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Abstract

Counting the number of RFID tags, orRFID counting, is
needed by a wide array of important wireless applications.
Motivated by its paramount practical importance, researchers
have developed an impressive arsenal of techniques to im-
prove the performance of RFID counting (i.e., to reduce the
time needed to do the counting). This paper aims to gain
deeper and fundamental insights in this subject to facilitate
future research on this topic.

As our central thesis, we find out that the overlooked key
design aspect for RFID counting protocols to achieve near-
optimal performance is a conceptual separation of a protocol
into two phases. The first phase uses small overhead to ob-
tain a rough estimate, and the second phase uses the rough
estimate to further achieve an accuracy target. Our thesis
also indicates that other performance-enhancing techniques
or ideas proposed in the literature are only of secondary im-
portance. Guided by our central thesis, we manage to design
near-optimal protocols that are more efficient than existing
ones and simultaneously simpler than most of them.

1 Introduction

Radio-frequency identification (RFID) technology uses RFID
tags and RFID readers (or simply calledtagsandreaders) to
monitor objects in physical world. A tag is a low-cost mi-
crochip that can be attached to an object. It can store some
information (including a unique ID) and can communicate
with a reader through wireless channel. Over the past decade,
RFID technology has enjoyed significant growth. With more
than3 billion tags sold in 2012, RFID technology has by now
impacted applications ranging from inventory control, supply
chain management, to people tracking. A common basic func-
tionality needed by many of these applications isRFID count-
ing — to count the number of tags and thus the number of
tagged objects in a certain physical area [16]. For example:

• Wal-Mart [2] puts tags on individual clothes. Here
RFID counting provides information about sales trend

†The conference version of this work appears in MobiCom’13.
†This work was partly done when Ziling Zhou was a research intern at

Advanced Digital Sciences Center.

and speeds up the restocking process.

• Purdue Pharma [4] has tagged millions of its tablet bot-
tles. Here RFID counting ensures the right amount of its
products are passing through its manufacturing, packag-
ing, and shipping process.

• Many events (e.g., TechEd [1] and Bonnaroo festival [3])
distribute RFID wristbands to their visitors. Here RFID
counting helps reveal the number of people around.

Often in such scenarios, it is desirable to simply count or
just estimate the number of tags without explicitly identify-
ing individual tags. This helps to significantly reduce the pro-
cessing time, preserve people’s privacy, and avoid the costin-
curred for handling a large amount of unnecessary informa-
tion. In addition to its direct utility, RFID counting can also
serve as a preprocessing step and help other tasks. For exam-
ple, even if one were still to identify individual tags, knowing
the rough number of tags can make the identification process
much more efficient [11, 19]. As another example, one can
use RFID counting to help find popular categories in a large
collection of tags [18].

In this paper, we will consider two common versions of
RFID counting problem. The firstsingle-set RFID counting
problem is simply to count the number of tags in a given phys-
ical area, using a single stationary reader whose radio range
covers that entire area. In the secondmultiple-set RFID count-
ing problem, the reader’s radio range cannot cover the whole
area. Instead, the (single) reader becomes mobile and sequen-
tially visits a number of locations, so that the union of the
coverages at these locations can cover the whole physical area.
Note that the coverage at different locations may overlap and
hence double counting needs to be avoided.

In both versions of the problem, a key performance metric is
the amount of time needed to count or estimate the total num-
ber of tags, which will be the focus of this work. Since exact
results are often not necessary for many applications (e.g., for
the earlier example application scenarios) and since the over-
head of exact counting is fundamentally high,1 as in most prior
efforts [8,11,12,15,17,23,24], we will focus on approximate
counting.

1As implied by our formal lower bound results in Section 3.
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Previous efforts. Given the paramount practical importance
of RFID counting, there have been a steady stream of recent
research efforts on efficient RFID counting. To reduce the
overhead (time) needed to count (i.e., to improve theperfor-
mance), these efforts have developed an impressive arsenal of
novel techniques, such as probabilistic framed ALOHA [11],
multi-resolution probing [12], lottery frame protocol [15], first
non-empty slot based estimation [8], probabilistic estimating
tree [23], average run based estimation [17], and zero-one es-
timator [24].

While these efforts all aim at reducing the overhead of RFID
counting, they often approach the problem from rather differ-
ent perspectives without being guided by a central principle.
This has led to ad hoc research outcomes where different re-
searchers view different aspects of RFID counting protocols
as key. For example, some researchers focus on using novel
statistical quantities to estimate the count [8,15,17], some re-
searchers put more emphasis on obtaining optimal trade-offs
among different protocol parameters [12,17], while othersre-
sort to gradually refining the parameters via an adaptive itera-
tive process [8,11].

The fundamentals of the RFID counting problem get easily
buried among all these research outcomes — At this point,
it is far from clear whether all these techniques are equally
important or whether one technique plays the dominant role.
Such a lack of deep understanding hinders future research on
RFID counting — if we would like to advance the state of
the art, should we combine all these techniques despite the
resulting complexity? Or should we focus on improving one
of them and ignore others?

Our goal. Given such a lack of fundamental understand-
ing into the RFID counting problem, this paper aims to gain
deeper insights to facilitate future research. Specifically, we
aim to answer the following three key questions, none of
which have been posed or answered in prior efforts:

• Question 1:Given the long list of protocols in the litera-
ture, how much room is there for further improvement?

• Question 2:What are the key aspects that determine an
RFID counting protocol’s performance? What are the
techniques that are only of secondary importance?

• Question 3: Guided by the answers to the earlier two
questions, can we easily design simple protocols that out-
perform existing ones?

Our results. Our main contributions are precisely the answers
to these three questions:

• Answer 1: Lower bounds.To determine how much
improvement is still possible, we obtain strong lower
bounds on the overhead of RFID counting, by leverag-
ing a recent breakthrough result on communication com-
plexity [5]. Our lower bounds show that it isimpossi-
ble for a single-set RFID counting protocol to use only
o( 1

ǫ2 log 1
ǫ

+ log log n) time slots for all inputs. Heren is

the number of tags to count, andǫ is the relative error on
the final output of the protocol (since we are considering
approximate counting). In eachtime slot, the reader may
broadcastO(1) bits to the tags, and all the tags combined

can send backO(1) bits to the reader. A similar lower
bound is obtained for multiple-set RFID counting.

We then compare these lower bounds with the asymptotic
overhead of existing protocols. Such comparison readily
reveals that:

– For single-set RFID counting, some existing pro-
tocols’ performance is already asymptotically close
to optimal. Improvements are still possible though
one should not expect huge improvements.

– For multiple-set RFID counting, existing protocols’
performance is further away from optimal. Larger
improvements hence seem still possible.

• Answer 2: The overlooked key design aspect for ap-
proaching optimal performance.We identify that a key
design aspect for single-set RFID counting protocols to
approach optimal performance is to have two conceptual
phases: The first phase uses roughlyΘ(log log n) slots
to obtain a rough estimate with constant (e.g.,0.5) rela-
tive error, and the second phase uses roughlyΘ( 1

ǫ2 log 1
ǫ

)

slots to eventually obtain a final estimate with the de-
sired relative error ofǫ. Our thesis further indicates that
many other performance-enhancing techniques or ideas
proposed in the literature are only of secondary impor-
tance. We also generalize this answer to multiple-set
RFID counting protocols.

It is worth noting that our answer to this question is quite
surprising because prior efforts [8, 11, 12, 15, 17, 23, 24]
often view various other aspects of RFID counting pro-
tocols as key, and have overlooked this two-phase aspect.
Those efforts also attribute their performance improve-
ments to various clever techniques on those aspects(e.g.,
the use of novel statistical quantities to do the estima-
tion, the use of complex optimization techniques to tune
various parameters, and the use of iterative process to re-
fine the estimation).Our answer implies that all those
design aspects are perhaps less important than originally
thought.

As direct evidence to support our claim, this paper care-
fully examines the source of performance gains in some
existing RFID counting protocols. For example, some
recent protocols [8, 17] attribute their performance im-
provements over prior protocols to the use of the novel
statistical quantities to do the estimation. Quite sur-
prisingly, in our experiments, we find that these novel
quantity does not necessarily improve the performance
of these protocols: Replacing these novel quantities with
some old quantity from some earlier protocol [12] either
improves the protocols’ performance or provides compa-
rable performance in our experiments. We further show
that the source of performance gains in these protocols
is their two-phase design, despite that such a two-phase
design was not considered as the key.

• Answer 3: Simple & more efficient RFID counting proto-
cols.Guided by our answers to the earlier two questions,
we set out to search for more efficient RFID counting
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Figure 1: A multiple-set RFID counting example: A mobile
reader sequentially visits three locations.

protocols while keeping our design as simple as possible.
We manage to design such protocols by simply putting
together a few basic building blocks (with some rather
minor adaptations) from the literature. We donot claim
novelty on these building blocks – instead, we aim to
show that simply putting them together in aproper man-
ner as guided by our earlier answers is already sufficient
to outperform existing protocols. This serves as an ulti-
mate validation of the utility of our earlier findings.

Specifically, our RFID counting protocols are signifi-
cantly simpler than most existing protocols — for ex-
ample, we do not need iterative refinement or to solve
optimization problems to tune parameters. Despite the
simplicity, our experiments show that our single-set
(multiple-set) RFID counting protocol is around100%
(500%) faster than the best existing single-set (multiple-
set) RFID counting protocol. Furthermore, our protocols
arenear-optimaland are within a smallO(log 1

ǫ ) factor
from the lower bounds, for both single-set and multiple-
set RFID counting.

Roadmap. The next section formalizes the RFID counting
problem. Section 3 proves lower bounds on the overhead of
single-set and multiple-set RFID counting. Section 4 reviews
major existing RFID counting protocols. Section 5 presents
our thesis on the overlooked key design aspect of RFID count-
ing. Section 6 provides direct and immediate evidence to sup-
port our thesis by examining the source of performance gain
of some recent protocols. Section 7 demonstrates the utility
of our insights by applying them to construct new protocols
that are both simple and more efficient. Section 8 and Sec-
tion 9 discuss variant models and related work. We conclude
in Section 10.

2 Problem Formulation

This section formalizes the RFID counting problem. We de-
fine the overhead of RFID counting protocols mainly for later
studying the asymptotic lower bound on the problem and the
asymptotic upper bound achieved by the protocols. Hence our
formulation here will only be concerned with asymptotic over-
head.

Single-set and multiple-set RFID counting.In thesingle-set
RFID countingproblem, the reader covers a certain physical
area. LetS denote the set of tags in that area, and letn = |S|.
The goal of the counting protocol is to produce an estimaten̂

for n, so thatPr(|n̂ − n| ≤ ǫn) ≥ 1 − δ, with the probabil-
ity taken over the random coin flips done by the randomized
protocol. Hereǫ andδ captures the target estimation quality,
and should be specified by the end user. We also refer toǫ as
the relative error of n̂. We call n̂ as having(ǫ, δ) estimation
qualityand calln̂ itself as an(ǫ, δ) estimate.

In themultiple-set RFID countingproblem (Figure 1), a mo-
bile reader sequentially visitsk locations exactly once.2 At
locationi, the reader’s radio range covers a setSi of tags. Let
ni = |Si|. The goal of the counting protocol is to produce an
(ǫ, δ)-approximation̂n for n, wheren = |S1 ∪ S2 ∪ ... ∪ Sk|.
Usuallyn 6= n1 + n2 + ... + nk since theSi’s may overlap.
Note that such formulation of the multiple-set RFID counting
problem implicitly but fully captures more general application
scenarios. For example, it also captures the setting where a
static reader takes a sequence of snapshots of mobile tags and
then counts the total number of tags.

Since we aim for(ǫ, δ) estimation quality, the RFID count-
ing protocols are essentially Monte Carlo randomized algo-
rithms [14]. In our reasoning on asymptotic overhead, we will
adopt the following standard way of treatingδ in Monte Carlo
algorithms [14]: We will only require the protocol to achieve
constantδ (e.g.,0.2). It is well-known that to achieve a smaller
δ, one can repeat the protocolO(log 1

δ ) times and then take the
median of theO(log 1

δ ) outputs as the final output. A constant
δ helps simplify our discussion.

Abstracting RFID counting protocols. In an RFID counting
protocol, the reader communicates with tags in synchronized
time slots. In Section 1, we explained that in each time slot
the reader and the tags can exchangeO(1) bits. Without loss
of generality, from now on, we will assume that in each time
slot the reader may sendO(1) bits to the tags, while all the
tags collectively can either send a single bit of “1” or send
nothing.3 Such treatment is without loss of generality because
our formalization here is only for reasoning about asymptotic
overhead — one can easily useO(1) slots to sendO(1) bits.
We say that a tagrespondsin a slot iff it sends back a “1”
bit. If there exists at least one tag responding in a slot, theslot
becomesnon-empty. Otherwise the slot isempty.

Now consider a given slot. Since the tags are distributed,
each tag will need to unilaterally determine whether it willre-
spond, based on its id, random numbers generated locally, and
its current state (since the protocol may be stateful), and the
bits received from the reader. For our formal reasoning later,
it will be convenient to imagine that in each slot the reader
conceptually specifies a booleanpredicate functionf . A tag
responds in the slot iff it satisfies the predicatef . Note that
the RFID counting protocol may be stateful — this is captured
by allowing the functionf to take the local state (i.e., local
variables) of the tag as an input as well.

Measure of goodness.Our measure of goodness (orperfor-
mance) of an RFID counting protocol is the amount of time it

2Some researchers (e.g., [17]) consider asimplervariant of the problem
by assumingparallel access to all sets through multiple readers. Section 8
discusses this simpler variant.

3Some protocols (e.g., [11]) assume that the reader can further distinguish
whether a single tag or multiple tags send a bit. We will coverthis extended
model in Section 8.
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needs. When studying asymptotic behavior, this is the same
as the total number of slots used by the protocol. Hence we
define theasymptotic overheadof a protocol to beO(x), if for
all inputs, it needsO(x) slots on expectation for achieving the
accuracy target. Here the expectation is taken over the coin
flips done by the randomized protocol.

3 Lower Bounds on The Overhead of
RFID Counting Protocols

We first consider single-set RFID counting, and then general-
ize to multiple-set RFID counting.

Single-set Counting: Lower bound as a function ofǫ. We
will use a standardreductionapproach to obtain our novel
lower bound on the overhead of an RFID protocol. For readers
not familiar with reduction, following is a quick explanation.
To prove that a problemA (in our case, the RFID counting
problem) is hard and hence to obtain a lower bound for the
complexity of any protocol that solvesA, a common approach
(calledreduction) in complexity research is to establish a con-
nection with another hard problemB. Namely, one first shows
that any protocol for solvingA can be used, as a black box
sub-procedure, to solveB. Next sinceB is hard, any protocol
for solvingB must incur large overhead. This in turn can be
translated back to reason about the hardness ofA.

The key step/challenge in reduction is to choose a proper
B and then to show how to construct a protocol for solving
B, given any protocol for solvingA. We choose theHam-
ming Distance Estimation(HDE) problem as the hard problem
B. HDE is a two-party communication complexity problem,
where the two parties Alice and Bob are givenm-bit strings
x and y as input respectively. They would like to estimate
the hamming distance betweenx and y, with (ǫ, δ) estima-
tion quality, while minimizing the number of bits they need
to exchange. A recent breakthrough result by Chakrabarti and
Regev [5] implies that even for a constantδ, solving the HDE
problem requiresΩ( 1

ǫ2 ) bits of communication between Alice
and Bob forǫ ≥ 1/

√
m.

With HDE as problemB, our goal now is to design a proto-
col for solving HDE, using any given RFID counting protocol
P as a building block. To do so, Alice and Bob will locally
simulatean execution ofP . Specifically, they will simulate
n RFID tags, with IDs from1 throughn. We want tagi to
be presentand be included in the RFID counting result iff
x[i] 6= y[i]. All other tagsj wherex[j] = y[j] should beab-
sentand will not be included in the count. This will make the
RFID count to exactly equal the hamming distance between
x andy, hence solving the HDE problem once we know the
count.

Now to properly simulate the execution ofP with those
present tags, Alice/Bob needs to determine which slots in the
simulated execution ofP are empty. Doing so enables Al-
ice/Bob to simulate the responses received in all these slots
and feed those intoP to obtain the final count. For each
slot, we will show that Alice and Bob can determine whether
it is empty by only exchangingO(log 1

ǫ ) bits. Consider the
first slot. P must have specified a predicatef for the first

slot. Alice/Bob can thus locally determine the set of tags (e.g.,
tag 2, 6, and7) that satisfyf . Next Alice computes a short
fingerprint of sizeO(log 1

ǫ ) for the (potentially long) string
x[2]x[6]x[7] and sends to Bob. Bob similarly computes the fin-
gerprint overy[2]y[6]y[7] and compares the two fingerprints.
For now assume no fingerprint collisions (collisions will be
properly addressed in our proof). Then the two fingerprints
differ iff x[2] 6= y[2] or x[6] 6= y[6] or x[7] 6= y[7], which in
turn is equivalent to tag2 or tag6 or tag7 being present, and
also equivalent to the first slot being non-empty. Alice and
Bob now have successfully determined whether the first slot
is empty or not. Emptiness of later slots can be sequentially
determined in a similar way.

