paper.

9. RELATED WORK
Section 4 already reviewed major related RFID counting pro-

tocols [9, 12, 13, 16, 18, 24]. Same as this paper, these efforts
all focus on improving the performance of RFID counting. There
have also been efforts that optimize other metrics such as energy
consumption [14]. In early days, researchers (e.g., [10, 23, 26])
focus on efficient identification of RFID tags. Obviously once all
tags are identified, we will obtain an exact count of the tags.But
the inherentΩ(n) complexity makes it impossible for large-scale
RFID systems.

There are deep connections between RFID counting protocols
and algorithms for counting the number of distinct elementsin a
data stream [11]. One can conceptually map a slot in RFID count-
ing protocols to a memory bit in distinct element counting algo-
rithms. Existing RFID counting protocols (including ours)have
borrowed multiple ideas from distinct element counting algorithms
(e.g., [8, 21]). These ideas include for example, the use of duplicate-
insensitive statistical quantities to deal with the possible overlap-
ping between sets in multiple-set RFID counting [9]. Furthermore,
reduction from the Hamming Distance Estimation problem hasalso
led to lower bounds on the memory space needed by distinct el-
ement counting algorithm [5]. Despite these deep connections,
RFID counting and distinct element counting also have some fun-
damental differences. First, a memory bit in distinct element count-
ing can be overwritten multiple times. A slot in RFID counting,
however, can only be used once. Hence a distinct element counting
technique that overwrites the same memory multiple times cannot
be carried over directly to RFID counting. Second, RFID counting
can have multiple passes/phases, while distinct element counting
for data streams cannot.

10. CONCLUSION
In summary, we present three fundamental results about RFID

counting protocols: We establish strong lower bounds for both the
single-set and multiple-set problem. We show that the overlooked
key aspect for RFID counting protocols is a conceptual separation
of a protocol into two phases. Furthermore, other techniques/ideas
proposed in the literature are only of secondary importance. Fi-
nally, we apply the obtained insights to design new protocols that
are more efficient than existing ones and also simultaneously sim-
pler than most of them. We hope that our results will help facilitate
future research in this subject.
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