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Abstract and speeds up the restocking process.

e Purdue Pharma [4] has tagged millions of its tablet bot-
tles. Here RFID counting ensures the right amount of its
products are passing through its manufacturing, packag-
ing, and shipping process.

Counting the number of RFID tags, ®FID counting is
needed by a wide array of important wireless applications.
Motivated by its paramount practical importance, rese&sh
have developed an impressive arsenal of techniques to im-

prove the performance of RFID counting (i.e., to reduce the ¢ Many events (e.g., TechEd [1] and Bonnaroo festival [3])
time needed to do the counting). This paper aims to gain  distribute RFID wristbands to their visitors. Here RFID
deeper and fundamental insights in this subject to faddita counting helps reveal the number of people around.
future research on this topic.

As our central thesis, we find out that the overlooked key  qfa in such scenarios, it is desirable to simply count or
design aspect for RFID counting protocols to achieve near-just estimate the number of tags without explicitly ideyif

optimal performance is a conceptual separation of a protoco ing individual tags. This helps to significantly reduce the-p

into two phases. The first phase uses small overhead to Obéessing time, preserve people’s privacy, and avoid theigost

tain a rough estimate, and the second phase uses the rougR,, req for handling a large amount of unnecessary informa-
estimate to further achieve an accuracy target. Our thes'stion. In addition to its direct utility, RFID counting cansal

alsp indicates that'other performance-enhancing tecrmsi;qu serve as a preprocessing step and help other tasks. For exam-

or ideas proppsed in the literature are only of secondary im- ple, even if one were still to identify individual tags, kniog

portance. Guided by our central thesis, we manage to desigiy,e 15 gh number of tags can make the identification process

near—optlmgl protocols tha_t are more efficient than exptin much more efficient [11, 19]. As another example, one can

ones and simultaneously simpler than most of them. use RFID counting to help find popular categories in a large
collection of tags [18].

1 Introduction In this paper, we will consid'er'two common versions of
RFID counting problem. The firgingle-set RFID counting

Radio-frequency identification (RFID) technology usesRFI Problemis simply to count the number of tags in a given phys-
tags and RFID readers (or simply calledysandreaders to ical area, using a single stationary reader whose radiocerang
monitor objects in physical world. A tag is a low-cost mi- Ccovers thatentire area. In the secondltiple-set RFID count-
crochip that can be attached to an object. It can store somég problem, the reader’s radio range cannot cover the whole
information (including a unique ID) and can communicate area. Instead, the (single) reader becomes mobile andrseque
with a reader through wireless channel. Over the past decaddially visits a number of locations, so that the union of the
RFID technology has enjoyed significant growth. With more coverages at these locations can cover the whole physezal ar
than3 billion tags sold in 2012, RFID technology has by now Note that the coverage at different locations may overlap an
impacted applications ranging from inventory control,slyp ~ hence double counting needs to be avoided.
chain management, to people tracking. A common basic func- In both versions of the problem, a key performance metricis
tionality needed by many of these applicationRED count-  the amount of time needed to count or estimate the total num-
ing — to count the number of tags and thus the number ofber of tags, which will be the focus of this work. Since exact
tagged objects in a certain physical area [16]. For example: results are often not necessary for many applications ferg.
the earlier example application scenarios) and since tee ov
e Wal-Mart [2] puts tags on individual clothes. Here head of exactcounting is fundamentally hitds in most prior
RFID counting provides information about sales trend efforts [8,11, 12, 15,17, 23, 24], we will focus on approxtma

TThe conference version of this work appears in MobiCom’13. counting.
TThis work was partly done when Ziling Zhou was a researchring
Advanced Digital Sciences Center. 1As implied by our formal lower bound results in Section 3.



Previous efforts. Given the paramount practical importance
of RFID counting, there have been a steady stream of recent
research efforts on efficient RFID counting. To reduce the
overhead (time) needed to count (i.e., to improvepbegor-
mance, these efforts have developed an impressive arsenal of
novel techniques, such as probabilistic framed ALOHA [11],
multi-resolution probing [12], lottery frame protocol [[L first
non-empty slot based estimation [8], probabilistic estinta
tree [23], average run based estimation [17], and zero-sne e
timator [24].

While these efforts all aim at reducing the overhead of RFID
counting, they often approach the problem from rather diffe
ent perspectives without being guided by a central priecipl
This has led to ad hoc research outcomes where different re-
searchers view different aspects of RFID counting pro®col
as key. For example, some researchers focus on using novel
statistical quantities to estimate the count [8, 15, 1 heoe-
searchers put more emphasis on obtaining optimal trade-off
among different protocol parameters [12, 17], while othrers
sort to gradually refining the parameters via an adaptiva-te
tive process [8, 11].

The fundamentals of the RFID counting problem get easily
buried among all these research outcomes — At this point,
it is far from clear whether all these techniques are equally
important or whether one technique plays the dominant role.
Such a lack of deep understanding hinders future research on
RFID counting — if we would like to advance the state of
the art, should we combine all these techniques despite the
resulting complexity? Or should we focus on improving one
of them and ignore others?

Our goal. Given such a lack of fundamental understand-
ing into the RFID counting problem, this paper aims to gain
deeper insights to facilitate future research. Specificale
aim to answer the following three key questions, none of
which have been posed or answered in prior efforts:

e Question 1:Given the long list of protocols in the litera-
ture, how much room is there for further improvement?

e Question 2:What are the key aspects that determine an
RFID counting protocol’s performance? What are the
techniques that are only of secondary importance?

e Question 3: Guided by the answers to the earlier two
questions, can we easily design simple protocols that out-
perform existing ones?

Our results. Our main contributions are precisely the answers
to these three questions:

e Answer 1: Lower bounds.To determine how much
improvement is still possible, we obtain strong lower
bounds on the overhead of RFID counting, by leverag-
ing a recent breakthrough result on communication com-
plexity [5]. Our lower bounds show that it impossi-
ble for a single-set RFID counting protocol to use only
o(ﬁ + loglogn) time slots for all inputs. Here is
the number of tags to count, anads the relative error on
the final output of the protocol (since we are considering
approximate counting). In eatime slot the reader may
broadcasO(1) bits to the tags, and all the tags combined

can send back)(1) bits to the reader. A similar lower
bound is obtained for multiple-set RFID counting.

We then compare these lower bounds with the asymptotic
overhead of existing protocols. Such comparison readily
reveals that:

— For single-set RFID counting, some existing pro-
tocols’ performance is already asymptotically close
to optimal. Improvements are still possible though
one should not expect huge improvements.

— For multiple-set RFID counting, existing protocols’
performance is further away from optimal. Larger
improvements hence seem still possible.

Answer 2. The overlooked key design aspect for ap-
proaching optimal performancele identify that a key
design aspect for single-set RFID counting protocols to
approach optimal performance is to have two conceptual
phases: The first phase uses rougBifloglogn) slots

to obtain a rough estimate with constant (e0g5) rela-

tive error, and the second phase uses rou@]ﬂ;ﬁgl)

slots to eventually obtain a final estimate with the de-
sired relative error o. Our thesis further indicates that
many other performance-enhancing techniques or ideas
proposed in the literature are only of secondary impor-
tance. We also generalize this answer to multiple-set
RFID counting protocols.

It is worth noting that our answer to this question is quite
surprising because prior efforts [8,11,12,15,17,23, 24]
often view various other aspects of RFID counting pro-
tocols as key, and have overlooked this two-phase aspect.
Those efforts also attribute their performance improve-
ments to various clever techniques on those asifeas

the use of novel statistical quantities to do the estima-
tion, the use of complex optimization techniques to tune
various parameters, and the use of iterative process to re-
fine the estimation).Our answer implies that all those
design aspects are perhaps less important than originally
thought.

As direct evidence to support our claim, this paper care-
fully examines the source of performance gains in some
existing RFID counting protocols. For example, some
recent protocols [8, 17] attribute their performance im-
provements over prior protocols to the use of the novel
statistical quantities to do the estimation. Quite sur-
prisingly, in our experiments, we find that these novel
guantity does not necessarily improve the performance
of these protocols: Replacing these novel quantities with
some old quantity from some earlier protocol [12] either
improves the protocols’ performance or provides compa-
rable performance in our experiments. We further show
that the source of performance gains in these protocols
is their two-phase design, despite that such a two-phase
design was not considered as the key.

Answer 3: Simple & more efficient RFID counting proto-
cols. Guided by our answers to the earlier two questions,
we set out to search for more efficient RFID counting



d enter

al

! 4 __ exit
RS
& “legends: |
m RFID tag i
. LARFID reader |

Figure 1: A multiple-set RFID counting example: A mobile
reader sequentially visits three locations.

protocols while keeping our design as simple as possible
We manage to design such protocols by simply putting
together a few basic building blocks (with some rather
minor adaptations) from the literature. We dot claim
novelty on these building blocks — instead, we aim to
show that simply putting them together ippeoper man-

for n, so thatPr(|in — n| < en) > 1 — 4, with the probabil-

ity taken over the random coin flips done by the randomized
protocol. Heres andd captures the target estimation quality,
and should be specified by the end user. We also refeato
therelative errorof 7. We calln as having(e, 0) estimation
quality and call itself as an(e, §) estimate.

In themultiple-set RFID countingroblem (Figure 1), a mo-
bile reader sequentially visits locations exactly oncé. At
locationi, the reader’s radio range covers a Sgof tags. Let
n; = |S;]. The goal of the counting protocol is to produce an

(€, §)-approximatiom for n, wheren = |S; U Sy U ... U Sg|.

Usuallyn # nq + na + ... + ny, since theS;’s may overlap.
Note that such formulation of the multiple-set RFID cougtin
problem implicitly but fully captures more general apptioa
scenarios. For example, it also captures the setting where a
static reader takes a sequence of snapshots of mobile tdgs an

ner as guided by our earlier answers is already sufficientthen counts the total number of tags.

to outperform existing protocols. This serves as an ulti-
mate validation of the utility of our earlier findings.

Specifically, our RFID counting protocols are signifi-
cantly simpler than most existing protocols — for ex-

ample, we do not need iterative refinement or to solve
optimization problems to tune parameters. Despite the

simplicity, our experiments show that our single-set
(multiple-set) RFID counting protocol is aroud®0%
(500%) faster than the best existing single-set (multiple-
set) RFID counting protocol. Furthermore, our protocols
arenear-optimaland are within a smatD(log 1) factor
from the lower bounds, for both single-set and multiple-
set RFID counting.

Roadmap. The next section formalizes the RFID counting

problem. Section 3 proves lower bounds on the overhead o

single-set and multiple-set RFID counting. Section 4 negie

major existing RFID counting protocols. Section 5 presents
our thesis on the overlooked key design aspect of RFID count-
ing. Section 6 provides direct and immediate evidence te sup
port our thesis by examining the source of performance gain

of some recent protocols. Section 7 demonstrates theyutilit
of our insights by applying them to construct new protocols

that are both simple and more efficient. Section 8 and Sec S
espond, based on its id, random numbers generated locadly, an

tion 9 discuss variant models and related work. We conclud
in Section 10.

2 Problem Formulation

This section formalizes the RFID counting problem. We de-

Since we aim fole, §) estimation quality, the RFID count-
ing protocols are essentially Monte Carlo randomized algo-
rithms [14]. In our reasoning on asymptotic overhead, wé wil
adopt the following standard way of treatingn Monte Carlo
algorithms [14]: We will only require the protocol to aché&v
constant (e.g.,0.2). Itis well-known that to achieve a smaller
Jd, one can repeat the protoc(log %) times and then take the
median of theD(log %) outputs as the final output. A constant
0 helps simplify our discussion.

Abstracting RFID counting protocols. In an RFID counting
protocol, the reader communicates with tags in synchrahize
time slots. In Section 1, we explained that in each time slot
the reader and the tags can excha@ge) bits. Without loss
of generality, from now on, we will assume that in each time
slot the reader may ser@(1) bits to the tags, while all the
fags collectively can either send a single bit of “1” or send
nothing? Such treatment is without loss of generality because
our formalization here is only for reasoning about asyniptot
overhead — one can easily uég1) slots to send)(1) bits.
We say that a tagespondsin a slot iff it sends back a “1”
bit. If there exists at least one tag responding in a slotstbie
becomeson-emptyOtherwise the slot ismpty

Now consider a given slot. Since the tags are distributed,
each tag will need to unilaterally determine whether it weH

its current state (since the protocol may be stateful), aed t
bits received from the reader. For our formal reasoning,late
it will be convenient to imagine that in each slot the reader
conceptually specifies a boolepredicate functionf. A tag
responds in the slot iff it satisfies the predicgteNote that
the RFID counting protocol may be stateful — this is captured
by allowing the functionf to take the local state (i.e., local

fine the overhead of RFID counting protocols mainly for later variables) of the tag as an input as well.
studying the asymptotic lower bound on the problem and the
asymptotic upper bound achieved by the protocols. Hence ouMeasure of goodnessOgr measure ‘?f goodness (mrfpr- _
formulation here will only be concerned with asymptoticeve ~ Mancg of an RFID counting protocol is the amount of time it
head.

Single-set and multiple-set RFID counting.ln thesingle-set
RFID countingproblem, the readgr covers a certain physica 3Some protocols (e.g., [11]) assume that the reader carefulthtinguish
area. LetS denote thelse"‘ of tags ”j‘ that area, anchlet |S| whether a single tag or multiple tags send a bit. We will caties extended
The goal of the counting protocol is to produce an estiniate model in Section 8.

2Some researchers (e.g., [17]) consideiraplervariant of the problem
by assumingparallel access to all sets through multiple readers. Section 8
| discusses this simpler variant.



needs. When studying asymptotic behavior, this is the sameslot. Alice/Bob can thus locally determine the set of tagg.(e
as the total number of slots used by the protocol. Hence wetag 2, 6, and7) that satisfyf. Next Alice computes a short
define theasymptotic overheaaof a protocol to be)(x), if for fingerprint of S|zeO(log ) for the (potentially long) string
all inputs, it need$)(z) slots on expectation for achieving the z[2]x[6]x[7] and sends to Bob. Bob similarly computes the fin-
accuracy target. Here the expectation is taken over the coimgerprint overy[2]y[6]y[7] and compares the two fingerprints.
flips done by the randomized protocol. For now assume no fingerprint collisions (collisions will be
properly addressed in our proof). Then the two fingerprints
differ iff z[2] # y[2] or x[6] # y[6] or z[7] # y[7], which in
3 Lower Bounds on The Overhead of mis eqL[Ji\]/aIent[tc]) tag [o]r tag6[c1r tag[7]being[ gresent, and

RFID Counting Protocols also equivalent to the first slot being non-empty. Alice and
Bob now have successfully determined whether the first slot
We first consider single-set RFID counting, and then general is empty or not. Emptiness of later slots can be sequentially
ize to multiple-set RFID counting. determined in a similar way.