Formalizing the above intuition will lead to the following
theorem, whose proof is in the Appendix A.1:
Theorem 1. No single-set RFID counting protocol can out-
put an (ǫ, 0.2) estimate witho( 1

ǫ2 log 1
ǫ

) overhead, forǫ ∈
[1/

√
n, 0.5].

Single-set Counting: Lower bound as a function ofn. One
naturally expects that the number of slots needed by an RFID
counting protocol will increase withn as well. For example,
to approximate every possible tag count between1 to n within
a relative error of0.5, a deterministic RFID counting proto-
col needs to be ready to outputΩ(log n) different values, with
at leastone in each of ranges[1, 2], [4, 8], [16, 32], ... These
Ω(log n) different values require at leastΩ(log log n) bits (i.e.,
slots used by the RFID counting protocol) to encode. To ex-
tend this argument to randomized RFID counting protocols
with (ǫ, δ) guarantee, we leverage Yao’s well-known minimax
principle [21] on the complexity of randomized algorithms.
Doing so will eventually yield a similarlog log lower bound
(see the Appendix A.1 for full proof):

Theorem 2. No single-set RFID counting protocol can output
an (ǫ, 0.2) estimate witho(log log n) overhead, forǫ ≤ 0.5.

Single-set Counting: Putting everything together.

Corollary 3. No single-set RFID counting protocol can out-
put an(ǫ, 0.2) estimate witho( 1

ǫ2 log 1
ǫ

+ log log n) overhead,

for ǫ ∈ [1/
√

n, 0.5].

This corollary also implies the difficulty of exact counting:
Exact counting is no easier that approximate counting with
ǫ = 1√

n
, whereo( n

log n ) overhead is already impossible.

Multiple-set Counting: Lower bounds. Recall that in
multiple-set RFID counting, the RFID reader sequentially sees
a sequence of (potentially overlapping) setsS1, S2, ..., Sk.
The goal is to estimate the size of the union of all these sets.
We can show that in the worst case, to estimate the size of
the union, it is actuallynecessaryfor the protocol to estimate
with similar accuracy the size (ni) of each individual setSi.
Formalize such intuition, together with our single-set RFID
counting lower bound, would lead to the following theorem,
whose proof is in the Appendix A.2:

Theorem 4. No multiple-set RFID counting protocol can out-
put an (ǫ, 0.2) estimate witho(

∑k
i=1(

1
ǫ2 log 1

ǫ

+ log log ni))

overhead, forǫ ∈ [1/
√

min{n1, n2, . . . , nk}, 0.25].
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Key implications of our lower bounds — how much room
is there for further improving RFID counting protocols?
As we will show in Section 5, in terms of asymptotic over-
head, the best existing single-set RFID counting protocol in-
curs an overhead ofO( 1

ǫ2 +log log n). This is already close to
our lower bound. Improvements may still be possible though
one should not expect huge improvements. For multiple-set
RFID counting, the best existing protocol incurs an overhead
of O( k

ǫ2 log log(
∑k

i=1 ni)). It exhibits a larger gap from our
lower bound — in particular, this overhead is multiplicative
while our lower bound is additive. Hence significant asymp-
totic improvement seems still possible.

4 Review of The Main Ideas in
Existing Protocols

This section concisely reviews major RFID counting protocols
in the literature (Table 1). This serves to set up the stage for
our later discussion on which design aspects are key for RFID
counting protocols. For each protocol, we will highlight which
design aspects are believed by the original authors as the key
aspects of that protocol. Throughout this section, we useñ
to denote a rough estimate onn (e.g., with constant relative
error), and̂n to denote the final estimation onn with ǫ relative
error.

These protocols adopt some common concepts. Each of
these protocols is comprised of a sequence oftrials, where
each trial is a sequence of slots. At the beginning of a trial,
the reader sends a command to the tags. This causes the tags
to initialize their local state machines and potentially load new
random numbers. Next in each slot within that trial, a tag will
respond or not respond based on the command, its local state,
and its random number. For all existing protocols, a tag does
not carry state across trial boundary. Due to the processing
needed at the beginning of a trial, in certain physical imple-
mentations of RFID systems, a trial may incur an additional
per-trial overhead. If there is indeed such overhead, this extra
overhead will be in addition to the time needed for all the slots
in that trial [6].

The number of slots in a trial is called thelengthof the trial.
Recall that a slot is either empty or non-empty, depending on
whether there is at least one tag responding in that slot. A non-
empty slot is called acollisionslot iff at least two tags respond
in that slot.

One simple way of running a trial, as adopted by multiple
protocols, is to start a trial of lengthl and let each tagpartici-
patein that trial with a certain probabilityp, with totalnp tags
participating on expectation. Here we say a tagparticipates
in such a trial iff it chooses a uniformly random slot within
that trial and then responds in that slot, and we call such a
trial a balls-and-bins trial. The value ofn can then be esti-
mated from various statistical quantities on the status of the
slots. A basic principle, which will help us understand these
protocols, is that usually we want to use ap value such thatnp
is on the same order asl. This ensures that we see a healthy
mixture of empty and non-empty slots in the trials, maximiz-
ing the amount of information carried aboutn. Besides such

balls-and-bins trials, existing protocols have also developed
alternative ways to use the slots of a trial, as will be described
later in the corresponding protocols.

Unified probabilistic estimation (UPE) [11]. In UPE, all tri-
als are balls-and-bins trials with the same length (e.g.,30). In
the first trial, all tags participate. Depending on the number of
empty slots observed in this trial, the protocol will branchinto
several different execution paths. We will focus on the most
important execution path, which corresponds to largen and
where the protocol observes no empty slots in the first trial.In
such a case, the protocol proceeds sequentially to the second
trial, the third trial, and so on, with each tag participating with
p = 0.1i−1 probability in theith trial. This process stops once
the protocol sees an empty slot in a trial. The protocol then
generates a rough estimateñ based on the currentp and the
number of collision slots in the current trial (i.e., the trial with
at least one empty slot), and the first phase ends. In each trial
of the second phase, the protocol uses the rough estimateñ so
far to calculate an optimalp, and has each tag participate with
probabilityp. Next using the new information received in this
trial, the protocol amends̃n. This iterative process continues
until the protocol believes that the estimation accuracy ofñ is
high enough.

The authors [11] attribute UPE’s performance to the proper
use of randomization, i.e., carefully choosing the probabil-
ity for tags to participate in trials (calledprobabilistic framed
ALOHAscheme), and the unified use of empty slots and col-
lision slots to do the estimation. The basic idea of random-
ization has been inherited by virtually all follow-up research
on the problem. Despite that UPE does have a rough esti-
mation phase followed by an accurate estimation phase, this
two-phase design is not mentioned as a key aspect of UPE by
the authors. Multiple later protocols, including the authors’
own follow-up work [12], abandon this two-phase approach.

Enhanced zero based estimator (EZB) [12].EZB partitions
the entire domain for the possible values ofn into logarithmic
number of narrow ranges:[1, r), [r, r2), [r2, r3), . . .. Herer
is some parameter to be explained later. Each of these nar-
row ranges has the property that the max of the range is at
mostr times larger than the min. EZB works on each range
sequentially and independently. For each range, EZB uses a
certain number of balls-and-bins trials with a certain length.
In each such trial, tags participate with some probabilityp.
Here the number of trials and trial length are the same for all
ranges, while the value ofp depends on the range. Finally for
each range, EZB uses the number of empty slots in the trials,
together with the probabilityp, to estimaten. EZB then com-
bines all estimates from all ranges to obtain the final output.
EZB uses various involved optimization techniques to choose
the optimal values for the various parameters such asr andp.
Intuitively, EZB works because the countn must be in one of
these ranges. Since each range is narrow, one can pick a single
p value such that for any valuex within that range,xp is on
the same order as the length of the trial. This enablesn to be
properly estimated, as long asn is in that range.

The authors [12] attribute EZB’s performance gain to its
unique narrow range design (calledmulti-resolution probing)
and the various parameter optimization techniques.
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Protocol Venue Key source of performance gains, as believedby the authors
UPE [11] MobiCom’06 i) proper randomization; ii) use of empty and collision slots for estimation
EZB [12] INFOCOM’07 i) multi-resolution probing; ii) various parameter optimization techniques
LOF [15] PerCom’08 / TPDS’11 small length of the trials
(Enhanced) FNEB [8] INFOCOM’10 use of the indices of the firstnon-empty slots for estimation
PET [23] ICDCS’11 / TMC’12 use of the binary search to find the index of the last nonempty slot
ART [17] MobiCom’12 use of the average run length of non-empty slots for estimation
ZOE [24] INFOCOM’13 i) each trial has a single slot; ii) two-phase design

Table 1: Major Existing RFID Counting Protocols

First non-empty slots based estimator (FNEB) and en-
hanced FNEB [8]. Enhanced FNEB has two phases, while
FNEB is exactly the same as the second phase of enhanced
FNEB, so we only review enhanced FNEB. A trial in enhanced
FNEB is similar to a balls-and-bins trial as it lets each tag uni-
formly randomly choose an integer from the range of1 to l′.
Herel′ is some parameter to be explained later. Different from
a balls-and-bins trial, a trial here does not usel′ slots to se-
quentially scan the whole range. Instead, it does so only for
the first few slots. If any of them is non-empty (i.e., its index
is chosen by some tag), the trial ends immediately and returns
the index of that slot. Otherwise, the trial continues with abi-
nary search to find the smallest integerj that has been chosen
by at least one tag. Imagine the protocol uses a balls-and-
bins trial, thejth slot would be the first non-empty slot it sees.
Thereforej is still called the index of the first non-empty slot
here.

To start, enhanced FNEB requires the user to input an up-
per bound onn. The protocol determines thel′ used in its
first trial by solving an optimization problem parameterized
with this upper bound. The protocol then uses the index of
the first non-empty slot in its first trial to generate a rough es-
timate ñ. Intuitively, this index carries information aboutn
since for a givenl′, the larger the value ofn, the smaller this
index will likely be. Next the protocol determines thel′ used
in its second trial by solving the same optimization problem,
this time parameterized with the rough estimateñ. The sec-
ond trial then proceeds in the same way as the first trial, and
amends̃n. This iterative process continues until the protocol
believes that the estimation quality ofñ is good enough. Next
the protocol moves on to the second phase where all trials use
the same value ofl′, which is obtained by solving the opti-
mization problem again but parameterized using theñ from
the first phase. The protocol then combines the first non-empty
slot information from all of its second-phase trials to produce
a final estimate.

The authors [8] consider their use of the first non-empty
slots as the key improvement of (enhanced) FNEB over prior
protocols. This design enables (enhanced) FNEB to end a trial
as soon as it finds the index of the first non-empty slot. Despite
that enhanced FNEB has two phases, these two phases are in-
troduced by the authors only as an “enhancement” instead of
a key design aspect.

Lottery frame protocol (LOF) [15]. LOF consists of multi-
ple independent trials. For each trial, a tag randomly chooses a
slot according to a geometric distribution where theith slot is
chosen with1

2i probability. A tag then responds in its chosen

slot. LOF finds the indexj of the first empty slot by sequen-
tially going through the slots. A trial ends immediately andre-
turnsj when the protocol sees the first empty slot. The value
of j carries useful information aboutn: On expectation,n2i

tags respond in theith slot, andj tends to take a value around
log(n). Finally, LOF combines the information obtained from
all of its trials to produce a final estimate.

The authors [15] attribute LOF’s improvement over prior
protocols to its small trial length.

Probabilistic estimating tree (PET) [23]. Similar to LOF,
PET does a sequence of independenttrials, where in each trial
each tag randomly chooses a positive integeri according to the
same geometric distribution as LOF. But instead of determin-
ing thej in LOF, PET finds the maximumj′ such that there
exists some tag choosingj′. The intuition why suchj′ car-
ries useful information aboutn is similar toj as in LOF. In
addition, PET (implicitly) requires an upper boundx on the
maximumj′. These two changes enable PET to perform a
more efficient binary search on the slot index range of[1, x]
to find the maximumj′, instead of sequentially going through
the slots. In the first slot of this binary search, PET asks all
tags whose chosen integer falls within[x/2, x] to respond. If
the slot is empty (non-empty respectively), PET can then fo-
cus on the range of[1, x/2] ([x/2, x] respectively) in the next
slot.

The authors [23] attribute PET’s improvement over prior
protocols to the efficient way of using binary search to deter-
mine the maximumj′.

Average run based tag estimation (ART) [17].The first trial
in ART is roughly the same as a trial in LOF. ART uses this
trial to obtain a rough estimatẽn on n. The quality of this
rough estimate is low since different from LOF which uses
many trials to estimate, ART only uses a single trial. All
the following trials are balls-and-bins trials, where eachtag
participates independently with a certain probabilityp. The
length of these trials and thep used in these trials are all the
same. ART then observes which slots in each trial are non-
empty. Next it calculates the averagerun lengthof non-empty
slots (i.e., the average length of sequences of consecutivenon-
empty slots), and uses such information to generate a final es-
timate. Such average run length carries information aboutn
since the larger the value ofn, the more non-empty slots, and
the larger the average run length. The total number of trials,
the length of the trials, and the probabilityp used in ART are
determined by solving an involved optimization problem with
the rough estimatẽn being an input parameter.

The authors [17] attribute ART’s improvement over prior
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protocols to its novel use of run length to do the estimation.
While ART does have two phases (with the first phase having
a single trial), the authors neither emphasize this aspect nor
attribute ART’s performance gain to this aspect.

Zero-One Estimator (ZOE) [24]. ZOE is independent of and
concurrent with our work. ZOE has two explicit phases, where
the first phase gets a rough estimateñ and the second one ob-
tains the final estimate. As a key design decision, each trialin
ZOE has a single slot, so we directly describe slots here. In its
first phase, ZOE aims to find aj such that if all tags participate
in a slot with a probability of1/2j, the probability of the slot
being empty is around1/e. To find such aj efficiently, ZOE
(implicitly) requires an upper boundx on the number of tags
so that it can does a binary search over[0, log x]. Each step
of the binary search uses a constant number of slots. In each
such slot, the tags respond with probability of1/2i wherei
is the current value tested in the binary search. The proto-
col then observes the fraction of empty slots, and determines
how to continue the binary search. With a suitablej found by
the first phase, ZOE’s second phase uses a certain number of
slots where the tags participate in each slot with probability of
1/2j. The number of slots needed in the second phase is de-
termined by the required estimation quality. ZOE eventually
estimatesn from the fraction of empty slots observed in the
second phase.

The authors [24] attribute ZOE’s improvement over prior
protocols to the following two design aspects: i) each trial
having only a single slot so that this slot can potentially collect
information from all tags, and ii) having two explicit phases.
While this concurrent work of ZOE does emphasize the impor-
tance of its two-phase design, the thesis identified in this paper
is still not discovered in ZOE: ZOE believes that its unique
design of each trial having a single slot is also key to ZOE’s
performance. Our thesis, on the other hand, suggests that the
two-phase design is the key while other aspects are only sec-
ondary. Guided by our thesis, a protocol designer would not
be overly concerned with sticking to ZOE’s idea of having a
single slot in each trial. Section 7.3 will show thatnot having
a single slot in each trial, as in our protocol, enables us to get
better performance in our experiments.

5 Which Design Aspects Are Key?

So far we have reviewed major RFID counting protocols in the
literature, each with its own unique techniques. Given such
a myriad of interesting techniques, which techniques are the
actual dominant factors for good performance? Which tech-
niques are less important? If one would like to outperform the
state-of-the-art, which existing technique should one builds
upon? To answer these questions, we aim to identify the key
aspects of efficient RFID counting protocols.

While experimental study can help reveal about which as-
pects in these protocols are more important than others, we
notice that what we are looking for could very well be buried
deep under the vast amount of experimental data. Thus we
start by first systematically investigating and comparing the
asymptotic overhead of these protocols, with respect to then

UPE [11] –
EZB [12] O( 1

ǫ2 log n)
LOF [15] O( 1

ǫ2 log n)
FNEB [8] O( 1

ǫ2 log n)
Enhanced FNEB [8] O( 1

ǫ2 + log n)
PET [23] O( 1

ǫ2 log log n)
ART [17] O( 1

ǫ2 + log n)
ZOE [24] O( 1

ǫ2 + log log n)

Table 2: Asymptotic Overhead of Single-Set Protocols

andǫ. Interestingly, as we will soon see, such a simple inves-
tigation already sheds much light onto the question.