Single-set Counting: Lower bound as a function of. We Formalizing the abo_ve_ intuition will I_ead to the following
will use a standardeductionapproach to obtain our novel theorem, whose proofis in the Appendix A.1:
lower bound on the overhead of an RFID protocol. For readersTheorem 1. No single-set RFID counting protocol can out-
not familiar with reduction, following is a quick explanati. ~ Put an (e, 0.2) estimate W'thO(—) overhead, fore €
To prove that a problend (in our case, the RFID counting [1/,/n,0.5].
problem) is hard and hence to obtain a lower bound for the
complexity of any protocol that solve$, a common approach
(calledreductior) in complexity research is to establish a con-
nection with another hard problefh Namely, one first shows
that any protocol for solvingd can be used, as a black box
sub-procedure, to solv8. Next sincel is hard, any protocol
for solving B must incur large overhead. This in turn can be
translated back to reason about the hardnegs of
The key step/challenge in reduction is to choose a prope
B and then to show how to construct a protocol for solving
B, given any protocol for solvingd. We choose thédam-
ming Distance EstimatiofHDE) problem as the hard problem
B. HDE is a two-party communication complexity problem,
where the two parties Alice and Bob are givenbit strings
x andy as input respectively. They would like to estimate
the hamming distance betweenandy, with (e, d) estima- ~ Theorem 2. No single-set RFID counting protocol can output
tion quality, while minimizing the number of bits they need an (e, 0.2) estimate witho(log logn) overhead, foe < 0.5.
to exchange. A recent breakthrough result by Chakrabadti an
Regev [5] implies that even for a constansolving the HDE
problem require$)( %) bits of communication between Alice  Corollary 3. No single-set RFID counting protocol can out-
and Bob fore > 1//m. put an(e, 0.2) estimate with)(ﬁ_r + loglogn) overhead,
With HDE as problen3, our goal now is to design a proto- ¢, € [1//n,0.5]. ‘
col for solving HDE, using any given RFID counting protocol ) o . )
P as a building block. To do so, Alice and Bob will locally This corol!ary_also |mpI|_es the dlfflcultylof exact coqntlng.
simulatean execution ofP. Specifically, they will simulate Exact counting is no easier that approximate counting with
n RFID tags, with IDs froml throughn. We want tagi to € = \/—, whereo( 2 ) overhead is already impossible.
be pl’esentand be included in the RFID Counting result iff Mu'“p'e_set Count|ng_ Lower bounds_ Reca” that in
xli] # y[i]. All other tagsj wherez[j] = y[j] should beab-  muyltiple-set RFID counting, the RFID reader sequentiadiys
sentand will not be included in the count. This will make the a sequence of (poten“a“y Over|apping) SS&S 52’ ey Sk-
RFID count to exactly equal the hamming distance betweenThe goal is to estimate the size of the union of all these sets.
z andy, hence solving the HDE problem once we know the we can show that in the worst case, to estimate the size of
count. the union, it is actuallynecessaryor the protocol to estimate
Now to properly simulate the execution &f with those  \ith similar accuracy the size:f) of each individual ses;.
present tags, Alice/Bob needs to determine which slotseén th Formalize such intuition, together with our single-set BFI

simulated execution of are empty. Doing so enables Al-  counting lower bound, would lead to the following theorem,
ice/Bob to simulate the responses received in all thess slot\yhose proof is in the Appendix A.2:

and feed those int@® to obtain the final count. For each
slot, we will show that Alice and Bob can determine whether
it is empty by only exchangin@(log 1) bits. Consider the
first slot. P must have specified a predicafefor the first  overhead, fok € [1/y/min{ni, no, ..., ny},0.25].

Single-set Counting: Lower bound as a function of.. One
naturally expects that the number of slots needed by an RFID
counting protocol will increase with as well. For example,

to approximate every possible tag count betwkémn within

a relative error 0f).5, a deterministic RFID counting proto-
col needs to be ready to outgutlog n) different values, with

at leastone in each of rang€ds, 2|, [4, 8], [16, 32], ... These
r‘Q log n) different values require at lea@tlog log n) blts (i.e.,
slots used by the RFID counting protocol) to encode. To ex-
tend this argument to randomized RFID counting protocols
with (e, §) guarantee, we leverage Yao’s well-known minimax
principle [21] on the complexity of randomized algorithms.
Doing so will eventually yield a similalog log lower bound
(see the Appendix A.1 for full proof):

Single-set Counting: Putting everything together.

Theorem 4. No multiple-set RFID counting protocol can out-
put an (e, 0.2) estimate Witho(zk (=T 210g T + loglogn;))




Key implications of our lower bounds — how much room balls-and-bins trials, existing protocols have also deped
is there for further improving RFID counting protocols? alternative ways to use the slots of a trial, as will be désati
As we will show in Section 5, in terms of asymptotic over- later in the corresponding protocols.

head, the best existing single-set RFID counting protatol i - ynified probabilistic estimation (UPE) [11]. In UPE, all tri-
curs an overhead @9(; +loglogn). This is already close to  gJs are balls-and-bins trials with the same length (8., In
our lower bound. Improvements may still be possible thoughthe first trial, all tags participate. Depending on the nunafe
one should not expect huge improvements. For multiple-setempty slots observed in this trial, the protocol will braricto
RFID counting, the best existing protocol incurs an ovethea several different execution paths. We will focus on the most
of O(% loglog(3F_, n:)). It exhibits a larger gap from our  important execution path, which corresponds to largend
lower bound — in particular, this overhead is multiplicativ where the protocol observes no empty slots in the first tial.
while our lower bound is additive. Hence significant asymp- such a case, the protocol proceeds sequentially to the gdecon
totic improvement seems still possible. trial, the third trial, and so on, with each tag participgtimith
p = 0.1°~! probability in theith trial. This process stops once
. . . the protocol sees an empty slot in a trial. The protocol then
4 Review of The Main Ideas in generates a rough estimatebased on the curreptand the
Existing Protocols number of collision slots in the current trial (i.e., theatwvith
at least one empty slot), and the first phase ends. In eath tria
This section concisely reviews major RFID counting protsco  Of the second phase, the protocol uses the rough estirsie
in the literature (Table 1). This serves to set up the stage fo far to calculate an optimal, and has each tag participate with
our later discussion on which design aspects are key for RFIDProbabilityp. Next using the new information received in this
counting protocols. For each protocol, we will highlightialn trial, the protocol amend&. This iterative process continues
design aspects are believed by the original authors as the keuntil the protocol believes that the estimation accuracy isf
aspects of that protocol. Throughout this section, weiuse high enough.
to denote a rough estimate an(e.g., with constant relative ~ The authors [11] attribute UPE’s performance to the proper
error), and to denote the final estimation enwith ¢ relative ~ use of randomization, i.e., carefully choosing the probabi

error. ity for tags to participate in trials (callggrobabilistic framed
These protocols adopt some common concepts. Each ofALOHAscheme), and the unified use of empty slots and col-
these protocols is comprised of a sequencériafs, where  lision slots to do the estimation. The basic idea of random-

each trial is a sequence of slots. At the beginning of a trial,ization has been inherited by virtually all follow-up resea
the reader sends a command to the tags. This causes the tag8 the problem. Despite that UPE does have a rough esti-
to initialize their local state machines and potentiallgdmew  Mation phase followed by an accurate estimation phase, this
random numbers. Next in each slot within that trial, a tag wil two-phase design is not mentioned as a key aspect of UPE by
respond or not respond based on the command, its local statéle authors. Multiple later protocols, including the autio
and its random number. For all existing protocols, a tag doesPwn follow-up work [12], abandon this two-phase approach.
not carry state across trial boundary. Due to the processindEnhanced zero based estimator (EZB) [12]EZB partitions
needed at the beginning of a trial, in certain physical imple the entire domain for the possible values:ahto logarithmic
mentations of RFID systems, a trial may incur an additional number of narrow rangest, r), [r,7?), [r%,r%), .... Herer
per-trial overhead|f there is indeed such overhead, this extra is some parameter to be explained later. Each of these nar-
overhead will be in addition to the time needed for all thésslo row ranges has the property that the max of the range is at
in that trial [6]. mostr times larger than the min. EZB works on each range
The number of slots in a trial is called thengthof the trial. sequentially and independently. For each range, EZB uses a
Recall that a slot is either empty or non-empty, depending oncertain number of balls-and-bins trials with a certain kng
whether there is at least one tag responding in that slot.PA no In each such trial, tags participate with some probabjlity
empty slot is called aollisionslot iff at least two tags respond Here the number of trials and trial length are the same for all

in that slot. ranges, while the value gfdepends on the range. Finally for
One simple way of running a trial, as adopted by multiple each range, EZB uses the number of empty slots in the trials,
protocols, is to start a trial of lengihand let each tagartici- together with the probability, to estimate.. EZB then com-

patein that trial with a certain probability, with totalnp tags bines all estimates from all ranges to obtain the final output
participating on expectation. Here we say a pegticipates EZB uses various involved optimization techniques to ckoos
in such a trial iff it chooses a uniformly random slot within the optimal values for the various parameters suchasdp.
that trial and then responds in that slot, and we call such antuitively, EZB works because the coumimust be in one of
trial a balls-and-bins trial The value ofn can then be esti-  these ranges. Since each range is narrow, one can pick a singl
mated from various statistical quantities on the statusef t p value such that for any value within that rangezp is on
slots. A basic principle, which will help us understand thes the same order as the length of the trial. This enablesbe
protocols, is that usually we want to usg @alue such thatp properly estimated, as long ass in that range.

is on the same order ds This ensures that we see a healthy The authors [12] attribute EZB’s performance gain to its
mixture of empty and non-empty slots in the trials, maximiz- unique narrow range design (calleulti-resolution probing

ing the amount of information carried about Besides such  and the various parameter optimization techniques.



Protocol Venue Key source of performance gains, as belieydde authors

UPE [11] MobiCom’06 i) proper randomization; ii) use of emaind collision slots for estimation
EZB[12] INFOCOM'07 i) multi-resolution probing; ii) varias parameter optimization techniques
LOF [15] PerCom’08/TPDS’11 small length of the trials

(Enhanced) FNEB [8] INFOCOM’'10 use of the indices of the firash-empty slots for estimation

PET [23] ICDCS'11/TMC'12 use of the binary search to find thdex of the last nonempty slot

ART [17] MobiCom’12 use of the average run length of non-eyrgbdts for estimation

ZOE [24] INFOCOM’13 i) each trial has a single slot; ii) twdrase design

Table 1: Major Existing RFID Counting Protocols

First non-empty slots based estimator (FNEB) and en- slot. LOF finds the indey of the first empty slot by sequen-
hanced FNEB [8]. Enhanced FNEB has two phases, while tially going through the slots. A trial ends immediately ard
FNEB is exactly the same as the second phase of enhancedrns; when the protocol sees the first empty slot. The value
FNEB, so we only review enhanced FNEB. A trialin enhanced of j carries useful information about On expectationy;
FNEB is similar to a balls-and-bins trial as it lets each tag u  tags respond in th&h slot, and; tends to take a value around

formly randomly choose an integer from the rangd @b I’ log(n). Finally, LOF combines the information obtained from
Herel’ is some parameter to be explained later. Different from all of its trials to produce a final estimate.
a balls-and-bins trial, a trial here does not Ufsslots to se- The authors [15] attribute LOF's improvement over prior

quentially scan the whole range. Instead, it does so only forprotocols to its small trial length.

Fhe first few slots. If any of th?m Is nop—empt_y (ie., its inde Probabilistic estimating tree (PET) [23]. Similar to LOF,
is chosen by some tag), the trlal ends |mmed|§1tely a”d 'BUM pET Goes a sequence of independsals, where in each trial
the index of that slot. Otherwise, the trial continues withi-a each tag randomly chooses a positive intégarcording to the

Eary slearch to find thel sma_llest rllnteg'ehat hlas been ct:)hﬁsen dsame geometric distribution as LOF. But instead of determin
y at least one tag. Imagine the protocol uses a balls-andy,, the ; in LOF, PET finds the maximuni’ such that there

?_L:wstr;al, t'h.ejthilot l‘;"%”'ﬁ be Ejhe fw:thno?—empty slotit seles. exists some tag choosing. The intuition why suchj’ car-
erefore; Is still called the index of the first non-empty slot joq \seful information about is similar toj as in LOF. In

here. _ _ addition, PET (implicitly) requires an upper bouncn the

To start, enhanced FNEB requires the user to input an Upmaximum;’. These two changes enable PET to perform a
per bound om. The protocol determines thé used in its  more efficient binary search on the slot index rangélof]
first trial by solving an optimization problem parametetze o find the maximuny’, instead of sequentially going through
with this upper bound. The protocol then uses the index Ofthe siots. In the first slot of this binary search, PET asks all
the first non-empty slot in its first trial to generate arough @  tags whose chosen integer falls withiry2, z] to respond. If
timate n. Intuitively, this index carries information about  tne siot is empty (non-empty respectively), PET can then fo-
since for a giver?’, the larger the value of, the smaller this  ¢ys on the range di, z/2] ([z/2, ] respectively) in the next
index will likely be. Next the protocol determines thieused  gjot.
in its second trial by solving the same optimization problem  The authors [23] attribute PET’s improvement over prior

this time parameterized with the rough estimateThe sec- rotocols to the efficient way of using binary search to deter
ond trial then proceeds in the same way as the first trial, ano&me the maximuny’.

amendsn. This iterative process continues until the protocol
believes that the estimation quality@fis good enough. Next
the protocol moves on to the second phase where all trials use. . o . .
the same value of, which is obtained by solving the opti- U2l t0 obtain a rough estimate on . The quality of this
mization problem again but parameterized using thieom rough e_sumate |s_Iow since different from LQF wh|_ch uses
the first phase. The protocol then combines the first nonagmpt Many trials to estimate, ART only uses a single trial. Al

slot information from all of its second-phase trials to prod the fqllowing_ trials are baIIs-gnd-bins tr.ials, Whef‘? eash
a final estimate. participates independently with a certain probabifity The

The authors [8] consider their use of the first non-emptylength of these trials and theused in these trials are all the

: .” same. ART then observes which slots in each trial are non-
slots as the key improvement of (enhanced) FNEB over prior .
. ) ._empty. Next it calculates the averagm lengthof non-empty
protocols. This design enables (enhanced) FNEB to end a tria ; .
g . ) .. slots (i.e., the average length of sequences of conseadive
as soon as it finds the index of the first non-empty slot. Despit

that enhanced FNEB has two phases, these two phases are iempty slots), and uses such information to generate a final es

B Y imate. Such average run length carries information alhout
troduced by the authors only as an “enhancement” instead of .
. since the larger the value ef the more non-empty slots, and
a key design aspect.

the larger the average run length. The total number of frials
Lottery frame protocol (LOF) [15]. LOF consists of multi-  the length of the trials, and the probabiljyused in ART are
ple independenttrials. For each trial, atag randomly cesas determined by solving an involved optimization problemhwit
slot according to a geometric distribution where ttreslot is the rough estimaté being an input parameter.

chosen With% probability. A tag then responds in its chosen  The authors [17] attribute ART’s improvement over prior

Average run based tag estimation (ART) [17].The first trial
In ART is roughly the same as a trial in LOF. ART uses this



protocols to its novel use of run length to do the estimation.
While ART does have two phases (with the first phase having
a single trial), the authors neither emphasize this asparct n
attribute ART’s performance gain to this aspect.

Zero-One Estimator (ZOE) [24]. ZOE is independent of and
concurrent with our work. ZOE has two explicit phases, where
the first phase gets a rough estimatend the second one ob-
tains the final estimate. As a key design decision, eachitrial
ZOE has a single slot, so we directly describe slots herdsIn i
first phase, ZOE aims to findjasuch that if all tags participate

in a slot with a probability ofl /27, the probability of the slot
being empty is around/e. To find such g efficiently, ZOE
(implicitly) requires an upper bound on the number of tags
so that it can does a binary search offeflog z]. Each step

of the binary search uses a constant number of slots. In eac
such slot, the tags respond with probability 1g2¢ where:

is the current value tested in the binary search. The proto
col then observes the fraction of empty slots, and detersnine
how to continue the binary search. With a suitapfeund by
the first phase, ZOE's second phase uses a certain number
slots where the tags participate in each slot with probtsiufi

UPE [11] -

EZB [12] O(% logn)
LOF [15] O(% logn)
FNEB [8] O(% logn)
Enhanced FNEB [8] O(% + logn)
PET [23] O(z loglogn)
ART [17] O(Z% +logn)
ZOE [24] O(4 +loglogn)

Table 2: Asymptotic Overhead of Single-Set Protocols

ande. Interestingly, as we will soon see, such a simple inves-
tigation already sheds much light onto the question.

It is worth noting that such a systematic comparison of
hhe asymptotic behavior has never been done before: The
end-to-end performance of some protocols [11, 17] has not
been formally analyzed, while the performance of othergrot

cols [8,12,15,23] has been analyzed and presented in a rathe
detailed form. These more precise but complex forms unfor-
tlfmately prevent a direct comparison across the protocals a

%ury the key insights we are searching for.

1/27. The number of slots needed in the second phase is deAsymptotic overhead of single-set RFID counting proto-

termined by the required estimation quality. ZOE evenyuall
estimates: from the fraction of empty slots observed in the
second phase.

The authors [24] attribute ZOE’s improvement over prior
protocols to the following two design aspects: i) each trial
having only a single slot so that this slot can potentialljex
information from all tags, and ii) having two explicit phase
While this concurrent work of ZOE does emphasize the impor-
tance of its two-phase design, the thesis identified in t@ep
is still not discovered in ZOE: ZOE believes that its unique
design of each trial having a single slot is also key to ZOE's

cols.

UPE [11] and ART [17] do not come with end-to-end overhead
analysis. We find that the estimator used by UPE is biased,
hence UPE cannot be used wheis small. This is consis-
tent with the findings by the original authors of UPE in their
follow-up work [12] and will be validated by our experiments
in Section 7.3. We have analyzed ART by ourselves, which
shows that it use®(log n) slots in the first phase ar@(Z%)
slots in the second phase. This implies a total overhead of
O(Z% +logn). For space limitation, we leave the full analysis,
which is straightforward and uses rather standard appesach

performance. Our thesis, on the other hand, suggests that thto the Appendix B.
two-phase design is the key while other aspects are only sec- The other existing protocols, i.e., EZB [12], (enhanced)

ondary. Guided by our thesis, a protocol designer would not
be overly concerned with sticking to ZOE’s idea of having a
single slot in each trial. Section 7.3 will show thadt having

a single slot in each trial, as in our protocol, enables usto g
better performance in our experiments.

5 Which Design Aspects Are Key?

So far we have reviewed major RFID counting protocols in the
literature, each with its own unique techniques. Given such
a myriad of interesting techniques, which techniques age th
actual dominant factors for good performance? Which tech-
niques are less important? If one would like to outperforen th
state-of-the-art, which existing technique should onddsui

FNEB [8], LOF [15], PET [23], and ZOE [24], all come with
detailed analysis on the number of slots needed. Here all we
do is to simplify their more precise results to asymptotitrie
(with adaption to our formulation when necessary), forrate
comparison. More details about these protocols can be found
in the Appendix B.

Table 2 summarizes the asymptotic overhead of these
single-set RFID counting protocols. At this point, it is ate
that the protocols have either additive overhead or migapl
tive overhead. Additive overhead is obviously lower, and it
comes from a conceptual separation of two phases in these
protocols, with the first phase takig(log n) or O(log logn)
slots and the second phase takifg:) slots. Thelogn
andloglogn term are aboul6 and4 respectively, fom =
100, 000. (Whenn is small, almost all known protocols can

upon? To answer these questions, we aim to identify the keycomplete fast, so further improvementis less interestidg-

aspects of efficient RFID counting protocols.
While experimental study can help reveal about which as-

less the hidden constant in a multiplicative overhead proto
col is comparably smaller, additive overhead protocol sl

pects in these protocols are more important than others, wenore efficient. Our experiments in Section 7 will show that

notice that what we are looking for could very well be buried

this is indeed the case.

deep under the vast amount of experimental data. Thus we Bring our lower bound from Section 3 into the picture

start by first systematically investigating and comparing t
asymptotic overhead of these protocols, with respect taithe

makes this key observation even clearer. There we provéd tha
it is impossible to reduce the overhead of a single-set RFID



counting protocol te( - +loglogn). Nowitis clearthat  has applied our thesis on the two-phase design. Hence in the

€2 log

©(loglog n) slots are for the first phase, while the remaining Multiple-set setting, these previous efforts have not éwen
O (15,1 ) slots are for the second phase. plicitly applied our thesis.

Our thesis. Our observations above lead us to conjecture the
following thesis, which will be validated in the remainddr o 6 Source of Performance Gain

this paper: .
_ . _ — Two Case Studies
The key design aspect for single-set RFID counting pro-

tocols to achieve near-optimal performance is to have two - An yltimate way of validating our thesis is to see whether ap-
phases, where the first phase uses rough(yog log n) plying such a design principle enables new protocols that ar
slots to obtain a rough estimate with constant (e.9., significantly better than existing ones. We will do so later i

0.5) relative error, and the second phase uses roughly gection 7. This section instead aims to provide direct and im
O(zp;7) slots to eventually obtain a final estimate with  mediate evidence to support our thesis, by carefully examin

the desired relative error of. Furthermore, other tech- ing the source of performance gains in existing protocols. W
niques/ideas proposed in the literature are only of sec- will focus on two recent protocols, ART [17] and enhanced
ondary importance. FNEB [8], as two prominent examples. As reviewed in Sec-

tion 4, ART uses the average run length of non-empty slots as
agaugefor estimation and attributes its performance gain over
prior protocols to this unique gauge. Similarly, the authafr

While this thesis is almost obvious from our discussion so
far, somewhat surprisingly, it has never been identified by

any of the previous efforts (including the concurrent work o enhanced FNEB [8] consider the novel use of the first non-

ZOE [24]). Instead, existing protocols often overlook tvet .
phase design and often attribute their improvements to a di_e;ngty slots as gaugebeing the key source of performance

verse set of design aspects other that the two-phase deS|g|q. We will show that quite surprisingly, in our experiments,

Our thesis implies that all the following design aspects; em L :
) ; . C these two novel gauges do not necessarily improve the per
phasized by previous efforts, are far less important thagi-or formance of ART and enhanced FNEB: Replacing these two
nally th_ought._ . " . novel gauges with a simple gauge (i.e., the number of empty
e using various novel statistical quantities to do the estima s iy halls-and-bins trials) from the earlier EZB proto-
tion (such ashu5|.ng the e]}ver:ag? run length in ARIT [17] ol [12] either improves the performance or provides compa-
and using the index of the first non-empty slot in p0 performance in our experiments. We further show that
FNEB [8]); the actual source of performance gains in these two pratocol
e using an iterative process to refine the estimation overis their (implicit) two-phase design, despite that such a-tw
many iterations (such as in UPE [11] and enhancedphase design was not considered as the key.
FNEB [8]);

e using complex optimization techniques to tune various6 1 Source of Performance Gain in ART
parameters (e.g., to trade off the trial length with the num-

ber of trials as in EZB [12], FNEB [8], and ART [17]); For all experimental results presented in this section, se u
e using a single slot in each trial as in ZOE [24]. n = 100,000 and a constant = 0.2 unless otherwise men-

. ) ) tioned — we have performed extensive experiments under
Generalizing to multiple-set RFID counting protocols.We (o settings (e.g., with smalle) and observe similar trends
naturally generalize our thesis to the multiple-set sgttin (see Appendix F). Our evaluation in this subsection adopts
There the protocol should have two phases at each locag,q game setting as the original ART paper [17]. Specifically

tion 7 for 1 SI i = k,bw_here thehflrst_phase uzesh roughlydwe assume that each slot take3ms, and each trial incurs an
O(loglogn;) slots to obtain a rough estimate, and the secon additional overhead dfms.

phase uses rough@(ﬁ) slots. S
. i €08« ) ART outperforms EZB. To identify the source of perfor-

Exitlng multiple-set RFID counting protocI(EZB, mance gain in ART [17], for clarity, we focus on ART’s per-
FNEB”, L.OFﬁ’ and PET) all focus on other aspects of .the formance gain when compared with a specific prior protocol
protc_)cql ”’?Stead of having the_ _above two phases, and INCUEZp [12]. As a sanity check, we first perform experiments to
mul.tlpl|cat|vekoverhegd. Specifically, EZB, !‘OF' and_ FNEB see whether ART indeed outperforms EZB, as claimed in [17].
all incur O( log(3_;_, ni)) overhead, while PET incurs  rigyre 2 summarizes our experimental results, showing the
O(£ log log(>°F_, n;)) overhead. amount of time needed for ART and EZB to achieve a cer-
Such multiplicative overhead contrasts sharply with theéi-ad tain target relative error. Consistent with [17], we observe
tive overhead of our new SR protocol (Section 7.2), which  that ART significantly outperforms EZB — more thaa0%

4Other protocols are not for the multiple-set RFID countinglem. faster.
Among those, ART only works for a simpler variant of the npl#set prob- ART’s novel gauge and ART’s performance_Next we pro-
|em5(Esee Section 8). . . ceed to test whether this performance gain comes from ART’s
nhanced FNEB no longer works in the multiple-set problem. .
6Here LOF requires an upper boumcbn the number of tags, and canno  NOVel run length based gauge. To do so, we keep everything
longer end a trial when it sees the first empty slot. else unmodified in ART except that we replace ART’s novel
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Figure 2: Time needed to achieve relative
errore underé = 0.2.

Figure 3: Time needed to achieve relative
Table 3: Variances of gauges errore unders = 0.2.
and estimates under ART
and revised ART.

run length based gauge with the old gauge in EZB. This oldthe fact that under practical parameters, the value of ART's
gauge in EZB is based on the number of empty slots. We callgauge has a smaller domain that EZB’s.

this protocol as the revised ART. If the run length based 8aug e actual source of performance gain.lt will shed much
were indeed the source of ART’s performance gain, the rdvise light onto the problem if we view the revised ART protocol
ART should perform significantly worse than ART. Quite sur- from a different perspective. Namely, one can alternaivel

prisingly, as shown in Figure 2, the revised ART actually-out ey the revised ART protocol as a variant of the EZB protocol
performs the original ART. — the only main difference between these two is that EZB
does not have a rough estimate from a first phase. Thus EZB

Resolving the contradiction. To resolve such contradiction o . . .
g has to divide the possible domain fetinto O(log n) narrow

with the claims from [17] that ART’s novel gauge is the source : . :
of performance gain, we trace back and examine the reasoninfN9€s and process them sequentially. In comparisongtevis
in that work. There the authors [17] compare the variance of RT has a rough estimate from its first phase to identify the
ART's average run length based gauge with the variance offorrect range to process. _ _

other old gauges, including the gauge in EZB (and hence the Hence one can view revised ART as adding a first phase to
gauge in revised ART). They show that the variance of ART’s EZB. This implies that the' performance gain of revised ART
gauge is smaller, leading to the conclusion that ART’s gauge®Ver EZB comes from having two phases as suggested by our
is the source of performance gain. Again as a sanity check,thes's' In turn, this is also the source of the performanae ga
we examine the variance of ART’s gauge and EZB's gauge as" ART.

observed in our experiments. Consistent with [17], we also

observe that ART'’s gauge has smaller variance (Table 3). Org 2  Source of Performance Gain in Enhanced
the other hand, however, we find that smaller variance of a ENEB

gauge does not necessarily translate to better accuraby of t

final estimate. Table 3 also presents the variance of the ﬁna.l_jsing the same approach as above, we continue to examine
estimate as generated by ART and revised ART (which useshe source of the performance gain of enhanced FNEB [8] over
EZB's gauge). Despite ART's gauge has smaller variance tharezg. Here our evaluation adopts the same setting as [8],avher
EZB's, the variance of ART's final estimate is actually large each slot still takes.3ms (as in [17]) but there is no per-trial
than that of revised ART's final estimate. Note that this is overhead. As shown in Figure 3, Ourexperiments first confirm
consistent with the better performance of revised ART as Wethat enhanced FNEB significantly outperforms EZB. To test
observed in Figure 2. whether this performance gain comes from FNEB's unique
The fundamental reason behind these results is that in ordefirst non-empty slot gauge, we revise the enhanced FNEB by
for the final estimate to have better accuracy, the gaugesneedusing EZB’s gauge in its second phase while keeping all other
to not only have small variance but also sensitiveto the design in enhanced FNEB unchanged. Our revised version of
count. In other words, under different numbel) ©f tags, = enhanced FNEB provides comparable performance as the en-
the value of the gauge should ideally be very different. This hanced FNEB (specifically, our revised protocol outperf®rm
ensures that we can easily differentiate differemven if the enhanced FNEB slightly by arouél), showing that FNEB's
value of the gauge is a bit off from its expectation. In fact, novel gauge does not necessarily improve its performance.
if we were not concerned with such sensitivity, it would be  The original authors of (enhanced) FNEB [8] attribute the
trivial to design a gauge with zero variance: We simply let th performance gain to their novel gauge, because they believe
value of the gauge always be a constant regardless of what that such gauge enables (enhanced) FNEB to end a trial as
is. Clearly such gauge cannot be used to accurately estimate soon as it sees the first non-empty slot and thus reduces the
Hence the reason that the variance of ART’s final estimate isnumber of slots per trial. While this is obviously true, tbal
larger is exactly that ART'’s gauge is less sensitive than'8ZB  overhead of a protocol also depends on the number of trials
Intuitively, such insensitivity can even be partly obsetrfrem needed. For example, whén= 0.2, to achievec = 0.01,



enhanced FNEB uses on average aroistbts per trial but  Algorithm 1 Our SRC s protocol (for § = 0.2)

it needs to invoke arount, 000 trials. To achieve the same 1. Invoke LOF with10 trials to getr;

estimation quality with EZB’s gauge, each trial ugdg slots 2: Start a balls-and-bins trial of lengthand let each tagar-
and only around 20 trials are needed. Hence the total number ticipate in the trialwith probabilityp = min{1, 1.61/7};
of slots needed by EZB'’s gauge is comparable to that neededs: Count the number of empty slotsn the trial;

by FNEB'’s gauge. 4: Outputln(z/1)/ In(1 — p/1).