It is worth noting that such a systematic comparison of
the asymptotic behavior has never been done before: The
end-to-end performance of some protocols [11, 17] has not
been formally analyzed, while the performance of other proto-
cols [8,12,15,23] has been analyzed and presented in a rather
detailed form. These more precise but complex forms unfor-
tunately prevent a direct comparison across the protocols and
bury the key insights we are searching for.

Asymptotic overhead of single-set RFID counting proto-
cols.
UPE [11] and ART [17] do not come with end-to-end overhead
analysis. We find that the estimator used by UPE is biased,
hence UPE cannot be used whenǫ is small. This is consis-
tent with the findings by the original authors of UPE in their
follow-up work [12] and will be validated by our experiments
in Section 7.3. We have analyzed ART by ourselves, which
shows that it usesO(log n) slots in the first phase andO( 1

ǫ2 )
slots in the second phase. This implies a total overhead of
O( 1

ǫ2 +log n). For space limitation, we leave the full analysis,
which is straightforward and uses rather standard approaches,
to the Appendix B.

The other existing protocols, i.e., EZB [12], (enhanced)
FNEB [8], LOF [15], PET [23], and ZOE [24], all come with
detailed analysis on the number of slots needed. Here all we
do is to simplify their more precise results to asymptotic forms
(with adaption to our formulation when necessary), for later
comparison. More details about these protocols can be found
in the Appendix B.

Table 2 summarizes the asymptotic overhead of these
single-set RFID counting protocols. At this point, it is clear
that the protocols have either additive overhead or multiplica-
tive overhead. Additive overhead is obviously lower, and it
comes from a conceptual separation of two phases in these
protocols, with the first phase takingO(log n) or O(log log n)
slots and the second phase takingO( 1

ǫ2 ) slots. Thelog n
and log log n term are about16 and4 respectively, forn =
100, 000. (Whenn is small, almost all known protocols can
complete fast, so further improvement is less interesting.) Un-
less the hidden constant in a multiplicative overhead proto-
col is comparably smaller, additive overhead protocol willbe
more efficient. Our experiments in Section 7 will show that
this is indeed the case.

Bring our lower bound from Section 3 into the picture
makes this key observation even clearer. There we proved that
it is impossible to reduce the overhead of a single-set RFID
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counting protocol too( 1
ǫ2 log 1

ǫ

+log log n). Now it is clear that

Θ(log log n) slots are for the first phase, while the remaining
Θ( 1

ǫ2 log 1
ǫ

) slots are for the second phase.

Our thesis. Our observations above lead us to conjecture the
following thesis, which will be validated in the remainder of
this paper:

The key design aspect for single-set RFID counting pro-
tocols to achieve near-optimal performance is to have two
phases, where the first phase uses roughlyΘ(log log n)
slots to obtain a rough estimate with constant (e.g.,
0.5) relative error, and the second phase uses roughly
Θ( 1

ǫ2 log 1
ǫ

) slots to eventually obtain a final estimate with

the desired relative error ofǫ. Furthermore, other tech-
niques/ideas proposed in the literature are only of sec-
ondary importance.

While this thesis is almost obvious from our discussion so
far, somewhat surprisingly, it has never been identified by
any of the previous efforts (including the concurrent work on
ZOE [24]). Instead, existing protocols often overlook the two-
phase design and often attribute their improvements to a di-
verse set of design aspects other that the two-phase design.
Our thesis implies that all the following design aspects, em-
phasized by previous efforts, are far less important than origi-
nally thought:
• using various novel statistical quantities to do the estima-

tion (such as using the average run length in ART [17]
and using the index of the first non-empty slot in
FNEB [8]);

• using an iterative process to refine the estimation over
many iterations (such as in UPE [11] and enhanced
FNEB [8]);

• using complex optimization techniques to tune various
parameters (e.g., to trade off the trial length with the num-
ber of trials as in EZB [12], FNEB [8], and ART [17]);

• using a single slot in each trial as in ZOE [24].

Generalizing to multiple-set RFID counting protocols.We
naturally generalize our thesis to the multiple-set setting:
There the protocol should have two phases at each loca-
tion i for 1 ≤ i ≤ k, where the first phase uses roughly
Θ(log log ni) slots to obtain a rough estimate, and the second
phase uses roughlyΘ( 1

ǫ2 log 1
ǫ

) slots.

Existing multiple-set RFID counting protocols4 (EZB,
FNEB5, LOF6, and PET) all focus on other aspects of the
protocol instead of having the above two phases, and incur
multiplicative overhead. Specifically, EZB, LOF, and FNEB
all incur O( k

ǫ2 log(
∑k

i=1 ni)) overhead, while PET incurs

O( k
ǫ2 log log(

∑k
i=1 ni)) overhead.

Such multiplicative overhead contrasts sharply with the addi-
tive overhead of our new SRCM protocol (Section 7.2), which

4Other protocols are not for the multiple-set RFID counting problem.
Among those, ART only works for a simpler variant of the multiple-set prob-
lem (see Section 8).

5Enhanced FNEB no longer works in the multiple-set problem.
6Here LOF requires an upper boundx on the number of tags, and can no

longer end a trial when it sees the first empty slot.

has applied our thesis on the two-phase design. Hence in the
multiple-set setting, these previous efforts have not evenim-
plicitly applied our thesis.

6 Source of Performance Gain
— Two Case Studies

An ultimate way of validating our thesis is to see whether ap-
plying such a design principle enables new protocols that are
significantly better than existing ones. We will do so later in
Section 7. This section instead aims to provide direct and im-
mediate evidence to support our thesis, by carefully examin-
ing the source of performance gains in existing protocols. We
will focus on two recent protocols, ART [17] and enhanced
FNEB [8], as two prominent examples. As reviewed in Sec-
tion 4, ART uses the average run length of non-empty slots as
agaugefor estimation and attributes its performance gain over
prior protocols to this unique gauge. Similarly, the authors of
enhanced FNEB [8] consider the novel use of the first non-
empty slots as agaugebeing the key source of performance
gain.

We will show that quite surprisingly, in our experiments,
these two novel gauges do not necessarily improve the per-
formance of ART and enhanced FNEB: Replacing these two
novel gauges with a simple gauge (i.e., the number of empty
slots in balls-and-bins trials) from the earlier EZB proto-
col [12] either improves the performance or provides compa-
rable performance in our experiments. We further show that
the actual source of performance gains in these two protocols
is their (implicit) two-phase design, despite that such a two-
phase design was not considered as the key.

6.1 Source of Performance Gain in ART

For all experimental results presented in this section, we use
n = 100, 000 and a constantδ = 0.2 unless otherwise men-
tioned — we have performed extensive experiments under
other settings (e.g., with smallern) and observe similar trends
(see Appendix F). Our evaluation in this subsection adopts
the same setting as the original ART paper [17]. Specifically,
we assume that each slot takes0.3ms, and each trial incurs an
additional overhead of1ms.

ART outperforms EZB. To identify the source of perfor-
mance gain in ART [17], for clarity, we focus on ART’s per-
formance gain when compared with a specific prior protocol
EZB [12]. As a sanity check, we first perform experiments to
see whether ART indeed outperforms EZB, as claimed in [17].
Figure 2 summarizes our experimental results, showing the
amount of time needed for ART and EZB to achieve a cer-
tain target relative errorǫ. Consistent with [17], we observe
that ART significantly outperforms EZB — more than200%
faster.

ART’s novel gauge and ART’s performance.Next we pro-
ceed to test whether this performance gain comes from ART’s
novel run length based gauge. To do so, we keep everything
else unmodified in ART except that we replace ART’s novel
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errorǫ underδ = 0.2.

ART
Revised
ART

With 2000 time slots:
Var(gauge) 0.080 4.8

Var(n̂)
12
×106

8.0
×106

With 4000 time slots:
Var(gauge) 0.045 2.4

Var(n̂)
7.0
×106

3.9
×106

Table 3: Variances of gauges
and estimates under ART
and revised ART.
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run length based gauge with the old gauge in EZB. This old
gauge in EZB is based on the number of empty slots. We call
this protocol as the revised ART. If the run length based gauge
were indeed the source of ART’s performance gain, the revised
ART should perform significantly worse than ART. Quite sur-
prisingly, as shown in Figure 2, the revised ART actually out-
performs the original ART.

Resolving the contradiction. To resolve such contradiction
with the claims from [17] that ART’s novel gauge is the source
of performance gain, we trace back and examine the reasoning
in that work. There the authors [17] compare the variance of
ART’s average run length based gauge with the variance of
other old gauges, including the gauge in EZB (and hence the
gauge in revised ART). They show that the variance of ART’s
gauge is smaller, leading to the conclusion that ART’s gauge
is the source of performance gain. Again as a sanity check,
we examine the variance of ART’s gauge and EZB’s gauge as
observed in our experiments. Consistent with [17], we also
observe that ART’s gauge has smaller variance (Table 3). On
the other hand, however, we find that smaller variance of a
gauge does not necessarily translate to better accuracy of the
final estimate. Table 3 also presents the variance of the final
estimate as generated by ART and revised ART (which uses
EZB’s gauge). Despite ART’s gauge has smaller variance than
EZB’s, the variance of ART’s final estimate is actually larger
than that of revised ART’s final estimate. Note that this is
consistent with the better performance of revised ART as we
observed in Figure 2.

The fundamental reason behind these results is that in order
for the final estimate to have better accuracy, the gauge needs
to not only have small variance but also besensitiveto the
count. In other words, under different number (n) of tags,
the value of the gauge should ideally be very different. This
ensures that we can easily differentiate differentn even if the
value of the gauge is a bit off from its expectation. In fact,
if we were not concerned with such sensitivity, it would be
trivial to design a gauge with zero variance: We simply let the
value of the gauge always be a constant regardless of whatn
is. Clearly such gauge cannot be used to accurately estimaten.
Hence the reason that the variance of ART’s final estimate is
larger is exactly that ART’s gauge is less sensitive than EZB’s.
Intuitively, such insensitivity can even be partly observed from

the fact that under practical parameters, the value of ART’s
gauge has a smaller domain that EZB’s.

The actual source of performance gain.It will shed much
light onto the problem if we view the revised ART protocol
from a different perspective. Namely, one can alternatively
view the revised ART protocol as a variant of the EZB protocol
— the only main difference between these two is that EZB
does not have a rough estimate from a first phase. Thus EZB
has to divide the possible domain forn into O(log n) narrow
ranges and process them sequentially. In comparison, revised
ART has a rough estimate from its first phase to identify the
correct range to process.

Hence one can view revised ART as adding a first phase to
EZB. This implies that the performance gain of revised ART
over EZB comes from having two phases as suggested by our
thesis. In turn, this is also the source of the performance gain
in ART.

6.2 Source of Performance Gain in Enhanced
FNEB

Using the same approach as above, we continue to examine
the source of the performance gain of enhanced FNEB [8] over
EZB. Here our evaluation adopts the same setting as [8], where
each slot still takes0.3ms (as in [17]) but there is no per-trial
overhead. As shown in Figure 3, our experiments first confirm
that enhanced FNEB significantly outperforms EZB. To test
whether this performance gain comes from FNEB’s unique
first non-empty slot gauge, we revise the enhanced FNEB by
using EZB’s gauge in its second phase while keeping all other
design in enhanced FNEB unchanged. Our revised version of
enhanced FNEB provides comparable performance as the en-
hanced FNEB (specifically, our revised protocol outperforms
enhanced FNEB slightly by around6%), showing that FNEB’s
novel gauge does not necessarily improve its performance.

The original authors of (enhanced) FNEB [8] attribute the
performance gain to their novel gauge, because they believe
that such gauge enables (enhanced) FNEB to end a trial as
soon as it sees the first non-empty slot and thus reduces the
number of slots per trial. While this is obviously true, the total
overhead of a protocol also depends on the number of trials
needed. For example, whenδ = 0.2, to achieveǫ = 0.01,
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enhanced FNEB uses on average around2 slots per trial but
it needs to invoke around16, 000 trials. To achieve the same
estimation quality with EZB’s gauge, each trial uses242 slots
and only around120 trials are needed. Hence the total number
of slots needed by EZB’s gauge is comparable to that needed
by FNEB’s gauge.

Exactly as in the case of revised ART, here one can alterna-
tively view the revised version of enhanced FNEB as adding
a first phase to EZB. This directly leads to our conclusion that
the actual source of the performance gain in enhanced FNEB
is having two phases as suggested in our thesis.

7 Designing Better RFID Counting
Protocols

Guided by our thesis in Section 5, this section aims to design
new RFID counting protocols that are more efficient than ex-
isting ones and also simultaneously simpler than most of them.
We will design our protocols by simply putting together var-
ious basic building blocks in the literature. We donot claim
novelty on these building blocks – instead, we aim to show that
simply putting them together in aproper manneras guided by
our thesis is already sufficient to outperform existing proto-
cols. This serves as an ultimate validation of the utility ofour
thesis.

7.1 SRCS: Our Simple RFID Counting
Protocol for Single-Set

For single-set RFID counting, our thesis suggests that the pro-
tocol should have two conceptual phases, the first one does a
rough estimation, while the second one generates the final esti-
mate. When designing these two phases, we will use as simple
building blocks as possible. This is because: i) more complex
designs tend to have larger hidden constants, and ii) our thesis
indicates that other performance tricks only have minor effects
in further improving performance.

Our SRCS protocol. Algorithm 1 summarizes the main steps
of our SRCS protocol. The first phase of our SRCS proto-
col is exactly the same as the simple LOF protocol [15] as
reviewed in Section 4. Recall that LOF does a sequence of
independent trials with each trial usingO(log n) slots. For
δ = 0.2, our protocol invokes LOF to do10 trials, using total
O(log n) slots. It then uses LOF’s output as the rough esti-
mateñ. By LOF’s analysis [15],̃n’s relative error is below
0.5 with at least 9

10 probability. Given such ãn, the second
phase of SRCS (as we will soon describe) guarantees to out-
put an estimatên of relative error belowǫ with probability of
8
9 . Combining the guarantees from these two phases ensures
that n̂’s relative error is belowǫ with probability of 9

10 × 8
9 ,

which corresponds toδ = 0.2. To achieve aδ smaller than
0.2, one can sequentially invokem (m being some odd inte-
ger) independent instances of Algorithm 1 and then take the
median of their outputs as the final output. Asymptotically,
it is well-known thatm = O(log 1

δ ) suffices [14]. Obtain-
ing a concrete value ofm for a certain targetδ is not hard:
Each instance of Algorithm 1 has1 − 0.2 = 0.8 probability

Algorithm 1 Our SRC S protocol (for δ = 0.2)
1: Invoke LOF with10 trials to get̃n;
2: Start a balls-and-bins trial of lengthl, and let each tagpar-

ticipate in the trialwith probabilityp = min{1, 1.6l/ñ};
3: Count the number of empty slotsz in the trial;
4: Outputln(z/l)/ ln(1 − p/l).

to generate a “good” result with at mostǫ relative error. For
the median to have at mostǫ relative error, it suffices to have
at least(m + 1)/2 good results among them results. With all
instances being independent, we simply pick the smallestm
such that

∑m
i=(m+1)/2

(

m
i

)

×0.8i×0.2m−i ≥ 1−δ. Sincem is

usually small (e.g.,m only needs to be41 even forδ = 10−5),
the value ofm can be trivially determined via brute-force cal-
culation.

The second phase of SRCS simply consists of a single trial
with l slots, and each tag participates in this trial (i.e., responds
in a uniformly random slot in the trial) independently with
probability p. We will explain the two parametersl and p
later. The expected fraction of empty slots in this trial will
thus be(1 − p/l)n. Our protocol determines the observed
number of empty slots in this trial, denoted byz. Obvi-
ously, z directly carries information aboutn. The protocol
finally generates the final estimaten̂ by solving the equation
(1 − p/l)n̂ = z/l, which leads tôn = ln(z/l)/ ln(1 − p/l).
The second phase of our protocol is rather similar to subpro-
cedures used in UPE [11] and EZB [12]. The only (minor)
difference is that we further simplify the design and use a sin-
gle trial instead of doing multiple trials. This simplification
actually also slightly improves our performance: By putting
all slots into the same trial, whether a slot is empty becomes
negatively correlated with each other. Such negative correla-
tion makes the total number of empty slots concentrate better
near its expected value.

The parameterl is uniquely determined by the target rela-
tive error ofǫ, and there are two ways to do so. The first ap-
proach is to setl = 65

(1−0.04ǫ)2 , which isO( 1
ǫ2 ) (see the proof

of Theorem 5 in the Appendix D.3, where we have proved that
suchl is sufficiently large).The second approach is to directly
construct a numerical lookup table. This lookup table is con-
structed by running the algorithm under a wide range ofn val-
ues, and then observing thel needed to achieve a certainǫ. See
Appendix C for a sample table. Between the two approaches,
since mathematical analysis is often a loose approximation, in
practice, using a lookup table usually offers superior perfor-
mance. The parameterp is set to bemin{1, 1.6l/ñ}, so that
the expected number of tags responding is on the same order
as l. The constant1.6 here provides the best estimation per-
formance (see analysis in [11,12]).

The following theorem summarizes the end-to-end guaran-
tee of our SRCS protocol, whose proof is in the Appendix D.2:

Theorem 5. Our SRCS protocol outputs an(ǫ, 0.2) estimate
with O( 1

ǫ2 + log n) overhead.

Incurring O(log log n) slots in the first phase. The first
phase of the design above incursO(log n) slots. It is possi-
ble to use onlyO(log log n) slots by using a revised version
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of PET protocol [23] instead.As reviewed in Section 4, PET
does a sequence of independent trials. In each trial, each tag
randomly chooses a positive integer according to a geometric
distribution. Given a proper upper boundx (from the end user)
onn, PET uses a binary search over[1, logx] to find the maxi-
mumj′ such that there exists some tag choosingj′. Hence the
number of slots incurred in PET for each trial isO(log log x).
It is possible forx to be much larger thann, in which case this
will still not give usO(log log n) complexity. To always have
O(log log n) complexity, we slightly modify PET so that the
user does not inputx: In each trial before the binary search,
the protocol uses some extra slots. In theith extra slot, tags
that have chosen an integer larger than or equal to2i−1 will re-
spond. This process stops once the protocol observes an empty
slot. Let the correspondingi in this empty slot bey. Next the
protocol does a binary search as before, except that now the
binary search is done over[1, 2y−1] instead of[1, log x]. This
binary search will take anothery slots at most. It can be easily
shown thaty = O(log log n) on expectation. Hence the total
overhead will beO(log log n) slots. See Appendix C for more
details and the pseudo-code.

Under practical settings, however, the overhead for the sec-
ond phase usually dominates and such improvement will be
negligible. But we will need this revised PET later in our
multi-set protocol.

7.2 SRCM : Our Simple RFID Counting
Protocol for Multiple-Set

For multiple-set counting, our thesis suggests that the protocol
should have two conceptual phases at each locationi for 1 ≤
i ≤ k. We will focus on achieving the two phases in a simple
way.

Protocol intuition. Recall that SRCS conceptually works by
throwingnp (on expectation) balls uniformly randomly intol
bins. The value ofn can then be inferred from the fraction
of empty bins. We would like to design SRCM in a similarly
simple way, i.e., by throwingnp balls (on expectation) intol
bins, wheren is the total number of tags in all sets (if there
is no overlapping between sets,n = n1 + n2 + . . . + nk).
The value ofl can still be determined byǫ and our Theorem 6
later shows thatl = O(1/ǫ2). Imagine for now that magically,
we can also properly setp to bemin{1, 1.6l/ñ}, whereñ is
a rough estimate forn with constant relative error. With such
value forp, the problem becomes trivial: At each location,
the protocol simply does a balls-and-bins trial with participa-
tion probability ofp, so that on expectation there arenp balls
in total. The protocol records the outcome at each location
and merges these results for producing a final estimate. The
merging is done by considering a bin occupied as long as it is
occupied in any of thek locations. Note that this already takes
care of potential overlaps between thek sets – as long as we
use the same random seed when doing these experiments, the
same tag will always be hashed into the same bin, even if it
appears in multiple sets.

So far we have assumed that the protocol can properly setp.
However in the multiple-set setting, the protocol seesS1, S2,
..., Sk sequentially and it is not possible to obtainñ until the
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Figure 4: An example run of SRSM with two reader loca-
tions: Each column corresponds to a bin (note that the same
bins appear at both locations), and each row corresponds to a
participation probability. A filled (non-filled) rectanglemeans
an occupied (non-occupied) bin. At a given location, once a
bin becomes non-occupied at a certain participation probabil-
ity, there is no need to further examine smaller probabilities
for this bin. In this example, the second phase of SRSM starts
at the participation probability of1 and 1

2 respectively at the
first and the second location. SRCM eventually merges the
outcomes at the participation probability of1

2 from the two
locations to estimate|S1 ∪ S2|.

last location. Observe however that at locationi, the protocol
can easily get a rough estimateñ′

i for the size ofS1∪S2 . . .∪Si

(by merging all the first phase results up to locationi). Define
pi = min{1, 1.6l/ñ′

i} and we obviously havepi ≥ p (note
thatpk = p). Next note that these values ofp andpi do not
need to be accurate, since the rough estimate is rough in the
first place. Hence let us assume, without loss of generality,
that they are both in the form of1/2x for some integerx. If
not, we simply round them to the nearest value with such a
form. When the reader finishes the first phase for theith set,
it knows pi but notp. Conceptually for setSi, the protocol
will do the balls-and-bins trial with participation probabilities
pi,

pi

2 , pi

4 , pi

8 , ..., and so on. This ensures that one of the
participation probability will equalp, regardless of whatp is.
After processing all sets, we can then decide the proper value
of p and use the combined result for the corresponding trial to
obtain the final estimate.

Naively doing the above trials with the infinite sequence of
participation probabilities will result in infinite overhead. One
can easily make things correlated to avoid this: For each par-
ticipation probability except the first one, a tag flips a faircoin
and participate iff the coin flip result is head and the tag par-
ticipated in the previous participation probability. Thiswould
mean that in this sequence, a tag will keep participation, and
then stop participating after a certain probability. In turn, this
means that for a given bin in this sequence of experiments,
it will initially be occupied and then will never be occupied
again after a certain participation probability (Figure 4). This
enables the protocol to do the following: Instead of checking
all bins for a given probability, the protocol iterates through
the bins. For each bin, the protocol checks whether it is oc-
cupied, for all the probabilities in the sequence. Note thatthe
protocol can stop once the bin becomes empty. The rough es-
timate from SRCM ’s first phase ensures that its second phase
sees a constant number of balls in each bin on expectation.
From the mean of geometric distributions, one can easily see
that on average, it only needs to move down the sequence of
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participation probabilitiesO(1) steps for a given bin to be-
come empty. Hence the total number of slots needed is just
O(1) · l = O( 1

ǫ2 ).7

Algorithm 2 Our SRC M protocol (for δ = 0.2)
1: Each tag uniformly randomly chooses a bin out ofl bins,

and chooses a positive integery according to a geometric
distribution with mean of2;

2: Initialize A to an array ofl elements with values of−1.
A[j] will record the largesty chosen by a tag in thejth
bin;

3: for each setSi do
4: Invoke revised PET with30 trials, and merge its out-

come with previous revised PET outcomes to get a
rough estimatẽn′

i for the size ofS1 ∪ S2 . . . ∪ Si;
5: Find an integer x that minimizes |1/2x −

min{1, 1.6l/ñ′
i}|;

6: for j = 1 to l do
7: h = x;
8: while truedo
9: Let all tags in thejth bin withy ≥ h respond;

10: if (See a non-empty slot)then
11: A[j] = max{A[j], h};
12: h = h + 1;
13: else
14: Break;
15: end if
16: end while
17: end for
18: end for

19: Consider thex used for the last set and letz be the number
of elements inA with value no less thanx;

20: Outputln(z/l)/ ln(1 − 2−x/l).

Our SRCM protocol. Our SRCM protocol implements the
above intuitions. Algorithm 2 summarizes the main steps of
our SRCM protocol (forδ = 0.2). To achieve aδ smaller than
0.2, exactly as for SRCS , one only needs to sequentially in-
voke multiple independent instances of Algorithm 2 and then
take the median result. See Section 7.1 for how to determine
the number of instances needed. For the parameterl, the only
difference between SRCM and SRCS is that the participation
probability used in SRCM needs to be rounded to the form of
1/2x. Taking this into account, we can either mathematically
setl = 205

(1−0.013ǫ)2 , which isO( 1
ǫ2 ) (see the proof of our Theo-

rem 6 in the Appendix D.3), or find its value from a numerical
lookup table. The lookup table is constructed by running the
algorithm under a wide range ofn values and then observing
the l needed to achieve a certainǫ. Note thatl does not de-
pend on the number of sets and how the sets overlap (see more
detailed reasoning in the Appendix D.3), one only need to run
the algorithm against a single set.

7A less efficient design would be to iterate through the sequence of par-
ticipation probabilities. For each probability, one checks all bins. The pro-
cess stops if all bins are empty. Such a design would need on expectation

O(
log(1/ǫ)

ǫ2
) slots.

Given l, each tag determines which bin it will choose, and
also the smallest participation probability for which it will still
participate.At locationi, our SRCM protocol has two phases.
For a constantδ = 0.2, thefirst phase invokes the revised PET
protocol (with30 trials), which was described at the end of
Section 7.1. This incurs totalO(log log ni) slots.SRCM then
merges all the first phase results it sees so far to get a rough
estimatẽn′

i for the size ofS1 ∪ S2 . . . ∪ Si. Such merging is
possible since PET, and therefore the revised PET, is able to
do multiple-set RFID counting. By PET’s analysis [23], the
relative error ofñ′

i is below0.5 with at least 9
10 probability.

The second phase now determinespi based oñn′
i in exactly

the same way as in our SRCS protocol. We then roundpi to
the nearest1/2x for some integerx. The protocol then iterates
through thel bins. For each bin, the protocol uses a sequence
of slots, which corresponds to participation probabilities pi,
pi

2 , pi

4 , ... For each slot, those tags who select this bin and
still participate at the current participation probability will re-
spond. The protocol records all such information and stops
once an empty slot is observed. It then proceeds to the next
bin.

At the last (kth) location, SRCM can merge the first phase
results from all thek sets to obtain a rough estimate for the
size of the union of allk sets, and it can compute a proper par-
ticipation probabilityp based on this rough estimate. By our
design, SRCM must have collected the information regarding
whether each bin is empty underp for every location. SRCM
then combines such information by setting a bin to be empty
iff it is empty in all sets (see Figure 4). Letz denote the num-
ber of empty bins in the combinedl bins, SRCM generates the
final estimatên by solving the equation(1 − p/l)n̂ = z/l.
See the Appendix D.3 for the proof for the following theorem
about the end-to-end guarantee of our SRCM protocol:

Theorem 6. Our SRCM protocol outputs an(ǫ, 0.2) estimate
with O(

∑k
i=1(

1
ǫ2 + log log ni)) overhead.

7.3 Evaluation Results

We conduct extensive simulations to compare the overhead of
our protocols against all major existing protocols in the lit-
erature, including UPE, EZB, (enhanced) FNEB, LOF, PET,
ART, and ZOE. As in Section 6, we consider a constant
δ = 0.2 to simplify our discussion — we observe similar
trends under all other values ofδ. When comparing the perfor-
mance of these protocols, for each experiment, we first choose
a time budget, then we simulate the protocols and observe their
achieved relative errorǫ given such budget (i.e., overhead).
This evaluation methodology is also taken by recent prior
work [24]. An alternative evaluation methodology would be
to compare the overhead of different protocols when achieving
the same targetǫ. We do not take this method since for several
two-phase protocols (e.g., [17,24]), when they mathematically
decide the number of slots needed in their second phase, they
assume a perfect estimate from their first phase. Since the es-
timate from the first phase is only a rough estimate, following
their calculation will actually achieve a relative error that is
somewhat larger than the targetǫ. This will make the com-
parison inconsistent across the protocols. Unless otherwise
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Figure 5: Overhead of single-set
protocols (n = 10, 000).
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Figure 7: Overhead of multiple-set
protocols (n = 100, 000 andk = 10).

mentioned, all our experiments use the following parameters
derived from EPCglobal C1G2 standard [6]: a slot in UPE
takes0.8ms8, a slot in all other protocols takes0.4ms, and for
all protocols each trial incurs an extra overhead of1ms.

Comparing SRCS with existing single-set protocols.Fig-
ure 5 and Figure 6 present the overhead of our SRCS protocol
against the overhead of existing single-set RFID counting pro-
tocols, for tag count of10, 000 and100, 000 respectively. As
shown in the figures, SRCS is significantly (more than1000%)
faster than EZB, PET, and LOF. This is because asymptot-
ically SRCS incurs additive overhead while EZB, PET, and
LOF all incur multiplicative overhead (see Section 5). SRCS

is at least100% faster than ART, ZOE, and enhanced FNEB
(eFNEB for short in the figures) in all of our settings. The dif-
ference between SRCS and these three protocols is relatively
moderate, since all of them incur additive overhead. For each
of them: SRCS is faster than ART, partly because the novel
gauge used by ART does not perform as well as the simpler
gauge used by SRCS (see Section 6), and partly because the
quality of the rough estimate in ART is overly low. SRCS is
faster than ZOE for the following two reasons. First, recall
that ZOE uses a single slot for each trial, while SRCS puts
all its slots in the second phase into a single trial. Therefore
for the second phase of SRCS , whether a slot is empty be-
comes negatively correlated with each other. Such negative
correlation makes the total number of empty slots concentrate
better near its expected value and thus provides higher esti-
mation equality, as compared to a design using independent
slots like ZOE. Second, each slot in ZOE needs to incur per-
trial overhead since each of them corresponds to an individual
trial, while the per-trial overhead is incurred much less often
in SRCS . For enhanced FNEB, recall that each of its trials
also only uses a small number of slots. Therefore, the same
two reasons that explain why SRCS is faster than ZOE also
apply here. In addition, the quality of the rough estimate in
enhanced FNEB is also lower than desirable.Finally, our re-
sults show that UPE cannot support relative errorǫ < 0.03 due
to its biased estimator. This is consistent with the findingsby
the original authors [12].

As we see, the overhead difference between SRCS and
some existing protocols is partly due to the existence of per-
trial overhead. To understand how significant this factor is,
we have further compared the protocols when there is no per-

8UPE requires a tag to send more bits in a slot to detect collision.

trial overhead. We find SRCS continues to have the lowest
overhead among all protocols. For example, whenǫ = 0.01,
SRCS is 20% to 100% faster than the most efficient existing
protocol, i.e., ZOE. See detailed results in the Appendix F.

Comparing SRCM with existing multiple-set protocols.
Figure 7 presents the overhead of our SRCM protocol against
existing multiple-set RFID counting protocols. We perform
extensive experiments under different values ofn andk, as
well as different ways that the sets overlap with each other.
Since they all show similar trends, Figure 7 presents a concrete
setting, where a total ofn = 100, 000 tags (with index from1
to 100, 000) are distributed overk = 10 overlapping sets.For
i = 1, . . . , 9, theith set is comprised of11, 000 tags with in-
dex from(i−1)×10000+1 to i×10000+1000. The last set is
comprised of10, 000 tags with index from90001 to 100000.
In this setting, our SRCM protocol is around500% faster than
the most efficient existing multiple-set protocol, i.e., PET. In
particular, while all existing protocols require more than10
minutes to provide an estimate with relative errorǫ of 0.01, our
SRCM protocol can achieve the same estimation quality in2
minutes. The significant difference between SRCM and exist-
ing multiple-set protocols is mainly because asymptotically all
existing multiple-set protocols incur multiplicative overhead,
while SRCM incurs additive overhead (see Section 5).

Same to the single-set experiments, the overhead of
multiple-set protocols partly comes from the per-trial over-
head. To understand the significance of this factor here, we
again evaluate a setting without per-trial overhead. We find
that SRCM continues to be300% faster than the most efficient
existing protocol (see the Appendix F for details).

8 Variant Models

This section discusses some variants of RFID counting prob-
lem.

A simpler variant of multiple-set problem. Some re-
searchers (e.g., [17]) consider a simpler variant of the
multiple-set RFID counting problem, where multiple readers
jointly cover an area. These readers together count the to-
tal number of tags under their coverage. One can actually
solve this simpler variant of our multiple-set problem using
anysingle-set RFID counting protocol. Recall that a single-set
protocol specifies a predicate for each slot. Roughly speaking,
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all readers send the same predicate to their sets. Together the
readers return an empty slot to the single-set protocol iff every
reader sees an empty slot. Note that this takes care of potential
overlaps between sets, as long as a tag behaves identically for
the same predicate from different readers.

Capability to detect collision. Some protocols (e.g., [11])
assume a reader can further detect collision, i.e., whetherthere
are multiple tags responding in a non-empty slot. Though the
reader becomes more capable in this variant model, we can
still obtain a similarly strong lower bound result (with a small
log 1

ǫ difference) as our original model. See the Appendix E
for the proof.

Programmable tags vs. non-programmable tags.Same as
many recent research efforts on RFID systems (e.g., [8,15,19,
23, 24]), our SRCS and SRCM protocol target programmable
RFID tags that can run customized code. There have also been
research work (e.g., [17]) that focuses on non-programmable
RFID tags. These non-programmable tags can participate in a
protocol only via a pre-determined way (e.g., only via framed
slotted Aloha as specified in C1G2 [6]). We are currently
working on adapting SRCS and SRCM to non-programmable
tags. We already have initial designs for adapted SRCS and
SRCM , as well as promising preliminary results, though a full
discussion into the subject is beyond the scope of this paper.