Exactly as in the case of revised ART, here one can alternas-
tively view the revised version of enhanced FNEB as adding
a first phase to EZB. This directly leads to our conclusiom tha to generate a “good” result with at mastelative error. For
the actual source of the performance gain in enhanced FNEBhe median to have at mostelative error, it suffices to have
is having two phases as suggested in our thesis. at least(m + 1)/2 good results among the results. With all

instances being independent, we simply pick the smallest

N . suchthab ™ ..} /5 (1) x0.8°x0.2™~" > 1-4. Sincem is
7 DeS'ang Better RFID Countmg usually small (e.gs only needs to bé1 even fors = 107°),

Protocols the value ofmn can be trivially determined via brute-force cal-
culation.

Guided by our thesis in Section 5, this section aims to design The second phase of SRGimply consists of a single trial
new RFID counting protocols that are more efficient than ex- with [ slots, and each tag participates in this trial (i.e., resjgon
isting ones and also simultaneously simpler than most ofithe in a uniformly random slot in the trial) independently with
We will design our protocols by simply putting together var- probability p. We will explain the two parameterisand p
ious basic building blocks in the literature. We dot claim later. The expected fraction of empty slots in this triallwil
novelty on these building blocks — instead, we aim to shotv tha thus be(1 — p/1)". Our protocol determines the observed
simply putting them together in@oper manneas guided by  number of empty slots in this trial, denoted by Obvi-
our thesis is already sufficient to outperform existing prot ously, z directly carries information about. The protocol
cols. This serves as an ultimate validation of the utilitypaf finally generates the final estimateby solving the equation

thesis. (1 —p/l)™ = z/1, which leads toy = In(z/l)/In(1 — p/l).
The second phase of our protocol is rather similar to subpro-
7.1 SRG;: Our Simple RFID Counting cedures used in UPE [11] and EZB [12]. The only (minor)

difference is that we further simplify the design and usena si
gle trial instead of doing multiple trials. This simplifidar

For single-set RFID counting, our thesis suggests thatrive p  actually also slightly improves our performance: By pugtin
tocol should have two conceptual phases, the first one does all slots into the same trial, whether a slot is empty becomes
rough estimation, while the second one generates the fitral es negatively correlated with each other. Such negative tarre
mate. When designing these two phases, we will use as simplgon makes the total number of empty slots concentrate bette
building blocks as possible. This is because: i) more corple near its expected value.

designs tend to have larger hidden constants, and ii) ogithe ~ The parametet is uniquely determined by the target rela-
indicates that other performance tricks only have mineatf  tive error ofe, and there are two ways to do so. The first ap-

Protocol for Single-Set

in further improving performance. proach is to set = %, which isO(Z) (see the proof
Our SRC protocol. Algorithm 1 summarizes the main steps ©Of Theorem 5 in the Appendix D.3, where we have proved that
of our SRG protocol. The first phase of our SR@roto- suchl is sufficiently large) The second approach is to directly

col is exactly the same as the simple LOF protocol [15] asCconstruct a numerical lookup table. This lookup table is-con
reviewed in Section 4. Recall that LOF does a sequence oftructed by running the algorithm under a wide range vél-
independent trials with each trial usir@(logn) slots. For ues, and then observing theeeded to achieve a certainSee
§ = 0.2, our protocol invokes LOF to do0 trials, using total ~ Appendix C for a sample table. Between the two approaches,
O(logn) slots. It then uses LOF's output as the rough esti- since mathematical analysis is often a loose approximgtion
matern. By LOF's analysis [15]7's relative error is below ~ Practice, using a lookup table usually offers superior qrerf
0.5 with at least:; probability. Given such &, the second ~Mance. The parametgris set to bemin{1, 1.6//n}, so that
phase of SRG (as we will soon describe) guarantees to out- the expected number of tags responding is on the same order
put an estimaté of relative error below with probability of ~ @sl. The constant.6 here provides the best estimation per-

. Combining the guarantees from these two phases ensurdgrmance (see analysis in [11,12]).
that 's relative error is below with probability of_ « % The following theorem summarizes the end-to-end guaran-
which corresponds t6 = 0.2. To achieve & smaller than  tee of our SRG protocol, whose proof s in the Appendix D.2:
0.2, one can sequentially invoke (m being some odd inte-
ger) independent instances of Algorithm 1 and then take theTheorem 5. Our SRG protocol outputs arfe, 0.2) estimate
median of their outputs as the final output. Asymptotically, With O(Z + logn) overhead.
it is well-known thatm = O(log 5) suffices [14]. Obtain-  Incurring O(loglogn) slots in the first phase. The first
ing a concrete value of: for a certain targed is not hard:  phase of the design above incupglog n) slots. It is possi-
Each instance of Algorithm 1 hdas— 0.2 = 0.8 probability ble to use onlyO(loglogn) slots by using a revised version
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of PET protocol [23] insteadAs reviewed in Section 4, PET

does a sequence of independent trials. In each trial, egch ta-=:

randomly chooses a positive integer according to a geoenetri
distribution. Given a proper upper bouadfrom the end user)
onn, PET uses a binary search oygrlog z] to find the maxi-
mum’ such that there exists some tag chooginglence the
number of slots incurred in PET for each trialdglog log ).
Itis possible forz to be much larger than, in which case this
will still not give usO(log log n) complexity. To always have
O(loglogn) complexity, we slightly modify PET so that the
user does not input: In each trial before the binary search,
the protocol uses some extra slots. In itteextra slot, tags
that have chosen an integer larger than or equ2irto will re-

spond. This process stops once the protocol observes ag emp

slot. Let the correspondingn this empty slot be,. Next the

protocol does a binary search as before, except that now thiY;

binary search is done ovér, 2¢~ 1] instead of1, log z]. This
binary search will take anothgrslots at most. It can be easily
shown thaty = O(loglogn) on expectation. Hence the total
overhead will beO (log log n) slots. See Appendix C for more
details and the pseudo-code.

S; S, To estimate |S; U S, |
;~§‘i‘r1512345678 12345678{12345678
N EN |
1/2 H | H EEE EE BN | @ BN
1/4 | Hl
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Figure 4: An example run of SRg with two reader loca-
tions: Each column corresponds to a bin (note that the same
bins appear at both locations), and each row corresponds to a
participation probability. A filled (non-filled) rectangheeans

gn occupied (non-occupied) bin. At a given location, once a
bin becomes non-occupied at a certain participation pribbab
there is no need to further examine smaller probabgiti

for this bin. In this example, the second phase of gRsarts

at the participation probability of and% respectively at the
first and the second location. SRCeventually merges the
outcomes at the participation probability éffrom the two
locations to estimatgs; U Sa|.

Under practical settings, however, the overhead for the Sec|,g¢ |ocation. Observe however that at locatiothe protocol
ond phase usually dominates and such improvement will be,, easily get a rough estimatgfor the size of5;US, . . .US;

negligible. But we will need this revised PET later in our
multi-set protocol.

7.2 SRG,: Our Simple RFID Counting
Protocol for Multiple-Set

For multiple-set counting, our thesis suggests that thieopod
should have two conceptual phases at each location1 <

1 < k. We will focus on achieving the two phases in a simple
way.

Protocol intuition. Recall that SRE conceptually works by
throwingnp (on expectation) balls uniformly randomly into
bins. The value of:. can then be inferred from the fraction
of empty bins. We would like to design SRLCin a similarly
simple way, i.e., by throwingyp balls (on expectation) intb
bins, wheren is the total number of tags in all sets (if there
is no overlapping between sets,= ny + n2 + ... + ng).
The value of can still be determined byand our Theorem 6
later shows that= O(1/€?). Imagine for now that magically,
we can also properly setto bemin{1, 1.6/}, wheren is

a rough estimate for with constant relative error. With such
value forp, the problem becomes trivial: At each location,
the protocol simply does a balls-and-bins trial with pajpéc
tion probability ofp, so that on expectation there atg balls

Dis 2 4 g

(by merging all the first phase results up to locatiprDefine

p; = min{1,1.6//7;} and we obviously have; > p (note

thatp, = p). Next note that these values pfandp; do not
need to be accurate, since the rough estimate is rough in the
first place. Hence let us assume, without loss of generality,
that they are both in the form df/2* for some integer. If
not, we simply round them to the nearest value with such a
form. When the reader finishes the first phase foritheset,
it knows p; but notp. Conceptually for sef;, the protocol
will do the balls-and-bins trial with participation prolibties

B B Li . and so on. This ensures that one of the
participation probability will equap, regardless of what is.
After processing all sets, we can then decide the propeevalu
of p and use the combined result for the corresponding trial to
obtain the final estimate.

Naively doing the above trials with the infinite sequence of
participation probabilities will result in infinite overbd. One
can easily make things correlated to avoid this: For each par
ticipation probability except the first one, a tag flips a taim
and participate iff the coin flip result is head and the tag par
ticipated in the previous participation probability. Tiisuld
mean that in this sequence, a tag will keep participatiod, an
then stop participating after a certain probability. Imtuthis
means that for a given bin in this sequence of experiments,

in total. The protocol records the outcome at each locationit will initially be occupied and then will never be occupied
and merges these results for producing a final estimate. Thagain after a certain participation probability (Figure Fhis
merging is done by considering a bin occupied as long as it isenables the protocol to do the following: Instead of chegkin

occupied in any of thé locations. Note that this already takes
care of potential overlaps between theets — as long as we

all bins for a given probability, the protocol iterates thgh
the bins. For each bin, the protocol checks whether it is oc-

use the same random seed when doing these experiments, tloeipied, for all the probabilities in the sequence. Note that
same tag will always be hashed into the same bin, even if itprotocol can stop once the bin becomes empty. The rough es-

appears in multiple sets.

timate from SRG,'s first phase ensures that its second phase

So far we have assumed that the protocol can properfy. set sees a constant number of balls in each bin on expectation.

However in the multiple-set setting, the protocol s8gessS,,
..., S sequentially and it is not possible to obtairuntil the

11

From the mean of geometric distributions, one can easily see

that on average, it only needs to move down the sequence of



participation probabilitieg)(1) steps for a given bin to be- Givenl, each tag determines which bin it will choose, and
come empty. Hence the total number of slots needed is jushlso the smallest participation probability for which ithgtill

o) -1=0(%)." participate At location, our SRG, protocol has two phases.
For a constant = 0.2, thefirst phase invokes the revised PET
Algorithm 2 Our SRC ,, protocol (for § = 0.2) protocol (with 30 trials), which was described at the end of

Section 7.1. This incurs totél(log log n;) slots. SRC,, then
merges all the first phase results it sees so far to get a rough
estimaten; for the size ofS; U Sy ... U S;. Such merging is
possible since PET, and therefore the revised PET, is able to
do multiple-set RFID counting. By PET’s analysis [23], the

1: Each tag uniformly randomly chooses a bin out bins,
and chooses a positive integeaccording to a geometric
distribution with mean of;

2. Initialize A to an array ofl elements with values of 1.
Alj] will record the largesy chosen by a tag in thgh

bin: relative error ofn; is below0.5 with at Ieast% probability.
’ The second phase now determingdased om/ in exactly
3: for each set; do the same way as in our SRGrotocol. We then roung; to

Invoke revised PET witt80 trials, and merge its out-  the nearest/2” for some integes. The protocol then iterates
come with previous revised PET outcomes to get athrough the bins. For each bin, the protocol uses a sequence

rough estimate; for the size ofS; U S, ... U Sj; of slots, which corresponds to participation probabitie,

5. Find an integer z that minimizes |1/2* — Li, L . For each slot, those tags who select this bin and

min{1, 1.61/n}}|; still participate at the current participation probalilitill re-

6: forj=1toldo spond. The protocol records all such information and stops

7. h =z, once an empty slot is observed. It then proceeds to the next

8: while truedo bin.

9 Let all tags in thejth bin withy > h respond; At the last th) location, SRG; can merge the first phase
10: if (See a non-empty slothen results from all thek sets to obtain a rough estimate for the
11: Alj] = max{A[j], h}; size of the union of alk sets, and it can compute a proper par-
12: h=h+1; ticipation probabilityp based on this rough estimate. By our
13: else design, SRG; must have collected the information regarding
14: Break; whether each bin is empty undefor every location. SRg;

15: end if then combines such information by setting a bin to be empty
16: end while iff it is empty in all sets (see Figure 4). Letdenote the num-

17 end for ber of empty bins in the combinédbins, SRG, generates the

18: end for final estimaten by solving the equatiol — p/l)* = z/I.

19: Consider the: used for the last set and lebe the number ~ S€€ the Appendix D.3 for the proof for the following theorem
of elements ind with value no less tham: about the end-to-end guarantee of our SR@rotocol:

20: Outputln(z/1)/In(1 —27%/1). Theorem 6. Our SRG, protocol outputs arfe, 0.2) estimate
with O(32%_, (& + loglog n,)) overhead.

Our SRC,; protocol. Our SRG,; protocol implements the .
above intuitions. Algorithm 2 summarizes the main steps of /-3 Evaluation Results

our SRG, protocol (ford = 0.2). To achieve @ smallerthan  \ye conduct extensive simulations to compare the overhead of
0.2, exactly as for SRE, one only needs to sequentially in- -, . 1rot000ls against all major existing protocols in the i

voke multiple independent instances of Algorithm 2 and the”erature, including UPE, EZB, (enhanced) FNEB, LOF, PET,
take the median result. See Section 7.1 for how to determin%RT, and ZOE. As in Section 6, we consider a constant
the number of instances needed. For the paramielfee only 5 _" () 5 15 simplify our discussion — we observe similar
difference between SRE and SRG is that the participation  y.onqs under all other values@fWhen comparing the perfor-
probability used in SR¢; needs to be rounded to the form of 1,506 of these protocols, for each experiment, we first &hoos
1/2%. Tak|r21(95th|s Into account, we can either mathematically , time pudget, then we simulate the protocols and obserire the
setl = (7= g1579z+ WhichisO( ) (see the proofof our Theo-  5cpieved relative error given such budget (i.e., overhead).
rem 6 in the Appendix D.3), or find its value from a numerical This evaluation methodology is also taken by recent prior
lookup table. The lookup table is constructed by running the gk [24]. An alternative evaluation methodology would be
algorithm under a wide range efvalues and then observing -t compare the overhead of different protocols when achigvi
the ! needed to achieve a certain Note that/ does not de-  {he same target We do not take this method since for several
pend on the number of sets and how the sets overlap (see MOkR/0-phase protocols (e.g., [17,24]), when they matheratiic
detailed reasoning in the Appendix D.3), one only need to rungecide the number of slots needed in their second phase, they
the algorithm against a single set. assume a perfect estimate from their first phase. Since the es
_ _7A_Iess efficie_n_t_ design would be to it_e_rate through the_ secei@f par- ::’:T(;itic’:lllﬁgmaftl?gnﬁ\r;ltlIp:(:atzeallli (;r(]:lz IZV':lJa.g:]e?a_sttli/mea(;?rj(:;LIgV n
ticipation probabilities. For each probability, one cheeltl bins. The pro-

cess stops if all bins are empty. Such a design would need pectation somewhat larger than the target This will make the com-
0(10%#) slots. parison inconsistent across the protocols. Unless otBerwi
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Figure 5: Overhead of single-set Figure 6: Overhead of single-set Figure 7: Overhead of multiple-set
protocols ¢ = 10, 000). protocols ¢ = 100, 000). protocols ¢ = 100,000 andk = 10).

mentioned, all our experiments use the following paranseter trial overhead. We find SR&continues to have the lowest
derived from EPCglobal C1G2 standard [6]: a slot in UPE overhead among all protocols. For example, whea 0.01,
takes0.8m<¥, a slot in all other protocols takésims, and for ~ SRCs is 20% to 100% faster than the most efficient existing
all protocols each trial incurs an extra overheadrof. protocol, i.e., ZOE. See detailed results in the Appendix F.