9 Related Work

Section 4 already reviewed major related RFID counting pro-
tocols [8, 11, 12, 15, 17, 23]. Same as this paper, these ef-
forts all focus on improving the performance of RFID count-
ing. There have also been efforts that optimize other metrics
such as energy consumption [13]. In early days, researchers
(e.g., [9,22,25]) focus on efficient identification of RFID tags.
Obviously once all tags are identified, we will obtain an exact
count of the tags. But the inherentΩ(n) complexity makes it
impossible for large-scale RFID systems.

There are deep connections between RFID counting proto-
cols and algorithms for counting the number of distinct ele-
ments in a data stream [10]. One can conceptually map a slot
in RFID counting protocols to a memory bit in distinct ele-
ment counting algorithms. Existing RFID counting protocols
(including ours) have borrowed multiple ideas from distinct
element counting algorithms (e.g., [7, 20]). These ideas in-
clude for example, the use of duplicate-insensitive statistical
quantities to deal with the possible overlapping between sets in
multiple-set RFID counting [8]. Furthermore, reduction from
the Hamming Distance Estimation problem has also led to
lower bounds on the memory space needed by distinct element
counting algorithm [5]. Despite these deep connections, RFID
counting and distinct element counting also have some funda-
mental differences. First, a memory bit in distinct element
counting can be overwritten multiple times. A slot in RFID
counting, however, can only be used once. Hence a distinct
element counting technique that overwrites the same memory
multiple times cannot be carried over directly to RFID count-
ing. Second, RFID counting can have multiple passes/phases,
while distinct element counting for data streams cannot.

10 Conclusion

In summary, we present three fundamental results about RFID
counting protocols: We establish strong lower bounds for both
the single-set and multiple-set problem. We show that the
overlooked key aspect for RFID counting protocols is a con-
ceptual separation of a protocol into two phases. Furthermore,
other techniques/ideas proposed in the literature are onlyof
secondary importance. Finally, we apply the obtained insights
to design new protocols that are more efficient than existing
ones and also simultaneously simpler than most of them. We
hope that our results will help facilitate future research in this
subject.
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A Lower Bound Proofs (for Section 3)

A.1 Single-set Lower bound proof

To prove the lower bound for single-set RFID counting proto-
cols in our Theorem 1, we show that given a protocolP that
can output an(ǫ, 0.2) estimate, we can construct a communi-
cation protocol that solves theHamming Distance Estimation
(HDE) problem. Recall that HDE is a two-party communica-
tion complexity problem, where the two parties Alice and Bob
are givenm-bit stringsx andy as input respectively. They
would like to estimate the hamming distance betweenx andy,
denoted by△(x, y), with (ǫ, δ) estimation quality. Then we
can use the fact that the constructed HDE communication pro-
tocol must comply to the HDE lower bound to get our result.

Before proving Theorem 1, we firstly show the lower
bound of the HDE communication complexity in the follow-
ing lemma. Here we simply translate a recent breakthrough re-
sult by Chakrabarti and Regev [5], which considers a boolean
version of the HDE problem called Gap Hamming Distance
(GHD). In GHD (as compared to HDE), Alice and Bob are
further given the promise that either△(x, y) ≥ m

2 +
√

m or
△(x, y) ≤ m

2 −√
m. They should output 1 iff△(x, y) satis-

fies the first inequality. Chakrabarti and Regev [5] prove that
no protocol can solve GHD by communicatingo(m) bits, even
for randomized protocols that are allowed to err with some
small constant probability (e.g., 1/3) on each input.

Lemma 7. No protocol can solve HDE (parameterized with
m, ǫ, andδ) by exchangingo(m) bits, forǫ < 2√

m
andδ = 1

3 .

Proof. We prove by contradiction. Assume there is a ran-
domized protocol that solves HDE forǫ < 2√

m
and δ =

1
3 while exchangingo(m) bits, we show that this random-
ized protocol can be directly used to solve GHD. In partic-

ular, this protocol returns an estimatê△(x, y) that satisfies

|△̂(x, y)−△(x, y)| ≤ ǫ△ (x, y) with probability≥ 2
3 . When

this holds, if△(x, y) ≤ m
2 −√

m:

△̂(x, y) ≤ (1 + ǫ) △ (x, y) ≤ (1 + ǫ)(
m

2
−√

m) (1)

otherwise,△(x, y) ≥ m
2 +

√
m, thus:

△̂(x, y) ≥ (1 − ǫ) △ (x, y) ≥ (1 − ǫ)(
m

2
+

√
m) (2)

Sinceǫ < 2√
m

,

(1 + ǫ)(
m

2
−√

m) < (1 − ǫ)(
m

2
+
√

m) (3)

Alice and Bob can solve the GHD problem (with err
probability less than13 ) by picking a threshold between the

two values in Equation (3) and outputting 1iff △̂(x, y) is
above the threshold. This contradicts with the GHD lower
bound [5].

Proof for Theorem 1. Consider the HDE problem withm =
⌈ 1

ǫ2 ⌉. Note thatm = ⌈ 1
ǫ2 ⌉ leads toǫ < 2/

√
m, thus lemma 7
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applies here. Also, the conditionǫ ∈ [ 1√
n
, 0.5] given in the

theorem leads to1 < m ≤ n.
Given any single-set RFID counting protocolP that can es-

timate up ton tags with(ǫ, 0.2) estimation quality, Alice and
Bob can solve HDE by simulatingP on an RFID counting
problem input defined as follows: fori = 1, 2, . . . , m, tagi is
present and need to be included in the count iff thex[i] 6= y[i].
All other tags are absent and will not be included in the count.
This will make the RFID count to exactly equal the hamming
distance betweenx andy. Thus if Alice and Bob can simulate
P andP returns a result with relative error no greater thanǫ,
they can directly use the same result to solve the original HDE
problem with relative error no greater thanǫ.

Now to properly simulate the execution ofP with those
present tags, Alice/Bob needs to determine which slots in the
simulated execution ofP are empty. Doing so enables Al-
ice/Bob to simulate the responses received in all these slots
and feed those intoP to obtain the final count. For each slot,
we will show that Alice and Bob can determine whether it is
empty by only exchangingO(log 1

ǫ ) bits. Consider the first
slot. P must have specified a predicatef for the first slot.
Assume Alice and Bob have access to a shared random string
needed to determine this predicate (we will release this as-
sumption later). Alice/Bob can thus locally determine the set
of tags that satisfyf , denoted by{i1, i2, . . . , ij}. Next Al-
ice computes a short fingerprint ofh bits for the (potentially
long) string ofx[i1]x[i2] . . . x[ij ] and sends it to Bob. Bob
similarly computes the fingerprint overy[i1]y[i2] . . . y[ij] and
compares the two fingerprints. Bob uses one bit to inform Al-
ice about the comparison result. We will discuss how to select
the parameterh to properly address the fingerprint collision
problem later. For now let us assume there is no fingerprint
collisions. Then the two fingerprints differ iff for at leastone
index i that satisfiesf , x[i] 6= y[i]. This in turn is equivalent
to at least one tag being present, and also equivalent to the first
slot being non-empty. Alice and Bob now have successfully
determined whether the first slot is empty or not. Emptiness
of later slots can be sequentially determined in a similar way.

Let E denote the event that Alice and Bob correctly sim-
ulate allT slots used byP , and letE denote the event oth-
erwise. The simulated outcome for a slot becomes incorrect
iff the hash function maps two different input bit vectors to
the same value, which happens with probability1

2h for h-bit
fingerprints. By union bound:

Pr(E) ≤
T

∑

i=1

Pr(theith slot is incorrect) ≤ T

2h
(4)

Thus:

Pr(Alice/Bob solves HDE with relative error≤ ǫ)

≥ Pr(P ’s relative error≤ ǫ|E)Pr(E) ≥ 0.8(1 − T

2h
) (5)

Let h = ⌈log 6T ⌉ (log in this paper meanslog2):

Pr(Alice/Bob solves HDE with relative error≤ ǫ)

≥ 0.8(1 − 1

6
) =

2

3
(6)

Recall that Alice and Bob exchangeh + 1 bits for each of
the T slots used byP . Also, to release the assumption that
Alice and Bob have access to a shared random string, we ap-
ply the well known result that a shared random string proto-
col can be simulated by a private string protocol that uses an
extraO(log m) bits when the input hasO(m) bits (i.e., the
size ofx andy for HDE). Thus, given an(ǫ, 0.2)-approximate
protocolP , we can construct a protocol that solves HDE (for
ǫ < 2√

m
andδ = 1

3 ) while requiring Alice and Bob to com-

municateO(T (⌈log 6T ⌉+1)+ logm) = O(T log T + log 1
ǫ )

bits. If there exists an RFID counting protocolP with an
overhead ofo( m

log m ), i.e., on expectation,T = o( 1
ǫ2 log 1

ǫ

),

Alice and Bob can construct a communication protocol that
solves HDE while incurring a communication complexity of
o( 1

ǫ2 log 1
ǫ

log( 1
ǫ2 log 1

ǫ

)) + O(log 1
ǫ ) = o(m). This contradicts

with Lemma 7.

Proof for Theorem 2. Our proof uses Yao’s minimax princi-
ple [21], which states that distributional complexity provides a
lower bound for randomized complexity even for the case that
tolerates errors (see Theorem 3 in [21]). To invoke Yao’s min-
imax principle for randomized RFID counting protocols that
provide(ǫ, 0.2) estimation quality, we consider the expected
cost of deterministic protocols that provide(ǫ, 0.4) estimation
quality over the following input distribution.

Constructθ(log n) different inputs, with the number of
tags in theith input being4i for i = 1, . . . , ⌊log4 n⌋. As
ǫ ≤ 0.5, our construction ensures that given any two differ-
ent inputs, they cannot be approximated withinǫ-relative er-
ror by the same value. Consider an input distribution such
that each of these inputs appears with the equal probability.
Against this distribution, any deterministic protocol that pro-
vides (ǫ, 0.4) estimation quality needs to provide proper es-
timation over at least60% of possible inputs. Thus it needs
to outputθ(log n) different values. If a deterministic protocol
only useso(log log n) slots where each slot has only two pos-
sible outcomes, it can have at mosto(log n) different outputs,
which is not sufficient here. Therefore no deterministic proto-
col can haso(log log n) overhead while providing the(ǫ, 0.4)
estimation quality. From here, applying Yao’s minimax prin-
ciple leads to our result.

A.2 Multiple-set lower bound proof

We leverage our single-set lower bound to reason about the
lower bound for the multiple-set RFID counting problem. We
cannot direct apply our single-set lower bound here, as a
multiple-set RFID counting protocol is required to only esti-
mate the union size of all sets, and it can potentially optimize
its execution based on completed counting instances. Despite
of these differences, we are able to construct worst-case sce-
narios to prove that the multiple-set lower bound can be ex-
pressed as a direct sum of the single-set lower bounds over
individual sets.

Proof for Theorem 4. Consider any multiple-set protocolP
that provides(ǫ, 0.2) estimation quality. Letwi =

∑i
j=1 nj

and letŵi denote the estimate forwi. P needs to obtain an
(ǫ, 0.2)-approximate estimatêw1 for w1 (equivalentlyn1) at
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the first location. This is needed in case it sees empty sets at
all the following locations, i.e.,ni = 0 for i ≥ 2, which will
result in the union size being exactlyn1. Note thatP cannot
defer its estimation ofn1 to the moment when it visits more
locations, since the reader does not revisit a previous location.
Therefore, we can directly apply our single-set lower bound
(Corollary 3) to show that noP can useo( 1

ǫ2 log 1
ǫ

+log log n1)

slots at its first location.
For the second location, letn2 ≥ n1 and assume there is no

overlapping between the two sets. Apply the same reasoning
as earlier (i.e. considering the case that it sees empty setsat
all the following locations),P needs to obtain̂w2 with (ǫ, 0.2)
estimation quality forw2 at the second location. Given an
accuraten1 and such âw2, ŵ2−n1 is an(2ǫ, 0.2)-approximate
estimate forn2 sincen2 ≥ n1.

Let n2 vary over the range fromn1 to n2
1, we prove by con-

tradiction that noP can useo( 1
ǫ2 log 1

ǫ

+log log n1) slots at sec-

ond location. Assume there is such a protocolP , we will use
it to construct a single-set RFID counting protocolP ′ that op-
erates over the range of[0, n1] (with n1 known) and provides
(2ǫ, 0.2) estimation quality with onlyo( 1

ǫ2 log 1
ǫ

+ log log n1)

overhead. In its first slot,P ′ asks all tags to respond.P ′ com-
pletes by outputting0 immediately iff it sees an empty slot.
Otherwise, the tag count must fall in the range of[1, n1]. P ′

then asks every single tag to simulaten1 independent virtual
tags. This can be easily done by using specific forms of pred-
icate function. The number of all the virtual tags then falls
in the range of[n1, n

2
1]. To simulate a virtual tag, a real tag

responds in a slot iff the virtual tag responds.P ′ invokes the
second counting instance ofP over the virtual tags. By doing
so,P ′ uses onlyo( 1

ǫ2 log 1
ǫ

+ log log n1) slots andP ′ can ob-

tain a(2ǫ, 0.2)-approximateestimation of the actual number of
tags by outputtingŵ2/n1 − 1. Sinceǫ ∈ [ 1√

mini ni
, 0.25], the

existence ofP ′ contradicts with our single-set lower bound as
proved in Corollary 3. Thus, noP can incur onlyo( 1

ǫ2 log 1
ǫ

+

log log n1) = o( 1
ǫ2 log 1

ǫ

+ log log n2) overhead at the second

location.
For i = 3, . . . , k, let ni vary over the range fromwi−1 to

w2
i−1. We can apply the same argument as at the second loca-

tion to prove that noP can incur onlyo( 1
ǫ2 log 1

ǫ

+ log log ni)

overhead at itsith location. Finally, by linearity of expecta-
tion, combining the overhead lower bounds of all thek loca-
tions leads to our final result.

B Asymptotic Overhead of Existing
RFID counting Protocols

This section discusses the asymptotic overhead of major ex-
isting RFID counting protocols (see Section 4). Among these
protocols, UPE [11] and ART [17] do not come with end-
to-end overhead analysis. Recall that the estimator used by
UPE is biased, hence UPE cannot be used whenǫ is small.
Therefore one cannot analyze UPE’s overhead in an asymp-
totic manner withǫ approaches0. We will examine ART first,
then briefly summarizes the analysis of other protocols.

B.1 Asymptotic Overhead of ART

Since ART [17] does not come with end-to-end overhead anal-
ysis, we analyze its asymptotic overhead by ourselves. Recall
that ART has two phases and its key idea is to use the aver-
age run length of non-empty slots in its second phase to do
the estimation. In addition, for its second phase, ART also
solves involved optimization problems to determine the pa-
rameters and the final estimate. Instead of analyzing these
optimization problems, we here analyze a simplified version
of its second phase, which keeps the average-run-length key
design, but uses closed-form formulas to determine the pa-
rameters and the final estimate (to be explained later). Since
the original optimization techniques are meant to reduce over-
head, our analysis result for the simplified version would pro-
vide an upper bound for the overhead of the original ART
second phase. Specifically, we prove that the simplified ver-
sion of ART achievesO(log n + 1

ǫ2 ) asymptotic overhead.
Since this is close to our RFID counting lower bound (see
Appendix A) and no protocol’s overhead can be smaller than
the lower bound, the asymptotic overhead of the original ART
would be roughlyO(log n + 1

ǫ2 ).

ART’s first phase. Recall that ART’s first phase is similar to a
single trial of LOF. Specifically, for itsith (i = 1, 2, . . .) time
slot, each tag responds with probability12i−1 . Let x denote
the index of the first empty slot, ART then calculates a rough
estimateñ = 1.2897 × 2x−2. Note thatx = 1 iff n = 0,
therefore in this special case, one can directly return0 as the
exact tag count. Lemma 8 summarizes the guarantee of ART’s
first phase.

Lemma 8. ART’s first phase outputs a rough estimateñ with
Pr(ñ ∈ [0.16n, 10.4n]) > 0.95 and incursO(log n) over-
head.

Proof. Let qi denote the probability that theith slot is empty,
qi = (1− 1

2i−1 )n. We have: i) for alli, qi ≤ e−
n

2i−1 ; and ii) for

i ≥ 2, qi ≥ e
− n

2i−1−1 . These can be derived easily by the fact
that for ally, ey ≥ 1+y and withy = − 1

2i−1 andy = 1
2i−1−1

(for i ≥ 2) respectively. Letri denote the probability that the
index of the first empty slot isi, ri = (1− q1)(1− q2) . . . (1−
qi−1)qi. Therefore, for alli, ri ≤ qi.

Let x denote the random variable of the index of the first
empty slot. Sincex = 1 iff n = 0, which allows one to
directly return0 as an exact tag count, we discuss the case of
n > 0 below. To analyze the distribution ofx, we letu =
⌈log n⌉ (therefore2u−1 < n ≤ 2u). We have:

Pr(x < u − 1)

=

u−2
∑

i=1

ri ≤
u−2
∑

i=1

qi

≤
u−2
∑

i=1

e−
n

2i−1 ≤
u−2
∑

i=1

e−
2u−1

2i−1

≤ e−2u−1

+ e−2u−2

+ . . . + e−8 + e−4

<
e−4

1 − e−4
< 0.019
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Next we want to boundPr(x > u + 4). Forn = 1, u = 0,
Pr(x > 4) = 1 × 1

2 × 1
4 × 1

8 = 0.0156. Forn > 1 (therefore
u ≥ 1), we have:

Pr(x > u + 4)

= Pr(x > u + 1)(1 − qu+2)(1 − qu+3)(1 − qu+4)

≤ (1 − qu+2)(1 − qu+3)(1 − qu+4)

≤ (1 − e
− n

2u+1−1 )(1 − e
− n

2u+2−1 )(1 − e
− n

2u+3−1 )

≤ (1 − e
− 2u

2u+1−1 )(1 − e
− 2u

2u+2−1 )(1 − e
− 2u

2u+3−1 )

≤ (1 − e−
2
3 )(1 − e−

2
7 )(1 − e−

2
15 ) < 0.0152

Therefore, we have:

Pr(x ∈ [u − 1, u + 4])

> 1 − max(0.0152, 0.0156)− 0.019

> 0.95

Whenx ∈ [u − 1, u + 4], ñ = 1.2897 × 2x−2 ∈ [1.2897 ×
2u−3, 1.2897 × 2u+2] ⊂ [1.2897 × n

23 , 1.2897 × n × 23] ⊂
[0.16n, 10.4n]. Therefore,Pr(ñ ∈ [0.16n, 10.4n]) > 0.95.

To bound the expected number of slots in ART’s first phase,
note that fori ≥ u + 4 (therefore2i−4 ≥ 2u ≥ n andi ≥ 4),

qi ≥ e
− n

2i−1−1 ≥ e
− 2i−4

2i−1−1 ≥ e
− 24−4

24−1−1 > 0.8. Therefore,
ri+1×(i+1)

ri×i = qi+1(1−qi)
qi

× i+1
i < 1×(1−0.8)

0.8 × 5
4 < 1

2 . We

have:E[x] =
∑∞

i=1 ri × i =
∑u+3

i=1 ri × i+
∑∞

i=u+4 ri × i <

Pr(x ≤ u + 3) × (u + 3) + ru+4×(u+4)

1− 1
2

< 1 × (log n + 1 +

3) + 1×(log n+1+4)

1− 1
2

= 3 logn + 14 = O(log n).

A simplified second phase of ART.Before we proceed, we
first present a fact that will be used here and in Appendix D.

Lemma 9. With constantq ∈ (0, 1), 1
(1−qǫ)2 = O( 1

ǫ2 ) for
ǫ > 0.

Proof. Note the fact that for ally, ey ≥ 1 + y. Therefore for
y > 0, 1

1+y ≥ e−y, and1− e−y ≥ 1− 1
1+y = y

1+y . Consider

y = ǫln 1
q . 1

(1−qǫ)2 = 1
(1−e−y)2 ≤ 1

( y
1+y )2 = ( 1

y + 1)2 =

( 1
ǫln 1

q

+ 1)2 = O( 1
ǫ2 ).

For the second phase of ART, we consider a simplified ver-
sion that retains its key design of using average run length of
non-empty slots, but uses closed-form formulas to determine
parameters and final estimate (instead of solving involved op-
timization problems). Specifically, given the rough estimate
ñ from the first phase of ART, the simplified ART second
phase uses multiple slots, and for each slot a tag independently
responds with probabilityp = min{ 1

11 , 1
ñ}. Therefore, the

probability that a slot is empty isq = (1 − p)n. The simpli-
fied second phase terminates when it seesmax{ 4(1−q)

(1−qǫ)2 |q ∈
( 1
1000 , 10

11 )} runs of non-empty slots or the number of time
slots used exceedsmax{ 40

q(1−qǫ)2 + 10|q ∈ ( 1
1000 , 10

11 )}. In
Theorem 12 we will prove this is suffice to output an(ǫ, 0.2)
estimate. Letxi denote the run-length ofith run of non-empty
slots andm be the total number of runs before terminate. ART
computesx =

Pm
i=1 xi

m . Herex is the average run-length of

non-empty slots. Our simplified version of ART then outputs
n̂ = − ln x

ln(1−p) as the final estimate. The following lemmas
summarizes the guarantee of this simplified second phase of
ART:

Lemma 10. The second phase of the simplified ART incurs
O( 1

ǫ2 ) overhead.

Proof. By our design, the simplified ART will use at most
max{ 40

q(1−qǫ)2 + 10|q ∈ ( 1
1000 , 10

11 )} slots. By Lemma 9, this

overhead isO( 1
ǫ2 ).

Lemma 11. Given ñ ∈ [0.16n, 10.4n], the simplified ART
second phase outputs an(ǫ, 0.15) estimate.

Proof. Since we are analyzing the asymptotic overhead, we
consider the case wherem, the number of runs of non-empty
slots, is sufficiently large. Since the random variablesxi are
independent from each other, and they all follow the same ge-
ometric distribution (with mean of1q and variance of1−q

q2 ), by

central limit theorem, we have:x ∼ N (1
q , 1−q

mq2 ), i.e., a normal

distribution with mean ofE[x] = 1
q and varianceσ2 = 1−q

mq2 .
Given ñ ∈ [0.16n, 10.4n], we first calculate the range of

q, which is the probability that a slot is empty. Recallq =
(1 − p)n andp = min{ 1

11 , 1
ñ}. If p = 1

11 , q = (1 − 1
11 )n ≤

(1 − 1
11 )1 = 10

11 . Otherwise,p = 1
ñ andq = (1 − 1

ñ )n ≤
(1 − 1

10.4n )n < e−1/10.4 < 10
11 . Combining these two cases,

we haveq ≤ 10
11 . To boundq from below, we also consider

two cases: ifn ≤ 70, sincep = min{ 1
11 , 1

ñ} ≤ 1
11 , q ≥

(1 − 1
11 )70 > 1

1000 . Otherwisen > 70, sinceñ ≥ 0.16n >
11, 1

ñ < 1
11 and p = 1

ñ . In this case,q = (1 − 1
ñ )n ≥

(1 − 1
0.16n )n > (1 − 1

0.16×70 )70 > 1
1000 . Combining these

two cases, we haveq > 1
1000 . Therefore,q ∈ ( 1

1000 , 10
11 ).

Next we show that for any value ofq, if the protocol sees
m = 4(1−q)

(1−qǫ)2 runs of non-empty slots, it is sufficient to output
an (ǫ, 0.05) estimate ofn. Recall that forn > 0, the final
estimate iŝn = − ln x

ln(1−p) , we now bound its tail distribution:

Pr(|n̂ − n| > ǫn)

= Pr(n̂ > (1 + ǫ)n) + Pr(n̂ < (1 − ǫ)n)

= Pr(− lnx

ln(1 − p)
> (1 + ǫ)n)

+ Pr(− lnx

ln(1 − p)
< (1 − ǫ)n)

= Pr(x > (
1

(1 − p)n
)1+ǫ) + Pr(x < (

1

(1 − p)n
)1−ǫ)

= Pr(x > (
1

q
)1+ǫ) + Pr(x < (

1

q
)1−ǫ)

= Pr(x > E[x]1+ǫ) + Pr(x < E[x]1−ǫ)

= Pr(x − E[x] > (E[x]ǫ − 1)E[x])

+ Pr(x − E[x] < (E[x]−ǫ − 1)E[x])

< Pr(x − E[x] > (1 − E[x]−ǫ)E[x])

+ Pr(x − E[x] < (E[x]−ǫ − 1)E[x])

= Pr(|x − E[x]| > (1 − E[x]−ǫ)E[x])
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Let ǫ′ = 1 − E[x]−ǫ = 1 − qǫ. To boundPr(|x − E[x]| >

ǫ′E[x]) < 0.05, we needPr(|x−E[x]
σ | ≤ ǫ′E[x]

σ ) ≥ 0.95.

Sincex ∼ N (E[x], σ2), we needǫ′E[x]
σ ≥

√
2erf−1(0.95).

Since
√

2erf−1(0.95) < 2, setting σ2 = (ǫ′E[x])2

4 suf-
fices. Recall thatE[x] = 1

q and σ2 = 1−q
mq2 , we have

m ≥ 4(1−q)
ǫ′2 = 4(1−q)

(1−qǫ)2 . Sinceq ∈ ( 1
1000 , 10

11 ), we can con-

clude thatmax{ 4(1−q)
(1−qǫ)2 |q ∈ ( 1

1000 , 10
11 )} runs is sufficient to

achieve an(ǫ, 0.05) estimate.
Let z denote the average run length of empty slots. By rea-

soning similar tox, we haveE[z] = 1
1−q . When there arem

runs of non-empty slots, there are at mostm+1 runs of empty
slots, with the last run having a single empty slot to terminate
the protocol.

Next we bound the probability that for any givenq, the
number of runs of non-empty slot is less than4(1−q)

(1−qǫ)2 while

the protocol has used up all themax{ 40
q(1−qǫ)2 + 10|q ∈

( 1
1000 , 10

11 )} slots. Let random variablel denote the number of

slots needed by the protocol to see4(1−q)
(1−qǫ)2 runs of non-empty

slot. We haveE[l] ≤ 4(1−q)
(1−qǫ)2 ×(E[x]+E[z])+1 = 4(1−q)

(1−qǫ)2 ×
(1

q + 1
1−q ) + 1 = 4

q(1−qǫ)2 + 1 ≤ max{ 4
q(1−qǫ)2 + 1|q ∈

( 1
1000 , 10

11 )}. LetL denote the event thatl ≤ max{ 40
q(1−qǫ)2 +

10|q ∈ ( 1
1000 , 10

11 )} andL̄ denote the event that happens other-
wise. By Markov inequality:

Pr(L̄)

= Pr(l > 10 × max{ 4

q(1 − qǫ)2
+ 1|q ∈ (

1

1000
,
10

11
)})

< Pr(l > 10E[l]) < 0.1

By union bound, the probability that of|n̂ − n| > ǫn is:

Pr(|n̂ − n| > ǫn)

= Pr((|n̂ − n| > ǫn)
⋂

L) + Pr((|n̂ − n| > ǫn)
⋂

L̄)

= Pr((|n̂ − n| > ǫn)|L) Pr(L) +

Pr((|n̂ − n| > ǫn)|L̄) Pr(L̄)

< 0.05 × 1 + 1 × 0.1 = 0.15

Finally, combining Lemma 8, Lemma 10 and Lemma 11
leads to:

Theorem 12. The simplified version of ART protocol outputs
an (ǫ, 0.2) estimate withO( 1

ǫ2 + log n) slots.

Proof. Let n̂ be the final output of the simplified version of
ART, the probability that|n̂ − n| > ǫn is:

Pr(|n̂ − n| > ǫn)

= Pr((|n̂ − n| > ǫn)
⋂

(ñ /∈ [0.16n, 10.4n]))

+ Pr((|n̂ − n| > ǫn)
⋂

(ñ ∈ [0.16n, 10.4n]))

< Pr(ñ /∈ [0.16n, 10.4n]) +

Pr((|n̂ − n| > ǫn) | (ñ ∈ [0.16n, 10.4n]))× 1

< (1 − 0.95) + 0.15 = 0.2

Adding together the overhead of ART’s first phase and its
simplified second phase, the overall overhead of the simplified
version of ART isO( 1

ǫ2 + log n).

B.2 Asymptotic Overhead of Other Protocols

The other existing protocols, i.e., EZB [12], (enhanced)
FNEB [8], LOF [15], PET [23], and ZOE [24], all come with
detailed analysis on the number of slots needed. Here all we
do is to simplify their more precise results to asymptotic forms
(with adaption to our formulation when necessary).

EZB. Recall that EZB works on each of theΘ(log n) narrow

ranges. Each range needsZ2
δ

ǫ2l

l
5−1

(log l
5 )2

trials [12], whereZδ is

a constant given constantδ. Omitting all constants (including
the trial lengthl), EZB needsO( 1

ǫ2 log n) slots.

(Enhanced) FNEB. FNEB uses c2e−n/l(en/l−e−ǫn/l)2

(1−e−ǫn/l)2
tri-

als [8], wherec is a constant given a constantδ andn/l is
also a constant. The total number of trials used by FNEB is
henceO( 1

ǫ2 ). In FNEB, if the actual number of tags is much
smaller than the upper bound input by the user, FNEB needs
to conduct a binary search incurringO(log n) slots in almost
every trial. This results in an overhead ofO( 1

ǫ2 log n). In en-
hanced FNEB, the binary search is likely to happen only in the
first few trials (i.e., its first phase). The total number of slots
hence isO(log n + 1

ǫ2 ).

LOF and PET. Both LOF and PET need to do
max{[ −σc

log(1−ǫ) ]
2, [ −σc

log(1+ǫ) ]
2} trials [15, 23], whereσ is

some constant in both cases andc is a constant given a
constantδ. This corresponds toO( 1

ǫ2 ) trials. Each trial takes
(on expectation)O(log n) slots in LOF andO(log log n)
slots in PET. Hence LOF and PET needsO( 1

ǫ2 log n) and
O( 1

ǫ2 log log n) slots, respectively.

ZOE. ZOE first usesO(log log n) slots to find a rough esti-
mate. It then uses[ σc

e−λ(1−e−ǫλ)
]2 slots to eventually estimate

n [24], which corresponds toO( 1
ǫ2 ) slots withσ, c andλ all

being constants. In total, ZOE needsO( 1
ǫ2 + log log n) slots.

C Building Blocks of Our Protocols

This section discusses two building blocks of our protocols: (i)
the lookup table for determining the number of slots needed in
the second phase, and (ii) the revised version of PET.

C.1 Lookup table

ǫ l for SRCS l for SRCM

0.01 26575 28321
0.02 6638 6775
0.03 3009 3087
0.04 1674 1788
0.05 1075 1116

Table 4: Lookup Table for Determiningl (δ = 0.2).

For both SRCS and SRCM , they need to decide the num-
ber of slotsl needed in their second phase for achieving the
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Figure 8: An example run of revised PET trial. An integer
is shadowed if it is chosen by some tag, and the maximum
integer chosen here is9. As described in Algorithm 3, the
protocol will firstly get an upper bound of all chosen integer
(16 in this example), and then execute a binary search on the
second half of the upper bound ([8, 16) in this example), to
find the maximum integer chosen.

required estimation quality. One way to determine the value
of l is to construct a numerical lookup table by running the
respective protocol under a wide range ofn values, and then
observing thel needed to achieve a certain relative error. For
the sameǫ, the number of slots needed by SRCM is larger
than SRCS , since the participation probability used in SRCM

needs to be rounded to the form of1 = 2x.
Note that for SRCM , since the final estimate is obtained by

combining the results from all sets, it is equivalent to run the
protocol directly against the union set. Hence when construct-
ing the lookup table, one only needs to run SRCM against a
single set and does not need to vary the number of sets as well
as how the sets overlap.

Table 4 provides some sample values in the lookup table of
SRCS and SRCM .

C.2 Revised PET

Our SRCM protocol uses a revised version of PET for its first
phase. Algorithm 3 describes the main steps of revised PET9,
and Figure 8 illustrates an example run of revised PET.

Lemma 13. Each trial of revised PET incursO(log log n)
overhead.

Proof. In one trial of revised PET, each ofn tags will choose
an integer according to a geometric distribution with mean of
2. Let v be the maximum integer selected by alln tags. From
analysis of PET [23] we know thatE[v] = O(log n).

Since in each trial of revised PET, the protocol will firstly
usej slots to make sure that2j−2 ≤ v < 2j−1, we have
j ≤ log(v) + 2. Then revised PET will binary search on
[2j−2, 2j−1] to find the integerv, this usesj − 2 slots.

Therefore in each trial of revised PET will usej+(j−2) ≤
2 log(v) + 2 time slots.

SinceE[v] = O(log n), on expectation, the number of time
slots used by one trial of revised PET isO(log log(n)).

9The binary search in Line 13 of Algorithm 3 omits the range of[1, 2j−2)
becausevi ≥ 2j−2 (from Line 6).