Comparing SRCs with existing single-set protocols.Fig- ~ Comparing SRC,; with existing multiple-set protocols.
ure 5 and Figure 6 present the overhead of our $R@tocol  Figure 7 presents the overhead of our SR@rotocol against
against the overhead of existing single-set RFID counting p  existing multiple-set RFID counting protocols. We perform
tocols, for tag count 0f0, 000 and100, 000 respectively. As  extensive experiments under different valuesiadind &, as
shown in the figures, SR@s significantly (more tham000%)  well as different ways that the sets overlap with each other.
faster than EZB, PET, and LOF. This is because asymptot-Since they all show similar trends, Figure 7 presents a eecr
ically SRGs incurs additive overhead while EZB, PET, and setting, where a total of = 100, 000 tags (with index fromi
LOF all incur multiplicative overhead (see Section 5). SRC  to 100, 000) are distributed ovet = 10 overlapping setsFor
is at leastl00% faster than ART, ZOE, and enhanced FNEB ; = 1,...,9, theith set is comprised of1, 000 tags with in-
(eFNEB for short in the figures) in all of our settings. The dif dex from(i—1) x 10000+1 toi x 10000+1000. The last set is
ference between SRCand these three protocols is relatively comprised ofl0, 000 tags with index from90001 to 100000.
moderate, since all of them incur additive overhead. Foheac In this setting, our SR§; protocol is around00% faster than
of them: SRGs is faster than ART, partly because the novel the most efficient existing multiple-set protocol, i.e., TP
gauge used by ART does not perform as well as the simpleparticular, while all existing protocols require more theh
gauge used by SRC(see Section 6), and partly because the minutes to provide an estimate with relative eeof 0.01, our
quality of the rough estimate in ART is overly low. SRG SRGC,, protocol can achieve the same estimation qualitg in
faster than ZOE for the following two reasons. First, recall minutes. The significant difference between SR@nd exist-
that ZOE uses a single slot for each trial, while SR@Uts  ing multiple-set protocols is mainly because asymptdiical
all its slots in the second phase into a single trial. Theeefo existing multiple-set protocols incur multiplicative obead,
for the second phase of SBCwhether a slot is empty be- while SRG,; incurs additive overhead (see Section 5).
comes negatively correlated with each other. Such negative Same to the single-set experiments, the overhead of
correlation makes the total number of empty slots concetra multiple-set protocols partly comes from the per-trial Bve
better near its expected value and thus provides higher estihead. To understand the significance of this factor here, we
mation equality, as compared to a design using independenigain evaluate a setting without per-trial overhead. We find
slots like ZOE. Second, each slot in ZOE needs to incur perthat SRG, continues to b800% faster than the most efficient
trial overhead since each of them corresponds to an indiVidu existing protocol (see the Appendix F for details).
trial, while the per-trial overhead is incurred much leseof
in SRG;. For enhanced FNEB, recall that each of its trials
also only uses a small number of slots. Therefore, the sam§  \/ariant Models
two reasons that explain why SRGs faster than ZOE also
apply here. In addition, the quality of the rough estimate in This section discusses some variants of RFID counting prob-
enhanced FNEB is also lower than desiratiaally, our re- lem.
sults show that UPE cannot support relative etrar0.03 due
to its biased estimator. This is consistent with the findibgs
the original authors [12].

As we see, the overhead difference between $SR@&d

A simpler variant of multiple-set problem. Some re-
searchers (e.g., [17]) consider a simpler variant of the
multiple-set RFID counting problem, where multiple reader

me existing protocols i lv due to the existence of rjointly cover an area. These readers together count the to-
SOME ExISting protocals IS partly due 10 the eXISIENce of Pery, \\\,mper of tags under their coverage. One can actually

trial overhead. To understand how significant this factor is solve this simpler variant of our multiple-set problem gsin

we have further compared the protocols when there is no per'anysingle-set RFID counting protocol. Recall that a single-se

8UPE requires a tag to send more bits in a slot to detect apilisi protocol specifies a predicate for each slot. Roughly spegki
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all readers send the same predicate to their sets. Togatner t 10 Conclusion

readers return an empty slot to the single-set protocoVéfye

reader sees an empty slot. Note that this takes care of ajtent In summary, we present three fundamental results about RFID
overlaps between sets, as long as a tag behaves identimally f counting protocols: We establish strong lower bounds féin bo
the same predicate from different readers. the single-set and multiple-set problem. We show that the
overlooked key aspect for RFID counting protocols is a con-
assume areader can further detect collision, i.e., whéteee ceptual sepgration of a protocol intp two phases. Furthesmo
are multiple tags responding in a non-empty slot. Though theOther techn_lqueslldeas p_roposed in the Ilteraturg are mly
reader becomes more capable in this variant model, we Caﬁecon(_jary importance. Finally, we apply th_e_obtalned "‘?"9.
still obtain a similarly strong lower bound result (with aain to design new protocols that are more efficient than existing

log% difference) as our original model. See the Appendix E ones and also smultaqeously S"T‘P'er than most of the{“- we
for the proof. hope that our results will help facilitate future researcithis

subject.
Programmable tags vs. non-programmable tagsSame as
many recent research efforts on RFID systems (e.g., [8915,1
23,24]), our SRG and SRG; protocol target programmable  Acknowledgments
RFID tags that can run customized code. There have also been
research work (e.g., [17]) that focuses on non-programenabl This work is partly supported by the research grant for the
RFID tags. These non-programmable tags can participate in &luman Sixth Sense Programme at the Advanced Digital Sci-
protocol only via a pre-determined way (e.g., only via frame ences Center from Singapore’s Agency for Science, Technol-
slotted Aloha as specified in C1G2 [6]). We are currently ogy and Research (A*STAR), and partly supported by the Sin-
working on adapting SR€and SRG, to non-programmable  gapore National Research Foundation under its Interraition
tags. We already have initial designs for adapted $R6d Research Centre @ Singapore Funding Initiative and adminis
SRCy, as well as promising preliminary results, though a full tered by the IDM Programme Office.
discussion into the subject is beyond the scope of this paper

Capability to detect collision. Some protocols (e.g., [11])
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A Lower Bound Proofs (for Section 3)

A.1 Single-set Lower bound proof

To prove the lower bound for single-set RFID counting proto-
cols in our Theorem 1, we show that given a protoBahat
can output arfe, 0.2) estimate, we can construct a communi-
cation protocol that solves thidamming Distance Estimation
(HDE) problem. Recall that HDE is a two-party communica-
tion complexity problem, where the two parties Alice and Bob
are givenm-bit stringsz andy as input respectively. They
would like to estimate the hamming distance betweandy,
denoted byA(z,y), with (e, §) estimation quality. Then we
can use the fact that the constructed HDE communication pro-
tocol must comply to the HDE lower bound to get our result.
Before proving Theorem 1, we firstly show the lower
bound of the HDE communication complexity in the follow-
ing lemma. Here we simply translate a recent breakthrough re
sult by Chakrabarti and Regev [5], which considers a boolean
version of the HDE problem called Gap Hamming Distance
(GHD). In GHD (as compared to HDE), Alice and Bob are
further given the promise that eithéx(z,y) > 2 + \/m or
A(z,y) < % —/m. They should output 1 iff\(z, y) satis-
fies the first inequality. Chakrabarti and Regev [5] prove tha
no protocol can solve GHD by communicatingn) bits, even
for randomized protocols that are allowed to err with some
small constant probability (e.g., 1/3) on each input.

Lemma 7. No protocol can solve HDE (parameterized with
m, €, andd) by exchanging(m) bits, fore < % andé = %

Proof. We prove by contradiction. Assume there is a ran-
domized protocol that solves HDE fer < % and§ =
1 while exchangingp(m) bits, we show that this random-

ized protocol can be directly used to solve GHD. In partic-
ular, this protocol returns an estima&e@@) that satisfies

| Az, y) — Al,y)| < e A (x,y) with probability> 2. When
this holds, ifA(z,y) < & — /m:

—

Aay) U+ M@y <O +(F —vm) (D)
otherwise A(z,y) > F + y/m, thus:
Aay) 2 (=98 (y) = (1-9(F +vm) @)
Sincee < .,
A+ —vm) <=5 +vm) @)

Alice and Bob can solve the GHD problem (with err
probability less than%) by picking a threshold between the
two values in Equation (3) and outputtingift A(z,y) is
above the threshold. This contradicts with the GHD lower
bound [5]. O

Proof for Theorem 1. Consider the HDE problem withh =
[£]. Note thatm = [4] leads toe < 2/,/m, thus lemma 7



applies here. Also, the conditione [f, 0.5] given in the Recall that Alice and Bob exchanget 1 bits for each of
theorem leads td < m < n. the T" slots used byP. Also, to release the assumption that
Given any single-set RFID counting protod@that can es-  Alice and Bob have access to a shared random string, we ap-
timate up ton tags with(e, 0.2) estimation quality, Alice and  ply the well known result that a shared random string proto-
Bob can solve HDE by simulatin® on an RFID counting  col can be simulated by a private string protocol that uses an
problem input defined as follows: for= 1,2,...,m, tagiis  extraO(logm) bits when the input ha®(m) bits (i.e., the
present and need to be included in the count iffthg# y|i]. size ofx andy for HDE). Thus, given affe, 0.2)-approximate
All other tags are absent and will not be included in the count protocolP, we can construct a protocol that solves HDE (for
This will make the RFID count to exactly equal the hamming € < % andd = %) while requiring Alice and Bob to com-
distance betweenandy. Thus if Alice and Bob can simulate  municateO(T'([log 67 + 1) +1logm) = O(T'log T + log %)

P andP returns a result with relative error no greater than  bits. If there exists an RFID counting protocBl with an
they can directly use the same result to solve the origindeHD overhead ofo (2~ . ), i.e., on expectation]’ = (%),
ogm €< log

problem with relative error no greater than Alice and Bob can construct a communication protocol that

Now to properly simulate the execution &f with those solves HDE Whlle incurring a communication complexity of
present tags, Alice/Bob needs to determine which slotsan th ( -log(-—+)) 4+ O(logl) = o(m). This contradicts
€2 log < log T log = € ’

simulated execution oP are empty. Doing so enables Al-

; . ) ) with Lemma 7.
ice/Bob to simulate the responses received in all thess slot
and feed those int® to obtain the final count. For each slot, Proof for Theorem 2. Our proof uses Yao's minimax princi-
we will show that Alice and Bob can determine whether it is Ple [21], which states that distributional complexity pides a
empty by only exchanging(log %) bits. Consider the first lower bound for randomized complexity even for the case that
slot. P must have specified a predicatefor the first slot.  tolerates errors (see Theorem 3 in [21]). To invoke Yao's-min
Assume Alice and Bob have access to a shared random striniinax principle for randomized RFID counting protocols that
needed to determine this predicate (we will release this asProvide (e, 0.2) estimation quality, we consider the expected
sumption later). Alice/Bob can thus locally determine tee s cost of deterministic protocols that provigte 0.4) estimation

of tags that satisfyf, denoted by{i1,iz,...,i;}. Next Al-  quality over the following input distribution.
ice computes a short fingerprint afbits for the (potentially Constructfd(logn) different inputs, with the number of
long) string of z[i1]z[is] . . . #i;] and sends it to Bob. Bob tags in theith input being4® for i = 1,..., [logyn|. As

similarly computes the fingerprint ovefii]y[i] . . . y[i;] and e < 0.5, our construction ensures that given any two differ-
compares the two fingerprints. Bob uses one bit to inform Al- €nt inputs, they cannot be approximated withirelative er-
ice about the comparison result. We will discuss how to selec ror by the same value. Consider an input distribution such
the parameteh to properly address the fingerprint collision that each of these inputs appears with the equal probability
problem later. For now let us assume there is no fingerprintAgainst this distribution, any deterministic protocol ttpao-
collisions. Then the two fingerprints differ iff for at leasne ~ Vides (¢, 0.4) estimation quality needs to provide proper es-
indexi that satisfiesf, z[i] # y[i]. This in turn is equivalent ~ timation over at least0% of possible inputs. Thus it needs
to at least one tag being present, and also equivalent tashe fi to outputd(logn) different values. If a deterministic protocol
slot being non-empty. Alice and Bob now have successfully only useso(log log n) slots where each slot has only two pos-
determined whether the first slot is empty or not. Emptinesssible outcomes, it can have at moslog n) different outputs,
of later slots can be sequentially determined in a similay.wa which is not sufficient here. Therefore no deterministicdpro
Let £ denote the event that Alice and Bob correctly sim- col can hasg(log logn) overhead while providing thg:, 0.4)
ulate all 7" slots used byP, and let€ denote the event oth-  €stimation quality. From here, applying Yao's minimax prin
erwise. The simulated outcome for a slot becomes incorrec€iple leads to our result. O
iff the hash function maps two different input bit vectors to
the same value, vvhich happens with probabigxyfor h-bit A.2 Multiple-set lower bound proof
fingerprints. By union bound:
We leverage our single-set lower bound to reason about the
lower bound for the multiple-set RFID counting problem. We
cannot direct apply our single-set lower bound here, as a

T

- T

r(€) < § r(theith slot is incorrect < o (4)
=1 multiple-set RFID counting protocol is required to onlyiest

Thus: mate the union size of all sets, and it can potentially oémi
its execution based on completed counting instances. @espi
Pr(Alice/Bob solves HDE with relative erroK ¢) of these differences, we are able to construct worst-case sc

narios to prove that the multiple-set lower bound can be ex-
pressed as a direct sum of the single-set lower bounds over
individual sets.