Algorithm 3 revised PET algorithm (for ǫ = 0.5, δ = 0.1)
1: Let all tags respond in the first slot: if it is empty, output

0 and exit;
2: for i = 1 to 30 do
3: Each tag randomly chooses a positive integeru accord-

ing to a geometric distribution with mean of2;
4: j = 1;
5: while truedo
6: Let all tags withu ≥ 2j−1 respond;
7: if (See an empty slot)then
8: Break;
9: else

10: j = j + 1;
11: end if
12: end while
13: Binary search on[2j−2, 2j−1) to find the maximum in-

tegervi that has been chosen by at least one tag;
14: end for
15: Outputñ = 0.794 × 2(

P30
i=1 vi)/30;

D Analysis of Our Protocols

In this section we first prove multiple technical lemmas for
balls-and-bins trials. These prepare us to prove Theorem 5
(Section 7.1) and Theorem 6 (Section 7.2), which summarize
the guarantees of our SRCS and SRCM protocol respectively.

D.1 Lemmas for balls-and-bins trials

Recall that for both SRCS and SRCM , the building block of
their second phase is theballs-and-bins trial, wheren tags
each independently and uniformly at random pick one slot
from l slots, and respond in the chosen slot with probabilityp.
Lemma 14 presents some simple yet useful properties about
balls-and-bins trials.

Lemma 14. Consider a balls-and-bins trial withn tags, l
slots, and probabilityp for a tag to respond in its chosen slot.
Let q denote the probability that a slot is empty and letz de-
note the number of empty slots in the trial. We have:

(i) q = (1 − p
l )

n;

(ii) E[z] = lq = l(1 − p
l )

n;

(iii) V ar[z] = lq + l(l − 1)(1 − 2p
l )n − l2q2;

(iv) V ar[z] ≤ lq(1 − q);

(v) if p = 1 andn ≤ l, V ar[z] ≤ lq − (l + n)q2.

Proof. (i) The probability that a tag responds in a given slot is
p
l . Since a slot is empty iff none of then tags responds in it,
the probability that a slot is empty isq = (1 − p

l )
n.

(ii) Let zi be the indicator random variable for the event that
the ith slot is empty. We havez =

∑l
i=1 zi. From (i) above,

E[zi] = q for all i. By the linearity of expectation,E[z] = lq.
(iii) Define zi as above, we haveE[z2

i ] = E[zi] = q, and
E[zizj] = Pr(zi = 1, zj = 1) = (1 − 2p

l )n. HenceE[z2] =

lq + l(l − 1)(1 − 2p
l )n, andV ar[z] = E[z2] − E[z]2 = lq +

l(l − 1)(1 − 2p
l )n − l2q2.
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(iv)

V ar[z]

= E[z2] − E[z]2 = lq + l(l − 1)(1 − 2p

l
)n − l2q2

≤ lq + l(l − 1)(1 − 2p

l
+ (

p

l
)2)n − l2q2

= lq + l(l − 1)q2 − l2q2 = lq(1 − q)

(v) With p = 1 andn ≤ l,

V ar[z]

= lq + l(l − 1)(1 − 2

l
)n − l2q2

= lq + l(l − 1)((1 − 1

l
)2 − (

1

l
)2)n − l2q2

≤ lq + l(l − 1)((1 − 1

l
)2n − n(1 − 1

l
)2n−2(

1

l
)2

+
n(n − 1)

2
(1 − 1

l
)2n−4(

1

l
)4) − l2q2

= lq + l(l − 1)q2(1 − n

(l − 1)2
+

n(n − 1)

2(l − 1)4
) − l2q2

= lq − lq2 − nq2 − nq2

l − 1
+

ln(n − 1)q2

2(l − 1)3

= lq − (l + n)q2 − nq2

l − 1
(1 − l(n − 1)

2(l − 1)2
)

≤ lq − (l + n)q2

The first inequation above uses the fact that(x − y)n ≤
xn − nxn−1y + n(n−1)

2 xn−2y2, for x, y > 0, n ≥ 1, which
can be verified by a simple induction overn.

Following the previous work on RFID counting [11,12], we
make a normality assumption in our analysis below:

Assumption 1.The number of empty slotsz in a balls-and-
bins trial is distributed normally, i.e.,z−E[z]√

V ar[z]
∼ N (0, 1).

See [11, 12] for detailed discussion about the rationale be-
hind this assumption.

Recall that both SRCS and SRCM output the final estimate
asn̂ = ln(z/l)

ln(1−p/l) . Under Assumption 1, we now derive suffi-

cient conditions for̂n to be an(ǫ, 1
9 ) estimate ofn.

Lemma 15. Consider a balls-and-bins trial withn tags, l
slots, and probabilityp for a tag to respond in its chosen slot.
Letz denote the number of empty slots in the trial and letn̂ =

ln(z/l)
ln(1−p/l) . If (1−(E[z]/l)ǫ)E[z]√

V ar[z]
> 1.6, Pr(|n̂ − n| > ǫn) < 1

9 .

Proof. SinceE[z] = l(1 − p
l )

n (Lemma 14),n = ln(E[z]/l)
ln(1−p/l) .

We have:

Pr(|n̂ − n| > ǫn)

= Pr(n̂ > n(1 + ǫ)) + Pr(n̂ < n(1 − ǫ))

= Pr(
ln(z/l)

ln(1 − p/l)
>

ln(E(z)/l)

ln(1 − p/l)
(1 + ǫ))

+ Pr(
ln(z/l)

ln(1 − p/l)
<

ln(E(z)/l)

ln(1 − p
l )

(1 − ǫ))

= Pr(
z

l
< (

E[z]

l
)1+ǫ) + Pr(

z

l
> (

E[z]

l
)1−ǫ)

= Pr(z < E[z](
E[z]

l
)ǫ) + Pr(z > E(z)(

l

E[z]
)ǫ)

= Pr(z − E[z] < E[z]((
E[z]

l
)
ǫ

− 1))

+ Pr(Z − E[z] > E[z]((
l

E[z]
)
ǫ

− 1))

< Pr(|Z − E[z]| > E[z](1 − (
E[z]

l
)ǫ))

= Pr(
|z − E[z]|
√

V ar[z]
>

(1 − (E[z]/l)ǫ)E[z]
√

V ar[z]
)

By Assumption 1, z−E[z]√
V ar[z]

∼ N (0, 1). Also note that
√

2erf−1(8
9 ) < 1.6. Therefore if (1−(E[z]/l)ǫ)E[z]√

V ar[z]
> 1.6,

(1−(E[z]/l)ǫ)E[z]√
V ar[z]

>
√

2erf−1(8
9 ). HencePr( |z−E[z]|√

V ar[z]
>

(1−(E[z]/l)ǫ)E[z]√
V ar[z]

) < Pr( |z−E[z]|√
V ar[z]

>
√

2erf−1(8
9 )) = 1

9 .

HencePr(|n̂ − n| > ǫn) < 1
9 .

We now consider two specific settings where lemma 15
have more convenient forms. The corresponding results will
be summarized in Lemma 16 and Lemma 17 below respec-
tively.

Lemma 16. Consider the setting in lemma 15 with the addi-
tional assumption thatǫ < 0.25, p = 1, andn ≤ 0.6l. If
l ≥ 25

4ǫ2 , Pr(|n̂ − n| > ǫn) < 1
9 .

Proof. We first derive some inequations useful for deriving the
more convenient form in this setting.

i) Sinceǫ < 0.25, if l ≥ 25
4ǫ2 , we havel > 100. Consider

this together with the assumption thatn ≤ 0.6l, we haveq =
(1 − 1/l)n ≥ (1 − 1/l)0.6l > (1 − 1/100)0.6×100 > 0.547.

ii) Trivially, we haveq = (1 − 1/l)n > 1 − n/l.
iii) By Lemma 14,V ar[z] < lq − (l + n)q2. With q >

1 − n/l, we have:

V ar[z] < lq − (l + n)q2

= lq(1 − q(l + n)/l)

< lq(1 − (1 − n/l)(1 + n/l)

= lq(1 − (1 − (n/l)2))

= n2q/l

With these inequations, we have:
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(1 − (E[z]/l)ǫ)E[z]
√

V ar[z]

>
(1 − qǫ)lq
√

n2q/l

= (1 − e− ln(1/q)ǫ) × l
√

lq

n

>
ln(1/q)ǫ

1 + ln(1/q)ǫ
× l

√
lq

n

=
ǫn ln(l/(l − 1))l

√
lq

(1 + ǫn ln(l/(l − 1)))n

>
ǫ
√

lq

1 + ǫn ln(l/(l − 1))

>
ǫ
√

0.547l

1 + 0.25 × 0.6 × l ln(l/(l − 1))

>
ǫ
√

0.547l

1 + 0.25 × 0.6 × 100 ln(100/(100− 1))

> 0.64ǫ
√

l

The second inequality above uses the fact that1 − e−x >
x

1+x for x > 0. The third inequality above is becauseln(l/(l−
1))l > 1, which can be easily derived from the factey >
1 + y for all y 6= 0 and lety = −1/l. The second-to-last
inequality above uses the fact that forl > 1, l ln(l/(l − 1)) is
a monotonically decreasing function ofl andl > 100.

Therefore, if l ≥ 25
4ǫ2 , (1−(E[z]/l)ǫ)E[z]√

V ar[z]
> 0.64ǫ

√
l ≥

0.64×
√

25
4 = 1.6. By lemma 15,Pr(|n̂−n| > ǫn) < 1

9 .

Lemma 17. Consider the setting of Lemma 15 with
the additional assumption thatǫ < 0.25 and q ∈
[qmin, qmax], where q denotes the probability that a
slot is empty and[qmin, qmax] ⊂ (0, 0.6). If l ≥
max{ 2.6×(1−qmin)

qmin(1−qǫ
min)2 , 2.6×(1−qmax)

qmax(1−qǫ
max)2 }, Pr(|n̂−n| > ǫn) < 1

9 .

Proof. By Lemma 14, E[z] = lq and
√

V ar[z] <
√

lq(1 − q). Hence, (1−(E[z]/l)ǫ)E[z]√
V ar[z]

> (1−qǫ)lq√
lq(1−q)

=
√

(1−qǫ)2ql
1−q =

√

l
g(q) , whereg(q) = 1−q

(1−qǫ)2q . Therefore,

if l ≥ 2.6 × g(q) for all q ∈ [qmin, qmax], (1−(E[z]/l)ǫ)E[z]√
V ar[z]

>
√

l
g(q) ≥

√
2.6 > 1.6. By lemma 15,Pr(|n̂ − n| > ǫn) < 1

9 .

To further simplify the form above, we now show that for
q ∈ [qmin, qmax] with [qmin, qmax] ⊂ (0, 0.6), g(q) obtains
its maximum value at eitherqmin or qmax. To prove so, note
that the derivative ofg(q) is dg

dq = qǫ(1+2ǫ(1−q))−1
q2(1−qǫ)3 . Here the

denumerator is always positive forq ∈ (0, 0.6). We thus focus
on its numerator. Leth(q) = qǫ(1 + 2ǫ(1 − q)) − 1. We note
that forq ∈ [0.5, 0.6) and withǫ < 0.25, q(1+2ǫ(1−q))1/ǫ >
0.5 × (1 + 2 × 0.25 × (1 − 0.6))1/0.25 > 1, therefore in this
range,h(q) = (q(1 + 2ǫ(1 − q))1/ǫ)ǫ − 1 > 0. We also
note that the derivative ofh(q) over q is dh

dq = ǫqǫ−1((ǫ +

1)(1 − 2q) + ǫ) > 0 for q ∈ (0, 0.5], hence in[qmin, 0.5],
h(q) is monotonically increasing and can have at most one

rootqr such thath(qr) = 0. We consider two cases: i) if such
a rootqr exists,h(q) thus dg

dq is negative forq ∈ [qmin, qr),

and h(q) thus dg
dq is positive forq ∈ (qr, qmax]. Hence in

[qmin, qmax], g(q) is first monotonically decreasing then be-
comes monotonically increasing. The maximum value ofg(q)
in [qmin, qmax] is thus eitherg(qmin) or g(qmax). ii) If h(q)
has no root in[qmin, 0.5], for [qmin, qmax], h(q) thus dg

dq is al-
ways positive, henceg(q) is monotonically increasing. Hence
the maximum value ofg(q) is obtained atqmax. In both cases,
settingl = max(2.6× g(qmin), 2.6× g(qmax)) would ensure
l ≥ 2.6 × g(q) for all q ∈ [qmin, qmax].

D.2 Guarantee of Our SRCS protocol

This subsection proves Theorem 5 in our Section 7 regarding
the guarantee of our SRCS protocol. See Algorithm 1 for the
main steps of our SRCS protocol.

Recall that the first phase of SRCS uses LOF to obtain a
rough estimatẽn. By the analysis of LOF [15], when the first
phase of SRCS invokes LOF with10 trials, the resulted rough
estimateñ is a (0.5, 0.1) estimate ofn. Since each trial of
LOF incursO(log n) overhead, this first phase of SRCS uses
O(log n) slots on expectation. Lemma 18 summarizes this
guarantee:

Lemma 18. The first phase of our SRCS outputs a(0.5, 0.1)
estimate withO(log n) overhead.

Next we assumẽn ∈ [0.5n, 1.5n] and summarize the guar-
antee of the second phase of SRCS under this assumption in
Lemma 19:

Lemma 19. If the second phase of SRCS usesl = 65
(1−0.04ǫ)2

slots, and if it is given a rough estimatẽn ∈ [0.5n, 1.5n], it
outputs an(ǫ, 1

9 ) estimate forǫ < 0.25.

Proof. Note that withǫ < 0.25, l = 65
(1−0.04ǫ)2 > 200. We

consider two cases:
Case i: Whenn ≤ 0.6l, recall that SRCS set p =

min{1, 1.6l/ñ}. Sinceñ ≤ 1.5n ≤ 1.5 × 0.6l = 0.9l, we
havep = 1. Also, 65

(1−0.04ǫ)2 > 65
(ln(1/0.04)ǫ)2 > 25

4ǫ2 . Hence,
we can directly apply lemma 16 to get the estimation quality
guarantee of̂n, i.e.,Pr(|n̂ − n| > ǫn) < 1

9 .
Case ii: Whenn > 0.6l, we distinguish two cases:
Case ii(a): Ifp = 1.6l

ñ , this leads tõn ≥ 1.6l > 320, and
q = (1−p/l)n = (1−1.6/ñ)n. Sinceñ ≤ 1.5n, we haveq ≤
(1 − 1.6/(1.5n))n < e−16/15 < 0.35. Also, sinceñ ≥ 0.5n,
n ≤ 2ñ, q ≥ (1 − 1.6/ñ)2ñ > (1 − 1.6/320)2×320 > 0.04.

Case ii(b): Otherwise,p = 1, this leads tõn ≤ 1.6l, there-
fore n ≤ 2ñ ≤ 3.2l. q = (1 − 1/l)n ≥ (1 − 1/l)3.2l >
(1 − 1/200)3.2×200 > 0.04. Also, sincen > 0.6l, we have
q = (1 − 1/l)n < (1 − 1/l)0.6l < e−0.6 < 0.55.

Combining these two sub cases, we haveq ∈ [0.04, 0.55].
Let g(q) = 1−q

(1−qǫ)2q (as in the proof of Lemma 17). Applying
Lemma 17, settingl = max(2.6 × g(0.04), 2.6 × g(0.55))
ensuresPr(|n̂ − n| > ǫn) < 1

9 . Note the fact that for all
y > 0, y

1+y < 1 − e−y < y
1+y/2 . Let y = ln(1/q)ǫ, we have

1
ln(1/q)ǫ + 0.5 < 1

1−qǫ < 1
ln(1/q)ǫ + 1.
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Using above inequalities, we haveg(0.04) =
1−0.04

(1−0.04ǫ)2×0.04 > 24×( 1
ln(1/0.04)ǫ+0.5)2 > (1.52/ǫ+2.44)2;

while g(0.55) = 1−0.55
(1−0.55ǫ)2×0.55 < 0.8182 × ( 1

ln(1/0.55)ǫ +

1)2 < (1.52/ǫ + 0.905)2. Comparing them, we have
g(0.04) > g(0.55). Therefore, we only need to en-
sure l > 2.6 × g(0.04), which holds when we set
l = 65

(1−0.04ǫ)2 .

We are now ready to combine Lemma 18 and Lemma 19
to prove Theorem 5, which summarizes the guarantee of our
SRCS protocol.

Proof for Theorem 5. For the overall estimation quality, the
probability for the SRCS protocol to output ân that satisfies
|n̂ − n| ≤ ǫn can be bounded as below:

Pr(|n̂ − n| ≤ ǫn)

≥ Pr((|n̂ − n| ≤ ǫn)
⋂

(|ñ − n| ≤ n

2
))

= Pr((|n̂ − n| ≤ ǫn) | (|ñ − n| ≤ n

2
)) × Pr(|ñ − n| ≤ n

2
)

≥ (1 − 1

9
) × (1 − 0.1) = 0.8

Therefore overall,̂n is an(ǫ, 0.2) estimate ofn.
For the overhead, note that by Lemma 9, the number of slots

in the second phase of SRCS l = 65
(1−0.04ǫ)2 = O( 1

ǫ2 ). Com-
bining this with the overhead of its first phase (lemma 18),
SRCS ’s total overhead isO( 1

ǫ2 + log n).