Proof for Theorem 4. Consider any multiple-set protocsl

. T
> Pr(P’s relative error< ¢|E) Pr(€) > 0.8(1 — Q—h) (5)

Leth = [log 67"] (log in this paper meansg,):

Pr(Alice/Bob solves HDE with relative errog e) that provideg(e, 0.2) estimation quality. Letw; = 375, n;
1 9 and letw; denote the estimate far;. P needs to obtain an
> 0.8(1— 6) =3 (6)  (¢,0.2)-approximate estimates; for w, (equivalentlyn,) at
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the first location. This is needed in case it sees empty sets aB.1  Asymptotic Overhead of ART

all the following locations, i.en; = 0 for i > 2, which will ) )
result in the union size being exactly. Note thatP cannot ~ Since ART [17] does not come with end-to-end overhead anal-

defer its estimation ofi; to the moment when it visits more  YSIS, We analyze its asymptotic overhead by ourselves.IReca
locations, since the reader does not revisit a previousitoea ~ that ART has two phases and its key idea is to use the aver-
Therefore, we can directly apply our single-set lower bound29€ run length of non-empty slots in its second phase to do
(Corollary 3) to show that @ can use( p— +log log n1) the estimation. In addition, for its second phase, ART also
s solves involved optimization problems to determine the pa-
rameters and the final estimate. Instead of analyzing these
. _optimization problems, we here analyze a simplified version
%t its second phase, which keeps the average-run-length key
design, but uses closed-form formulas to determine the pa-
rameters and the final estimate (to be explained later).eSinc
the original optimization techniques are meant to redueg-ov
head, our analysis result for the simplified version woulal pr
5 vide an upper bound for the overhead of the original ART
L?t 112 vary over the range fr?ml tony, we prove by con- second phase. Specifically, we prove that the simplified ver-
tradiction thatnd” can use( 5y 1 +loglogny) slotsatsec- oo ART achieve®(logn + L) asymptotic overhead.
ond location. Assume there is such a protaBolve willuse  gjnce this is close to our RFID counting lower bound (see
it to construct a single-set RFID counting proto#dlthat op- Appendix A) and no protocol’s overhead can be smaller than
erates over the range {if, ;] (with n, known) and provides  the Jower bound, the asymptotic overhead of the original ART
(2¢,0.2) estimation quality with onlw(@ +loglogni)  would be roughlyO(log n + ).
overhead. In its first slo?’ asks all tags to respon®’ com-
pletes by outputting immediately iff it sees an empty slot.
Otherwise, the tag count must fall in the ranggiofn;]. P’
then asks every single tag to simulatgindependent virtual
tags. This can be easily done by using specific forms of pred
icate function. The number of all the virtual tags then falls
in the range ofny,n?]. To simulate a virtual tag, a real tag
responds in a slot iff the virtual tag respond®. invokes the
second counting instance Bfover the virtual tags. By doing

so, P’ uses onlyo(m +loglogn,) slots andP’ can ob- | emma 8. ART's first phase outputs a rough estimateith

tain a(2¢, 0.2)-approximate estimation of the actual number of Pr(7 € [0.16n,10.4n]) > 0.95 and incursO(logn) over-
tags by outputtingis /n; — 1. Sincee € [ﬁ, 0.25], the head.

existence ofP’ contradicts with our single-set lower bound as

proved in Corollary 3. Thus, n® can incur onlyo( -+ + Proof. Let ¢; denote the probability that thigh slot is empty,

€2 log _(1__1 \n . S - ..
loglogn1) = o( =7 + loglognz) overhead at the second ¥ ~ (1 Qi"l,) . We have: i) foral, q; S. © ,.and " for
location e 1> 2,q; > e 2-1-1, These can be derived easily by the fact

v > ithy — — 1 1
Fori = 3,...,k, letn; vary over the range fromy;_; to thatforally, e¥ > 1 +y and withy g andy = 5=y

- vely. ‘ .
w2, We can apply the same argument as at the second Ioca(-for 1 > 2) respectively. Let; denote the probability that the

: : 1 ‘ index of the first empty slotig 7; = (1—q1)(1—g2) ... (1 —
tion to prove that nd® can incur onlyo( - g T T loglogn;) ¢i_1)q:. Therefore, for alk, r; < g.

?verheadbgt_|t37trt1hlocat|o;]1. Igr:ally, bg I|n((ajar|t¥ OI]; gqxgecta— Let « denote the random variable of the index of the first
lon, combining the overhead lower bounds of a ca- empty slot. Sincer = 1 iff n = 0, which allows one to

tions leads to our final result. - directly return0 as an exact tag count, we discuss the case of
n > 0 below. To analyze the distribution of we letu =
[logn] (therefore2v—1 < n < 2%). We have:

slots at its first location.
For the second location, let > n; and assume there is no

as earlier (i.e. considering the case that it sees emptyasets
all the following locations)P needs to obtaim; with (e, 0.2)
estimation quality forw, at the second location. Given an
accurater; and such ajs, ws—n; is an(2e, 0.2)-approximate
estimate fom, sincens > n;.

ART’s first phase. Recall that ART'’s first phase is similar to a
single trial of LOF. Specifically, for itsth : = 1,2,...) time

slot, each tag responds with probabiliﬁ,—l. Let = denote

the index of the first empty slot, ART then calculates a rough
‘estimaten, = 1.2897 x 272, Note thatz = 1 iff n = 0,
therefore in this special case, one can directly retuas the
exact tag count. Lemma 8 summarizes the guarantee of ART’s
first phase.

B Asymptotic Overhead of Existing

RFID counting Protocols Pr(z <u—1)
u—2 u—2

This section discusses the asymptotic overhead of major ex- = Z r; < Z Qi
isting RFID counting protocols (see Section 4). Among these i=1 i=1
protocols, UPE [11] and ART [17] do not come with end- u=2 N u=2
to-end overhead analysis. Recall that the estimator used by < Z e 2T < 26_21'—‘1
UPE is biased, hence UPE cannot be used whesnsmall. =1 =1
Therefore one cannot analyze UPE’s overhead in an asymp- < 2T L o2 T L p e St
totic manner withe approache8. We will examine ART first, —4
then briefly summarizes the analysis of other protocols. < o= <0019

17



Next we want to bound@®r(z > u + 4). Forn =1, u = 0,
Pr(z >4) =1x § x 1 x £ =0.0156. Forn > 1 (therefore
u > 1), we have:

Pr(z > u+4)
Pr(z >u+1)(1 — qus2)(1 — qus3)(1 — qu+a)

< (1= quy2)(1 = ques)(1 — Guya)

< (l—e 7)) (1—e 277-1)(1 — ¢ 29¥5-1)
< (1—e #)(1_6*2#73,1)(1_6*#3,1)
< l-—eH1—e7)(1—e 1) <0.0152

Therefore, we have:

Pr(z € [u—1,u+4])
> 1 —maz(0.0152,0.0156) — 0.019
> 0.95

Whenz € [u — 1,u + 4], n = 1.2897 x 2772 € [1.2897 x
2073 1.2897 x 2972 C [1.2897 x £,1.2897 x n x 2%] C
[0.16n, 10.4n]. ThereforePr(n € [0.16n,10.4n]) > 0.95.

To bound the expected number of slots in ART’s first phase,

note that forz’ > u+ 4 (therefore2’=* > 2" > n andi > 4),

21 4 4 e
qiie2‘ 1>e2‘11>ez411>08Therefore
rigix(i4+1l) gy (1—gi) z+1 1x(1-0.8) _ 5 1
X3 @ X < 08 X 1 < 5. We

have:E[z] = >"° 17‘Z><Z—Z:7 1rlxi+2?oql+4ri><i<
Pr(z < u+3) x (u+3)+ M<1x(logn+l+

3)+%:3]0gn+1420(10gn)- O
2

A simplified second phase of ARTBefore we proceed, we
first present a fact that will be used here and in Appendix D.

Lemma 9. With constanty € (0, 1) = O(%) for

e > 0.

’(1q

Proof. Note the fact that for all, ¢¥ > 1 + y. Therefore for

y>0,1+ >evandl —e ™ > 1 - 2 = g yConS|der
1 _ 1 1 _ (1

y = dng g = qmeye < e = G

(eln1 + 1) O(F%) O

For the second phase of ART, we consider a simplified ver-
sion that retains its key design of using average run lenfjth o

non-empty slots, but uses closed-form formulas to detegmin
parameters and final estimate (instead of solving involyed o
timization problems). Specifically, given the rough estiena
n from the first phase of ART, the simplified ART second
phase uses multiple slots, and for each slot a tag indepénden
responds with probability = mm{n, }. Therefore, the
probability that a slot is empty i = (1 — p)™. The simpli-

fied second phase terminates when it sees{ 41(1(1(1))2 lg €

(1055 )} runs of non- empty slots or the number of time

slots used exceedsax{ 720z + 10l¢ € (550 17)}- I

Theorem 12 we will prove this is suffice to output @n0.2)
estimate. Let:; denote the run-length éth run of non-empty
slots andn be the total number of runs before terminate. ART
computesr = ZTTT Herez is the average run-length of
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non-empty slots. Our simplified version of ART then outputs
n o= —m?f—fp) as the final estimate. The following lemmas
summarizes the guarantee of this simplified second phase of

ART:

Lemma 10. The second phase of the simplified ART incurs
O(%) overhead.

Proof. By our design, the simplified ART will use at most
max{ ;577 + 10|g € (1ggg. 11)} slots. By Lemma 9, this

overhead i€)(%). O

Lemma 11. Givenn € [0.16n,10.4n], the simplified ART
second phase outputs &n 0.15) estimate.

Proof. Since we are analyzing the asymptotic overhead, we
consider the case where, the number of runs of non-empty
slots, is sufficiently large. Since the random variahlesire
independent from each other, and they all follow the same ge-
ometric distribution (with mean df and variance of;q) by

central limit theorem, we havec*w N( s —1),i.e.,anormal
distribution with mean of[z] = = and variance? = 4.

mq?

Givenn € [0.16n,10.4n], we flrst calculate the range of
q, which is the probability that a slot is empty. Recall=
(1—p)” andp:min{l—ll,%}. fp=2=L,¢g=(1- ﬁ)" <
(1-4)t = 1% Otherwisep = £ andg = (1 — 1)»
(1 — i)™ < e” /104 < 19 Combining these two cases,
we haveq < }—(1). To boundq from below, we also consider
two cases: ifn < 70, sincep = min{u, } < Gog >
(1 - ) > 5. Otherwisen > 70, sincen > 0.16n >

11, £ < L andp = 1. Inthis caseq = 1- L >

SXI'—‘

11
1 1 70
(1= g3g7)" > (1 — 016X70) > 1555- Combining these
two cases, we hawg> k. Thereforeg € (155, 12).

Next we show that for any value @f if the protocol sees
m= (1(1(, ‘1))2 runs of non-empty slots, it is sufficient to output
an (¢,0.05) estimate ofn. Recall that forn > 0, the final

estimate isy = —lné’l‘fp), we now bound its tail distribution:

Pr(|n —n| > en)
= Pr(n> (1 +¢€)n)+ Pr(n < (1—e¢)n)
Inx
m > (]. + G)TL)

Inxz

= Pr(-

= Pr(z > E[z]'™) + Pr(z < Ez]'™°)

= Pr(z— Elz] > (E[z]* - 1)E[z])
+Pr(z — Elz] < (Elz]™° = 1)E[z])

< Pr(z — Efz] > (1 - E2]”)E[z])
+Pr(z — Elz] < (Elz]™° = 1)E[z])

<
= Pr(lz - Efz][ > (1 - E[2]°)Elz])



Lete =1— E[z] ¢ =1 - ¢°. To boundPr(|z — E[x]| >
¢Elz]) < 0.05, we needPr(|Z=22| < <Elzly > .95,
Sincexr ~ N(E[z],0?), we need@ > V2erf=1(0.95).

Since v2er f1(0.95) < 2, setting o? B gf.
fices. Recall that[z] = 1 ando? = 1=4, we have
m > 2a (41(_1;;1))2. Sinceq € (75, 2), we can con-

clude thatmax{ (41(1_‘1))2 lg € (75.19)} runs is sufficient to

achieve arie, 0.05) estimate.

Adding together the overhead of ART'’s first phase and its
simplified second phase the overall overhead of the siraglifi
version of ART isO(% + logn). O

B.2 Asymptotic Overhead of Other Protocols

The other existing protocols, i.e., EZB [12], (enhanced)
FNEB [8], LOF [15], PET [23], and ZOE [24], all come with
detailed analysis on the number of slots needed. Here all we
do is to simplify their more precise results to asymptotitrie

Let z denote the average run length of empty slots. By rea-(with adaption to our formulation when necessary).

soning similar tar, we haveE|[z] = flq When there aren
runs of non-empty slots, there are at mast 1 runs of empty
slots, with the last run having a single empty slot to terrt@na
the protocol.

Next we bound the probability that for any given the
number of runs of non-empty slot is less t {1))2 while
the protocol has used up all theax{ 722 + 10g €
(1055 )} slots. Let random variabledenote the number of
slots needed by the protocol to 7;(’))2 runs of non-empty

1 4(1
slot. We have&[l] < (1< 4 x (Elz)+ El ])+1 = (1< %
(3 +1) +1=
(10100, ﬁ)} Let L denote the event that< max{ e+
10q € (1355 19)} andL denote the event that happens other-
wise. By Markov inequality:

Pr(L)

X

10

= Pr(l > 10 x max{ 1000° ﬁ)}

-2

< Pr(Il>10E[]) <0.1

By union bound, the probability that & — n| > enis:
Pr(|i — n| > en)

= Pr((|a—n| > en)() L)+ Pr((| —n| > en)[)£)

= Pr((|n —n| > en)|L)Pr(L) +
Pr((|f — n| > en)|L) Pr(L)

< 0.05x14+1x01=0.15

Finally, combining Lemma 8, Lemma 10 and Lemma 11

leads to:

Theorem 12. The simplified version of ART protocol outputs

an (¢,0.2) estimate wittO (% + log n) slots.

Proof. Let 7 be the final output of the simplified version of
ART, the probability thati — n| > en is:

Pr(|fn —n| > en)

Pr((Ji —n| > en)("\(it ¢ [0.16n,10.4n]))
+Pr((Jt — n| > en) ﬂ(ﬁ € [0.16m,10.4n)))
< Pr(f ¢ [0.16n,10.4n]) +

Pr((Jn —n| > en) | (7 € [0.16n,10.4n])) x 1
< (1-095)+0.15=0.2
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EZB. Recall that EZB works on each of tie&(log n) narrow
ranges. Each range nee@ia(1 _ trials [12], whereZ; is

a constant given constaihtOmitting all constants (including
the trial length), EZB needs?( logn) slots.

(Enhanced) FNEB. FNEB uses /("= "% i-

als [8], wherec is a constant given a constahtandn/I is

also a constant. The total number of trials used by FNEB is
henceO(ﬁ%). In FNEB, if the actual number of tags is much
smaller than the upper bound input by the user, FNEB needs
to conduct a binary search incurridlog n) slots in almost
every trial. This results in an overhead@f % logn). In en-
hanced FNEB, the binary search is likely to happen only in the
first few trials (i.e., its first phase). The total number aitsl
hence i0(logn + %).

LOF and PET. Both LOF and PET need to do
max{[-745]1%, []Og‘;’is ]} trials [15, 23], whereo is
some constant in both cases ands a constant given a
constan®. This corresponds t0)(%) trials. Each trial takes
(on expectation)O(logn) slots in LOF andO(loglogn)
slots in PET. Hence LOF and PET nee@$% logn) and
O(% loglog n) slots, respectively. ‘

ZOE. ZOE first use)(loglogn) slots to find a rough esti-
mate. It then usebﬁ]2 slots to eventually estimate

n [24], which corresponds t@ () slots witho, ¢ and\ all
being constants. In total, ZOE nee(d$ L +loglogn) slots.

C Building Blocks of Our Protocols
This section discusses two building blocks of our protad@)s

the lookup table for determining the number of slots needed i
the second phase, and (ii) the revised version of PET.

C.1 Lookup table

€ [ for SRCyg [ for SRC)y,
0.01 26575 28321
0.02 6638 6775
0.03 3009 3087
0.04 1674 1788
0.05 1075 1116

Table 4: Lookup Table for Determiningd = 0.2).

For both SR and SRG,, they need to decide the num-
ber of slotsi needed in their second phase for achieving the



(1) Find an upper bound for binary search

Algorithm 3 revised PET algorithm (fore = 0.5,0 = 0.1)

al2]s]als]e]7]s]o]0]nn]r2]13]1a]15]16]07]...

AN

(2) Binary search 3:

Figure 8: An example run of revised PET trial. An integer 4
is shadowed if it is chosen by some tag, and the maximum 5:
integer chosen here & As described in Algorithm 3, the 6:
protocol will firstly get an upper bound of all chosen integer 7
(16 in this example), and then execute a binary search on the 8
second half of the upper boun{8(16) in this example), to o:

find the maximum integer chosen. 10:
11:

12:
required estimation quality. One way to determine the value 13:

of [ is to construct a numerical lookup table by running the

1: Let all tags respond in the first slot: if it is empty, output
0 and exit;
2: for i =1to30do

Each tag randomly chooses a positive integaccord-
ing to a geometric distribution with mean f
J=1
while truedo
Let all tags withu > 27~ respond;
if (See an empty slothen
Break;
else
J=J+L
end if
end while
Binary search off2/=2,2/~1) to find the maximum in-
tegerv; that has been chosen by at least one tag;

respective protocol under a wide rangeno¥alues, and then ~ 14: end for

observing thé needed to achieve a certain relative error. For 15: Outputn = 0.794 x 2
the same:, the number of slots needed by SRds larger
than SR, since the participation probability used in SRC
needs to be rounded to the formlof= 2%,

Note that for SRG;, since the final estimate is obtained by
combining the results from all sets, it is equivalent to roe t
protocol directly against the union set. Hence when coostru
ing the lookup table, one only needs to run SR@gainst a
single set and does not need to vary the number of sets as wel
as how the sets overlap. ) )

Table 4 provides some sample values in the lookup table of0-1  Lemmas for balls-and-bins trials

SRGs and SRG;. Recall that for both SRE and SRG;, the building block of
their second phase is thmlls-and-bins tria] wheren tags
each independently and uniformly at random pick one slot
from slots, and respond in the chosen slot with probabjility

) ) ~ Lemma 14 presents some simple yet useful properties about
Our SRG, protocol uses a revised version of PET for its first palis-and-bins trials.

phase. Algorithm 3 describes the main steps of revised®PET
and Figure 8 illustrates an example run of revised PET.

(3592, v0)/30.

D Analysis of Our Protocols

In this section we first prove multiple technical lemmas for
balls-and-bins trials. These prepare us to prove Theorem 5
(Section 7.1) and Theorem 6 (Section 7.2), which summarize
pe guarantees of our SR@nd SRG, protocol respectively.

C.2 Revised PET

Lemma 14. Consider a balls-and-bins trial witm tags, [
slots, and probability for a tag to respond in its chosen slot.
Let ¢ denote the probability that a slot is empty and dede-
note the number of empty slots in the trial. We have:

(i) ¢g=01-5)m

Lemma 13. Each trial of revised PET incuré)(loglogn)
overhead.

Proof. In one trial of revised PET, each eftags will choose
an integer according to a geometric distribution with mefin o” ) ) s
2. Letv be the maximum integer selected bysallags. From (i) Var[z] =lg+1(1 —1)(1 — )" — °¢%;
analysis of PET [23] we know thd[v] = O(logn). (iv) Var[z] <lg(1—q);
Sipce in each trial of revised PET, the prqtocol will firstly (V) ifp=1landn <, Varlz] <lg— (I +n)¢?.
use; slots to make sure tha¥—2 < v < 27!, we have
j < log(v) + 2. Then revised PET will binary search on Proof. (i) The probability that a tag responds in a given slot is
[27-2 27~1] to find the integen, this useg — 2 slots. £. Since a slot is empty iff none of thetags responds in it,
Therefore in each trial of revised PET will uge- (j —2) <  the probability that a slot is empty is= (1 — £)".
2log(v) + 2 time slots. (ii) Let z; be the indicator random Ivariable for the event that
SinceE[v] = O(log n), on expectation, the number of time  th€th slotis empty. We have = 3_,_, z;. From (i) above,

slots used by one trial of revised PET(glog log(n)). Elzi] = g forall i. By the linearity of e>2<pectati0|E[z] =lq.
(i) Define z; as above, we havE[z7] = E[z] = ¢, and

Elziz;] = Pr(z; = 1,2; = 1) = (1 — 22)". HenceE[z?] =
lg+1(1—1)(1— 2l—p)”, andVar[z] = E[2?] — E[2]? = lqg +
(I —1)(1—22)" — 124,

O

9The binary search in Line 13 of Algorithm 3 omits the rangéloR’ —2)
because; > 272 (from Line 6).
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)
Var[z]
= E[Z}]|-E}P=Ilg+I1(1-1)1 - 2—p)" —1*¢*
< -0 -2y By g
= lg+11—-1)¢*-1?¢F =1q9(1 —q)
(V) Withp = 1 andn <1,
Var|z]
= g+ - 1)1 - )
- m+uw4x<—§>—¢VW—ﬂf
< Ig U 1)1 1 a1 1))
f20 oD Dcadyny g
_ N2 1 n(n —1) 2.2
= lg+l(l-1)¢"(1 =17 2(l—1)4) I“q
2 2
e ot
< lg—(I+n)g

The first inequation above uses the fact that— y)” <
" — na" 1y—|—n(" Dan=202 for z,y > 0,n > 1, which
can be verified by a simple |nduct|on over O

Following the previous work on RFID counting [11,12], we
make a normality assumption in our analysis below:

Assumption 1. The number of empty slotsin a balls-and-
bins trial is distributed normally, i.e2=2EL ~ A7(0,1).

LT

See [11, 12] for detailed discussion about the rationale be(

hind this assumption.
Recall that both SR€and SRG, output the final estimate
asn = —2EAU_ ynder Assumption 1, we now derive suffi-

In(1—p/0)"
cient conditions for: to be an(e, §) estimate ofa.

Lemma 15. Consider a balls-and-bins trial witm tags, [

slots, and probability for a tag to respond in its chosen slot.

Let z denote the number of empty slots in the trial andilet
In(z/U)_ jf O=BEVDIEE] 16, Pr(ja —n| > en) < 5.

In(1-p/1) v/ Var|z]
Proof. SinceE[z] = I(1 — 2)" (Lemma 14)n = WEELD.
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We have:

Pr(|fn —n| > en)
Pr(i >n(1+¢€))+Pr(n <n(l —¢))
In(z/1) In(E(2)/1)

(= p/) ~ (i —p/) T
In(z/1) In(E(2)/1)

TP =) < (- B)
< By e s
El7]

l

(1-0)

EN
=

)ﬂ+Pd2>E@XE%¥)

Pr(?
Pr(z < E[z](

Pr(z — E[z] < E[z]((% )

+Pr(Z — E[z] > E[Z]((

Pr(|Z - B[zl > Bl - (2]
2= Bl]l (1= (B[]/D) B[]
Var[z]

Pr(

By Assumption 1,2=2CEL ~ Af(0,1).
y P e (0,1) 6
V2erf=1(8) < 1.6. Therefore if%@[;w > 1.6,

> \2erf~ ( ).
A=(E[)/D) E[#]

A=(E[z//D) E[z]
v/ Var[z]
< Pr(L=
Vel ) (5
HencePr(|A — n| > en) < 2.

Also note that

We now consider two specific settings where lemma 15
have more convenient forms. The corresponding results will
be summarized in Lemma 16 and Lemma 17 below respec-
tively.

Lemma 16. Consider the setting in lemma 15 with the addi-
tional assumption that < 0.25, p = 1, andn < 0.6]. If
1> 25, Pr(jn—n| > en) < 5.
Proof. We first derive some inequations useful for deriving the
more convenient form in this setting.

i) Sincee < 0.25, if I > 25, we havel > 100. Consider
this together with the assumption that< 0.6/, we have; =

— 1/ > (1 —1/1)%6 > (1 — 1/100)9-6%190 > 0.547.
i) Trivially, we haveq = (1 — 1/1)" > 1 —n/L.
iii) By Lemma 14,Var[z] < lg — (I + n)¢®. With ¢ >
1 —n/l, we have:

Var[z] < lg— (14+n)¢?
= lg(1—q(l+n)/l)
< g1 — (1 —n/D)(1+n/l)

lq(1 = (1= (n/1)*)
nq/l

With these inequations, we have:



Var[z]
. d-d)l
n2q/l
_ (1 _ efln(l/q)e) ~ @
In(1/q)e Iyl
- 1+§n{f}q)e x \{L—q
_en In(1/(1 —1))lV/1q
(I+enln(l/(l—1)))n
> vl
1+enln(l/(1—-1))
- ev/0.5471
140.25x0.6x1In(l/(l-1))
eV/0.5471
~ 17025 x0.6x 1001n(100/(100 — 1))
> 0.64eV1

The second inequality above uses the fact thate=* >
1= forz > 0. The third inequality above is becausé! /(I —
))l > 1, which can be easily derived from the fact >
1+yforally # 0andlety = —1/I. The second-to-last
inequality above uses the fact that for 1, [In(l/(I — 1)) is
a monotonically decreasing functioniodnd! > 100.
Therefore, ifl > 25, A=EBE/MIVEE] - () 64e/] >

v/ Var|z]
0.64x (/2 =1.6. Bylemma15Pr(|a—n| > en) < 5. O

Lemma 17. Consider the setting of Lemma 15 with
the additional assumption that < 0.25 and ¢ €
where ¢ denotes the probability that a
(0,0.6). If 1 >
b Pr(|ji—n| > en) < &.

[Qminy Qmaa:]x
slot is empty and[gmin, ¢maz] C
2.6X (1—qmin) 2.6X(1=gmazx)
(Inzin(l_{I:nin)27 (I’maz(l_q;nam)Q

= ¢ and /Var[z

max{

Proof. By Lemma 14, E[z]

lg(1—¢q). Hence, U= (5[4/)[ ])E[z] \;}q(qlﬂs) —
(1_q5)2ql _ 1—q
\/T B g(q)’ Whereg( ) =g )2q" Therefore,

if 1 > 2.6 x g(q) for all ¢ € [gmin, Gmax], %\/:—:)&]’EM >

g(q) > /2.6 > 1.6. By lemma 15,Pr(|fn — n| > en) < &

To further simplify the form above, we now show that for
q € [Q’min;Qmam] with [Qmin,7Qmam] C (0706), g(q) obtains
its maximum value at eithef,,i,, Or Gma.. TO prove so, note
that the derivative of(q) is & = % Here the
denumerator is always positive fgr= (0,0.6). We thus focus
on its numerator. Lek(q) = ¢“(1 + 2¢(1 — ¢)) — 1. We note
that forg € [0.5,0.6) and withe < 0.25, ¢(1+2¢(1—¢q))"/€ >
0.5 x (1+2x0.25 x (1 —0.6))1/°25 > 1, therefore in this
range,h(q) = (q(1 + 2¢(1 — ¢))V/€)* =1 > 0. We also
note that the derivative of(q) overq is j—g = eq (e +
1)(1 — 2q) +¢€) > 0 for ¢ € (0,0.5], hence in[gin,0.5],

h(q) is monotonically increasing and can have at most oneln(l/q)E +0.5 < 27 <
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rootg, such thati(q,.) = 0. We consider two cases: i) if such
a rootg, exists,h(q) thus dg is negative forg € [gmin, ¢r),
and h(q) thus < g is positive forq € (¢r, gma=). Hence in
[9min, Gmaz), g( ) is first monotonically decreasing then be-
comes monotonically increasing. The maximum valug(qf

iN [Gmin, Gmaz] 1S thus eithew(gmin) OF 9(¢maz )- ii) If h(q)
has no root ifgmin, 0.5], fOr [¢min, Gmaz]), (g )thus is al-
ways positive, hence(q) is monotonically i mcreasmg Hence
the maximum value oj(q) is obtained at,,,.... In both cases,
settingl = max(2.6 X g(gmin ), 2.6 X g(¢maz)) Would ensure

1 >2.6xg(q) forall g € [gmin, Gmaz)- O

D.2 Guarantee of Our SRG; protocol

This subsection proves Theorem 5 in our Section 7 regarding
the guarantee of our SR(protocol. See Algorithm 1 for the
main steps of our SREprotocol.

Recall that the first phase of SRQses LOF to obtain a
rough estimate.. By the analysis of LOF [15], when the first
phase of SRg invokes LOF with10 trials, the resulted rough
estimaten is a (0.5,0.1) estimate ofn. Since each trial of
LOF incursO(log n) overhead, this first phase of SR@ses
O(logn) slots on expectation. Lemma 18 summarizes this
guarantee:

Lemma 18. The first phase of our SR@utputs a(0.5,0.1)
estimate wittO(log n) overhead.

Next we assumé < [0.5n, 1.5n] and summarize the guar-
antee of the second phase of SRhder this assumption in
Lemma 19:

Lemma 19. If the second phase of SRQses = %

slots, and if it is given a rough estimate € [0.5n,1.5n], it
outputs an(e, ) estimate foke < 0.25.

Proof. Note that withe < 0.25, [ = % > 200. We
consider two cases:

Case i: Whenn < 0.6/, recall that SRg setp =
min{1,1.6//7}. Sincen < 1.5n < 1.5 x 0.6] = 0.91, we
havep = 1. Also, (1_(?_%45)2 > (ln,(l/%?04)e)2 > 2%, Hence,
we can directly apply lemma 16 to get the estimation quality
guarantee of,, i.e.,Pr(|n — n| > en) < .

Case ii: Whem > 0.6/, we distinguish two cases:

Case ii(a): Ifp = &8, this leads tav > 1.6/ > 320, and
g=(1-p/l)" = (1-1.6/n)™. Sincen < 1.5n, we havey <
(1—1.6/(1.5n))™ < e~ 16/15 < 0.35. Also, sincer, > 0.5n,

n <2i,q>(1-1.6/2)2" > (1 -1.6/320)2*320 > 0.04.

Case ii(b): Otherwisep = 1, this leads ta» < 1.61, there-
foren <2 < 3.2l ¢ = (1—-1/)" > (1 —1/1)3% >
(1 —1/200)32*290 > 0.04. Also, sincen > 0.6, we have
g=1—-1/)" < (1 —1/1)%6 < ¢70:6 < (.55.