D.3 Guarantee of Our SRCM protocol

This subsection proves Theorem 6 in our Section 7 regarding
the guarantee of our SRCM protocol. See Algorithm 2 for the
main steps of our SRCM protocol.

Recall that our SRCM protocol seesk sets, i.e.,S1, S2, ...,
Sk, sequentially and then outputs an estimaten̂ for the size of
S1 ∪ S2 . . . ∪ Sk.

To reason about the estimation quality of SRCM , we con-
sider the last location. Here SRCM invokes revised PET and
merges the revised PET outcomes from all locations to gener-
ate a rough estimatẽn. Such merging is possible since PET
works under multiple-set RFID counting setting, and the only
difference between our revised PET and PET is that revised
PET removes the need of a user-specified upper bound forn.
By the analysis of PET [23], when SRCM invokes revised
PET with 30 trials in each location, the rough estimateñ is
a (0.5, 0.1) estimate ofn. Lemma 20 summarizes this guaran-
tee.

Lemma 20. The first phase of SRCM outputs a(0.5, 0.1) es-
timate at the last location.

Next we assumẽn ∈ [0.5n, 1.5n] and summarize the guar-
antee of the second phase of SRCM under this assumption in
Lemma 21:

Lemma 21. If the second phase of SRCM usesl = 205
(1−0.013ǫ)2

bins and if it is given a rough estimatẽn ∈ [0.5n, 1.5n], it
outputs an(ǫ, 1

9 ) estimate ofn for ǫ < 0.25.

Proof. Recall that SRCM outputs its final estimatên by merg-
ing the balls-and-bins outcomes of all locations when tags par-
ticipate at a certain probabilityp, wherep = 1

2x for an integer
x that minimizes|p − min{1, 1.6l/ñ}|. The design of SRCM
ensures that the required information is available at all loca-
tions, since each location starts with a probability that isno
smaller thanp. After the merging, a bin is occupied iff there
is at least one tag responds in the bin regardless in which sets
the tags appear. Hence we can consider alln tags as if they
appear together in a single set.

Note that withǫ < 0.25, l = 205
(1−0.013ǫ)2 > 450. We con-

sider two cases:
Case i: Whenn ≤ 0.6l, sinceñ ≤ 1.5n ≤ 1.5 × 0.6l =

0.9l, we havep = 1. Since 205
(1−0.013ǫ)2 > 205

(ǫ ln(1/0.013))2 >
25
4ǫ2 , we can directly apply Lemma 16 to get the estimation
quality guarantee of̂n, i.e.,Pr(|n̂ − n| > ǫn) < 1

9 .
Case ii: Whenn > 0.6l, we distinguish two cases:
Case ii(a): Ifp = 1

2x , x ≥ 1, this leads to0.75p ≤ 1.6l
ñ ≤

1.5p, which is equivalent to0.75ñ ≤ 1.6l
p ≤ 1.5ñ and 16

15ñ ≤
p
l ≤ 32

15ñ . Hence,ñ ≥ 1.6l
1.5p ≥ 1.6×450

1.5×0.5 = 960. Also, with

ñ ∈ [0.5n, 1.5n], we have 32
45n ≤ p

l ≤ 64
15n . Consider the

probability that a slot is empty, i.e,q = (1 − p
l )

n, we have
q ≤ (1 − 32

45n )n ≤ e32/45 < 0.492 andq ≥ (1 − 32
15ñ )n ≥

(1 − 32
15ñ )2ñ > (1 − 32

15×960 )2×960 > 0.013. Therefore we
haveq ∈ (0.013, 0.492).

Case ii(b): Ifp = 1, this leads to1.6l
ñ ≥ 0.75, therefore

ñ ≤ 32l
15 , andn < 2ñ ≤ 64l

15 . q = (1−1/l)n ≥ (1−1/l)
64l
15 >

(1 − 1/450)
64×450

15 > 0.013. Also, sincen > 0.6l, we have
q = (1 − 1/l)n < (1 − 1/l)0.6l < e−0.6 < 0.55.

Combining these two sub cases, we haveq ∈ [0.013, 0.55].
Let g(q) = 1−q

(1−qǫ)2q (as in the proof of Lemma 17). Applying
Lemma 17, settingl = max(2.6 × g(0.013), 2.6 × g(0.55))
ensuresPr(|n̂ − n| > ǫn) < 1

9 . Note the 1
ln(1/q)ǫ +

0.5 < 1
1−qǫ < 1

ln(1/q)ǫ + 1 (see proof of Lemma 19), we

haveg(0.013) = 1−0.013
(1−0.013ǫ)2×0.013 > 75 × ( 1

ln(1/0.013)ǫ +

0.5)2 > (1.99/ǫ+4.33)2; while g(0.55) = 1−0.55
(1−0.55ǫ)2×0.55 <

0.8182 × ( 1
ln(1/0.55)ǫ + 1)2 < (1.52/ǫ + 0.905)2. Compar-

ing them, we haveg(0.013) > g(0.55). Therefore, we only
need to ensurel > 2.6 × g(0.013), which holds when we set
l = 205

(1−0.013ǫ)2 .

Before we move on to prove Theorem 6, we need to rea-
son about the overhead of the second phase of SRCM . While
l = 205

(1−0.013ǫ)2 bins suffices, the overhead also depends on
for each bin how many different probabilities SRCM needs
to check before the bin becomes empty. This depends on the
probability that the second phase SRCM starts with, which
in turn depends on the rough estimate from the first phase
of SRCM . Lemma 22 summarizes the guarantee of the first
phase of SRCM , and Lemma 23 below summarizes the ex-
pected number of slots needed by the second phase of SRCM

given a certain starting probability. Based on them, Lemma 24
summarizes the overhead of the second phase of SRCM . Note
that our discussion here applies to every location (not onlythe
last one), though we omit the index of the location to simplify
the notation. Specifically, we usẽn to denote the first phase
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output of SRCM , which is a rough estimate ofn, the number
of tags in the union of the sets the reader has seen so far.

Lemma 22. At any location, the output̃n of the first phase of
SRCM satisfiesPr(ñ < 0.794n

2i ]) < 30/e2i

for i ≥ 1, where
n is the number of tags in the union of the sets the reader has
seen so far.

Proof. Recall that to provide a(0.5, 0.1) rough estimate, the
first phase of SRCM invokes revised PET with30 trials. For
the jth trial (1 ≤ j ≤ 30) of revised PET, each tag chooses
a positive integer according to a geometric distribution with
mean of2. The protocol then finds the maximum integerxj

chosen by all tags. For a positive integery, Pr(xj < y) =

(1 − 1
2y−1 )n < e−n/2y−1

. The revised PET then outputsñ =

0.794 × 2(
P30

j=1 xj)/30. We thus have:

Pr(ñ <
0.794n

2i
)

= Pr((

30
∑

j=1

xj)/30 < log(n) − i)

< Pr(

30
⋃

j=1

(xj < log(n) − i))

< 30 × e−n/2log(n)−i

= 30/e2i

Lemma 23. At any location, the second phase of SRCM with
a starting probability ofp for a tag to respond uses less than
max{3l, (log(pn/l) + 4)l} slots on expectation, wheren is
the number of tags in the union of the sets the reader has seen
so far.

Proof. Supposenj is the number of tags that appear in the
current location, obviously,nj ≤ n. Now consider a single
bin. We want to find out on expectation how many different
probabilities SRCM needs to check before the bin becomes
unoccupied. Letwi denote the indicator random variable for
the event that it is occupied when a tag responds with prob-
ability p/2i (for i = 0, 1, . . .). Note thatE[wi] = Pr(wi =
1) = 1−(1− p

2il )
nj ≤ (1− p

2il )
n < pn

2il . Letw denote the ran-
dom variable of the number of probabilities that SRCM needs
to test before the bin becomes unoccupied.w = 1+

∑∞
i=0 wi.

By linearity of expectation:E[w] = 1 +
∑∞

i=0 E[wi]. Now
we discuss the following cases:

Case i: Ifpn/l < 1, we have

E[w] = 1 +

∞
∑

i=0

E[wi]

< 1 +
∞
∑

i=0

pn

2il

≤ 1 +
pn

l(1 − 1/2)
< 3

Case ii: Otherwise,pn/l ≥ 1, we have:

E[w] = 1 +
∞
∑

i=0

E[wi]

= 1 +

⌊log(pn/l)⌋
∑

i=0

E[wi] +

∞
∑

i=⌊log(pn/l)⌋+1

E[wi]

< 1 + (1 + ⌊log(pn/l)⌋) × 1 +

∞
∑

⌊log(pn/l)⌋+1

pn

2il

≤ 2 + log(pn/l) +
pn

2log(pn/l)l(1 − 1/2)

≤ 2 + log(pn/l) + 2 = log(pn/l) + 4

Therefore, we haveE[w] < max{3, log(pn/l)+4}. Again,
by linearity of expectation, the expected number of slots
needed for all thel bins isl × E[w] < max{3l, (log(pn/l) +
4)l}.

Lemma 24. At each location, the second phase of SRCM uses
O(l) slots on expectation, wherel is the number of bins.

Proof. Let w denote the random variable of the number of
slots used by the second phase of SRCM .

Let E0 denote the event that the rough estimate from the
first phase of SRCM satisfies̃n > 0.794n

2 . Since the starting
probability of p in the second phase of SRCM is selected to
minimize |p − 1.6l

ñ |, we have3p
4 ≤ 1.6l

ñ ≤ 3p
2 , hencep ≤

1.6×4l
3ñ < 1.6×4l

3 × 2
0.794n , which leads topn

l < 2×6.4
0.794×3 < 5.4.

By Lemma 23,E[w|E0] < max{3l, (log(5.4) + 4)l} < 6.5l.
LetEi (i = 1, 2, . . .) denote the event that the rough estimate

from the first phase of SRCM satisfiesñ ∈ (0.794n
2i+1 , 0.794n

2i ].
Similar to the above analysis, we havep ≤ 1.6×4l

3ñ < 1.6×4l
3 ×

2i+1

0.794n , which leads topn
l < 2i+1×6.4

0.794×3 < 2.7 × 2i+1. By
Lemma 23,E[w|Ei] < max{3l, (log(2.7 × 2i+1) + 4)l} <
(i + 6.5)l.

From Lemma 22 we know that fori ≥ 1, Pr(Ei) <

Pr(ñ < 0.794n
2i ) < 30e−2i

. Further, fori ≥ 2, we have
30e−2i+1

(i+1+6.5)

30e−2i (i+6.5)
= e−2i

(1 + 1
i+6.5 ) < 0.021. We can now

boundE[w]:

E[w] = E[w|E0] Pr(E0) +

∞
∑

i=1

E[w|Ei] Pr(Ei)

< E[w|E0] × 1 + E[w|E1] × 1 +

∞
∑

i=2

E[w|Ei] Pr(Ei)

< 6.5l + (1 + 6.5)l +
30e−22

(2 + 6.5)l

1 − 0.021
< 19l = O(l)

Proof for Theorem 6. Combining results from Lemma 20 and
Lemma 21, the end-to-end SRCM estimation quality guaran-
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tee can be computed as:

Pr(|n̂ − n| ≤ ǫn)

≥ Pr((|n̂ − n| ≤ ǫn)
⋂

(|ñ − n| ≤ n

2
))

= Pr((|n̂ − n| ≤ ǫn) | (|ñ − n| ≤ n

2
)) × Pr(|ñ − n| ≤ n

2
)

= (1 − 1

9
) × (1 − 0.1) = 0.8

Therefore, usingl = 205
(1−0.013ǫ)2 bins in the second phase of

SRCM at each location is sufficient for achieving the required
estimation quality, i.e., ensurinĝn is an(ǫ, 0.2) estimate ofn.
By Lemma 9, our chosen number of binsl = 205

(1−0.013ǫ)2 =

O( 1
ǫ2 ). By Lemma 24, the overhead of the second phase of

SRCM at each location isO(l) = O( 1
ǫ2 ). By Lemma 13,

the overhead of the first phase of SRCM at theith location is
O(log log ni), whereni is the number of tags in theith set
Si. Therefore, for all thek locations together, the overhead of
SRCM is O(

∑k
i=1(

1
ǫ2 + log log ni)).

E Capability to Detect Collision

Our results can be generalized to a model where a reader can
further distinguish two types of non-empty slot, i.e.,singleton
slot andcollision slot. Exactly one tag transmits in asingleton
slot, and at least two tags transmit in acollision slot.

We describe a prove sketch for our lower bound results in
this generalized model, as summarized in Theorem E.

Theorem 25. Even if the reader can detect collision, no
single-set RFID counting protocol can output an(ǫ, 0.2)
estimate witho( 1

ǫ2(log 1
ǫ )2

+ log log n) overhead, forǫ ∈
[1/

√
n, 0.5].

Proof sketch. For theo( 1
ǫ2(log 1

ǫ )2
) term, the proof is almost

similar to the proof of Theorem 1, except that Alice and Bob
need to interactively exchangeO(log m) fingerprints instead
of one fingerprint. Specifically, to simulate theith slot of the
single-set RFID counting protocol, Alice and Bob compute
their first fingerprint in the same way as before. If their first
fingerprints are identical, then they can stop by simulatingan
empty slot. Otherwise, Alice and Bob divide their own bit
string at the middle into two substrings, and compute two fin-
gerprints for the two substrings. If both fingerprints are differ-
ent, it means there are at least two different bits between their
strings, thus Alice and Bob will simulate a collision slot. Oth-
erwise, they will further examine the substring with different
fingerprint. (Note that it is impossible for the fingerprintsof
both substrings to be equal unless the fingerprints collide,the
probability of which can be properly bounded.) If Alice and
Bob’s strings differ by only one single bit, recursively apply-
ing this process forlog m times will reveal the position of this
single bit. Then Alice and Bob can simulate a singleton slot.
Using this construction and by similar argument as in the proof
of Theorem 1 gives theo( 1

ǫ2(log 1
ǫ )2

) term in the overhead.

For theo(log log n) term in the overhead, the proof is sim-
ilar to that of Theorem 2, and the only difference is that each
slot can have3 outcomes instead of2.

Simply plugging Theorem 25 into our multiple-set lower
bound proof for Theorem 4 (see Appendix A), one can de-
rive a rather similar form of multiple-set lower bound for the
generalized model.

F Additional Evaluation Results

F.1 Additional Results for Section 6

When analyzing the performance gain of ART and enhanced
FNEB (see Section 6), we also evaluate the protocols un-
der other settings ofn. Specifically, Figure 9 and Figure 10
plot the time needed by EZB, ART, and revised ART when
n = 50, 000 andn = 10, 000 respectively. Figure 11 and
Figure 12 plot the time needed by EZB, enhanced FNEB
(eFNEB for short), and the revised eFNEB forn = 50, 000
andn = 10, 000 respectively. As shown in the figures here (as
well as Figure 2 and Figure 3 in Section 6), the relative perfor-
mance of different protocols remain the same across different
values ofn.

F.2 Additional Results for Section 7.3

Since the overhead difference between our protocols and some
existing protocols is partly due to the existence of per-trial
overhead. To understand how significant this factor is, we
have further compared the protocols when there is no per-trial
overhead.

Figure 13 and Figure 14 plot the overhead of single-set
RFID counting protocols forn = 10, 000 andn = 100, 000
respectively. In both settings,SRCs continues to have the
lowest overhead among all protocols. For example, when
ǫ = 0.01, SRCS is20% to 100% faster than the most efficient
existing protocol, i.e., ZOE.

Figure 15 plots the overhead of multiple-set RFID counting
protocols. We find that SRCM continues to be300% faster
than the most efficient existing protocol.
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Figure 9: Time needed to achieve relative errorǫ under
δ = 0.2 (n = 50, 000).
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Figure 10: Time needed to achieve relative errorǫ under
δ = 0.2 (n = 10, 000).
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Figure 11: Time needed to achieve relative errorǫ under
δ = 0.2 (n = 50, 000).

 0

 5

 10

 15

 20

 0.01  0.02  0.03  0.04  0.05

tim
e 

(s
ec

on
ds

)

ε

EZB
eFNEB

Revised eFNEB

Figure 12: Time needed to achieve relative errorǫ under
δ = 0.2 (n = 10, 000).
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Figure 13: Overhead of single-set protocols (n = 10, 000,
without per-trial overhead).
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Figure 14: Overhead of single-set protocols (n =
100, 000, without per-trial overhead).
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Figure 15: Overhead of multiple-set protocols (n = 100, 000 andk = 10, without per-trial overhead).
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