Combining these two sub cases, we have [0.04,0.55].
Letg(q) = ﬁ (as in the proof of Lemma 17). Applying
Lemma 17, setting = maz(2.6 x ¢(0.04),2.6 x g(0.55))
ensuresPr(|ﬁ - n| > en) < &. Note the fact that for all

v < Lety = In(1/q)e, we have
+1.

_Yy
1+y/2
ln(l/Q)

! 1+1/



Using above inequalities, we have(0.04)
1o > 24X (mrzeome T0-5)° > (1.52/e+2.44)%;

(1-0.04<)2x0.04
. _ 1-0.55 L
while ¢(0.55) = T=0555)2x055 < 0-8182 % (111(1/0.55)e +

1)2 < (1.52/¢ + 0.905)2. Comparing them, we have
g(0.04) > ¢(0.55). Therefore, we only need to en-
sure ! > 2.6 x g¢(0.04), which holds when we set
— 65

I = (1—0.04¢)2 O
We are now ready to combine Lemma 18 and Lemma 19
to prove Theorem 5, which summarizes the guarantee of ou
SRCs protocol.

Proof for Theorem 5. For the overall estimation quality, the
probability for the SR protocol to output a that satisfies
|7 — n| < en can be bounded as below:

Pr(|n —n| <en)

> Pr((|ji—n| < en)(\(7 —nl < 3))
= Pr((ji—n| < en) | (Ja —n| < 3)) x Pr(i —n| < 3)
> (1—%)><(1—0.1):0.8

Therefore overalli is an(e, 0.2) estimate ofa.

For the overhead, note that by Lemma 9, the number of slot§1 —

in the second phase of SBRC = % = O(%). Com-

bining this with the overhead of its first phase‘ (lemma 18),
SRCs’s total overhead i©)(L + logn). O

D.3 Guarantee of Our SRG, protocol

This subsection proves Theorem 6 in our Section 7 regarding_etg(q)

the guarantee of our SREprotocol. See Algorithm 2 for the
main steps of our SR protocol.

Recall that our SR¢; protocol seeg sets, i.e.,S1, Sa, ...,

Sk, sequentially and then outputs an estimater the size of
S1USy...US.

To reason about the estimation quality of SRCwe con-
sider the last location. Here SRLinvokes revised PET and
merges the revised PET outcomes from all locations to gener
ate a rough estimate. Such merging is possible since PET

works under multiple-set RFID counting setting, and theyonl ,

difference between our revised PET and PET is that revise
PET removes the need of a user-specified upper bounvl for
By the analysis of PET [23], when SREZinvokes revised
PET with 30 trials in each location, the rough estimatéas
a(0.5,0.1) estimate of,. Lemma 20 summarizes this guaran-
tee.

Lemma 20. The first phase of SRE outputs a(0.5,0.1) es-
timate at the last location.

Next we assumé < [0.5n, 1.5n] and summarize the guar-
antee of the second phase of SR@nder this assumption in
Lemma 21:

Lemma 21. If the second phase of SRQused = %
bins and if it is given a rough estimate € [0.5n,1.5n], it
outputs ane, 1) estimate of: for e < 0.25.

23

Proof. Recall that SRG; outputs its final estimate by merg-

ing the balls-and-bins outcomes of all locations when tags p
ticipate at a certain probabiligy, wherep = 2% for an integer

x that minimizegp — min{1, 1.6//72}|. The design of SRG
ensures that the required information is available at alhlo
tions, since each location starts with a probability thatds
smaller tharp. After the merging, a bin is occupied iff there
is at least one tag responds in the bin regardless in whish set
the tags appear. Hence we can considendhtgs as if they
gppear together in a single set.

Note that withe < 0.25,1 =
sider two cases:

Case i: Whem < 0.6], sincen < 1.5n < 1.5 x 0.6/ =
0.9, we havep = 1. Since(l_(f_%?ge)2 > (6111(13%_5013))2 >
%, we can directly apply Lemma 16 to get the estimation
quality guarantee af, i.e.,Pr(|fs — n| > en) < 1.

Case ii: Whem > 0.6/, we distinguish two cases:

Case ii(a): Ifp = &,z > 1, this leads td).75p < L
1.5p, which is equivalent t0.757 < L5 < 1.57 and % <
b < 32 Henceji > 8L > L6x450 — 960, Also, with

on .Op .0X0.5

€ [0.5n,1.5n], we have Consider the

% > 450. We con-

<
<

l
n 4%77, S % S 15n "
probability that a slot is empty, i.g, = (1 — )", we have
g < (1- 22" <% <0492andg > (1 — 22)" >
S22 (1 — 5225)2790 > 0.013. Therefore we
haveq € (0.013,0.492).

Case ii(b): Ifp = 1, this leads tol'TGl > 0.75, therefore
<32 andn <2n <. g=(1-1/)" > (1-1/)F >
(1—1/450)"55 " > 0.013. Also, sincen > 0.6/, we have
g=(1-1/)" < (1 —-1/1)%% < 796 < 0.55.

Combining these two sub cases, we hawe [0.013, 0.55].
ﬁ (as in the proof of Lemma 17). Applying
Lemma 17, setting = max(2.6 x ¢(0.013),2.6 x ¢(0.55))
ensuresPr(jin — n| > en) < 5. Note the g +

05 < =7 < m + 1 (see proof of Lemma 19), we

5
have(0.013) = (170.(1{3?6'?21:;0.013 > 75 X (ln(l/Ol.OIB)e +
0.5)* > (1.99/€+4.33)* while g(0.55) = g—55:¢53 0755 <
0.8182 x (W +1)? < (1.52/¢ + 0.905)2. Compar-
ing them, we haveg(0.013) > ¢(0.55). Therefore, we only
need to ensuré> 2.6 x ¢(0.013), which holds when we set

205
= (1=0.013°)2" .

Before we move on to prove Theorem 6, we need to rea-
son about the overhead of the second phase ofy)gR@hile
| = % bins suffices, the overhead also depends on
for each bin how many different probabilities SRCneeds
to check before the bin becomes empty. This depends on the
probability that the second phase SRGtarts with, which
in turn depends on the rough estimate from the first phase
of SRGy;. Lemma 22 summarizes the guarantee of the first
phase of SRg;, and Lemma 23 below summarizes the ex-
pected number of slots needed by the second phase of,SRC
given a certain starting probability. Based on them, Lemrha 2
summarizes the overhead of the second phase ofygR{®te
that our discussion here applies to every location (not trdy
last one), though we omit the index of the location to sinyplif
the notation. Specifically, we ugeto denote the first phase



output of SRG,, which is a rough estimate of, the number
of tags in the union of the sets the reader has seen so far.

Lemma 22. At any location, the output of the first phase of
SRGy satisfiesPr(n < 2241]) < 30/¢* fori > 1, where

n is the number of tags in the union of the sets the reader has

seen so far.

Proof. Recall that to provide &0.5,0.1) rough estimate, the
first phase of SR invokes revised PET witB0 trials. For
the jth trial (1 < j < 30) of revised PET, each tag chooses
a positive integer according to a geometric distributiothwi
mean of2. The protocol then finds the maximum integer
chosen by all tags. For a positive integerPr(z; < y) =

(1 — 5&r)" < e~/2""". The revised PET then outpuiis=

0.794 x 20°72121)/30 \We thus have:

0.794n
91

30
Pr((z x)/30 < log(n) — 1)

=1
30

Pr(U (zj <log(n)

j=1
30 x /27
30/e?'

Pr(n <

)

—1))

O

Lemma 23. At any location, the second phase of SR@ith
a starting probability ofp for a tag to respond uses less than
max{3l, (log(pn/l) + 4)I} slots on expectation, where is

the number of tags in the union of the sets the reader has see@m, which leads to2* <

so far.

Proof. Supposer; is the number of tags that appear in the

current location, obviouslyz; < n. Now consider a single

bin. We want to find out on expectation how many different
probabilities SRG; needs to check before the bin becomes

unoccupied. Letv; denote the indicator random variable for

Case ii: Otherwisegyn/l > 1, we have:

i=0
[log(pn/l)]

1+ Z E[wl] +

Efuw]

o0

>

i=|log(pn/l)|+1

Elw]

> o
2i]

[log(pn/1)]+1

pn

2 + log(pn/l) + STesr/NI(1 = 172)

2 +log(pn/l) + 2 =log(pn/l) + 4

1+ (14 [log(pn/l)]) x 1+

IN

<

Therefore, we hav&|w] < max{3,log(pn/l)+4}. Again,
by linearity of expectation, the expected number of slots
needed for all thé bins isl x E[w] < maz{3l, (log(pn/l) +
4)1}. O

Lemma 24. At each location, the second phase of JR@ses
O(l) slots on expectation, whetés the number of bins.

Proof. Let w denote the random variable of the number of
slots used by the second phase of gRC
Let & denote the event that the rough estimate from the
first phase of SR satisfiesn > %74 Since the starting
probability of p in the second phase of SRCis selected to
minimize [p — 12|, we have®2 < L8 < 32 hencep <
LOxdl o LOxAly 2 ,WhICh Ieadstd’— < 2X6f < 5.4,
By ‘Lemma 23,E[w|€0] < max{3l, (log(5 4) + 4)l} < 6.51.
Let&; (i = 1,2,...)denote the event that the rough estimate
from the first phase of SR satisfiesii € (%332, 24 ],
S|m|lar to the above analysis, we haves 1624 < X

1.6x41
3

2t x6.4

0.794x3 By

< 2 7 x 20+,
Lemma 23,E[w|&;] < max{?)l7 (log(2.7 x 201 + 4)1} <
(1 +6.5)L.

From Lemma 22 we know that for > 1, Pr(&;) <

Pr(n < %1947) < 30¢~2". Further, fori > 2, we have
Oe_QH— (i+146.5) _ _9of

oo Ftes (14 7%%) < 0.021. We can now
boundE|w]:

the event that it is occupied when a tag responds with prob-

ability p/2¢ (fori = 0,1,...). Note thatE[w;] = Pr(w; =
1) =1-(1-57)" < (1—-57)" < &7. Letw denote the ran-
dom variable of the number of probabilities that SR@eeds
to test before the bin becomes unoccupied= 1+ % w;.
By linearity of expectationEw] = 1 + >°.° ) Efw;]. Now
we discuss the following cases:

Case i: Ifpn/l < 1, we have

Ew] = 14 FElw
1=0
1 el
< +;2l
pn
< 1+ <3
= Yiaogy <

24

Elw|&)] Pr(&) + Y Elwl|&] Pr(&;)

i=1

w]

Elw|&] x 1+ Elw|&] x 1+ iE[whﬁ'Z] Pr(&;)

<
=2
30e=2°(2 + 6.5)!
. 1+6. SRS
< 6.5+ (146.5)l + 1= 0.001
< 191=0(l)

O

Proof for Theorem 6. Combining results from Lemma 20 and
Lemma 21, the end-to-end SRCestimation quality guaran-



tee can be computed as:
Pr(|n —n| <en)
n
n—nl < n—n| <=
Pr((| —n| < en) ()72 = n| < 5))
Pr((|n —n| < en) | (Jn —n| < g)) x Pr([n —n|

(1_%) < (1—0.1)=08

vV

3

< —

<3)

Therefore, using = % bins in the second phase of

SRC,, at each location is sufficient for achieving the required
estimation quality, i.e., ensuringis an(e, 0.2) estimate of.
By Lemma 9, our chosen number of bihs= ~—2%

(1—0.013)2
O(E%). By Lemma 24, the overhead of the second phase o
SRCy; at each location i©)(l) = O(%). By Lemma 13,

the overhead of the first phase of SRGit theith location is
O(loglogn;), wheren,; is the number of tags in théh set
S;. Therefore, for all thé: locations together, the overhead of
SRGy is O(XF_, (& +1loglogn,)). O

€

E Capability to Detect Collision

Simply plugging Theorem 25 into our multiple-set lower
bound proof for Theorem 4 (see Appendix A), one can de-
rive a rather similar form of multiple-set lower bound foeth
generalized model.

F Additional Evaluation Results

F.1 Additional Results for Section 6

When analyzing the performance gain of ART and enhanced

FNEB (see Section 6), we also evaluate the protocols un-
der other settings of. Specifically, Figure 9 and Figure 10

1plot the time needed by EZB, ART, and revised ART when

n = 50,000 andn = 10,000 respectively. Figure 11 and
Figure 12 plot the time needed by EZB, enhanced FNEB
(eFNEB for short), and the revised eFNEB for= 50, 000
andn = 10, 000 respectively. As shown in the figures here (as

well as Figure 2 and Figure 3 in Section 6), the relative perfo

mance of different protocols remain the same across diftere

values ofn.

F.2 Additional Results for Section 7.3

Our results can be generalized to a model where a reader can

further distinguish two types of non-empty slot, igingleton
slotandcollision slot Exactly one tag transmits insingleton
slot, and at least two tags transmit ircallision slot

We describe a prove sketch for our lower bound results in
this generalized model, as summarized in Theorem E.

Theorem 25. Even if the reader can detect collision, no
single-set RFID counting protocol can output dn,0.2)
estimate witho(m + loglogn) overhead, fore €

[1//n,0.5].

Proof sketch. For theo(m) term, the proof is almost

similar to the proof of Theorem 1, except that Alice and Bob
need to interactively exchange(logm) fingerprints instead
of one fingerprint. Specifically, to simulate thig slot of the
single-set RFID counting protocol, Alice and Bob compute
their first fingerprint in the same way as before. If their first
fingerprints are identical, then they can stop by simulaéing
empty slot. Otherwise, Alice and Bob divide their own bit
string at the middle into two substrings, and compute two fin-
gerprints for the two substrings. If both fingerprints arféeal

ent, it means there are at least two different bits betweein th
strings, thus Alice and Bob will simulate a collision slotth©
erwise, they will further examine the substring with diéfat
fingerprint. (Note that it is impossible for the fingerprimtis
both substrings to be equal unless the fingerprints coliide,
probability of which can be properly bounded.) If Alice and
Bob’s strings differ by only one single bit, recursively &pp
ing this process folog m times will reveal the position of this
single bit. Then Alice and Bob can simulate a singleton slot.
Using this construction and by similar argumentas in thepro
of Theorem 1 gives the(m) term in the overhead.

For theo(log log n) term in the overhead, the proof is sim-
ilar to that of Theorem 2, and the only difference is that each
slot can have outcomes instead @f
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Since the overhead difference between our protocols and som
existing protocols is partly due to the existence of pettri
overhead. To understand how significant this factor is, we
have further compared the protocols when there is no par-tri
overhead.

Figure 13 and Figure 14 plot the overhead of single-set
RFID counting protocols for. = 10,000 andn = 100, 000
respectively. In both settingsy RC continues to have the
lowest overhead among all protocols. For example, when
e = 0.01, SRCS i20% to 100% faster than the most efficient
existing protocoal, i.e., ZOE.

Figure 15 plots the overhead of multiple-set RFID counting
protocols. We find that SRCM continues to d&0% faster
than the most efficient existing protocol.
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