
Secure and Highly-Available Aggregation Queries
in Large-Scale Sensor Networks via Set Sampling

Haifeng Yu
National University of Singapore

haifeng@comp.nus.edu.sg

ABSTRACT

Wireless sensor networks are often queried for aggregates

such as predicate count, sum, and average. In untrusted en-

vironments, sensors may potentially be compromised. Ex-

isting approaches for securely answering aggregation queries

in untrusted sensor networks can detect whether the aggrega-

tion result is corrupted by an attacker. However, the attacker

(controlling the compromised sensors) can keep corrupting

the result, rendering the system unavailable.

This paper aims to enable aggregation queries to tolerate

instead of just detecting the adversary. To this end, we pro-

pose a novel tree sampling algorithm that directly uses sam-

pling to answer aggregation queries. It leverages a novel set

sampling technique to overcome a key and well-known ob-

stacle in sampling — traditional sampling technique is only

effective when the predicate count or sum is large. Set sam-

pling can efficiently sample a set of sensors together, and de-

termine whether any sensor in the set satisfies the predicate

(but not how many). With set sampling as a building block,

tree sampling can provably generate a correct answer despite

adversarial interference, while without the drawbacks of tra-

ditional sampling techniques.

Categories and Subject Descriptors

C.2.0 [Computer-Communication Networks]: General—

Security and protection (e.g., firewalls); G.3 [Probability

and Statistics]: Probabilistic algorithms (including Monte

Carlo)

General Terms

Algorithms, Security, Design
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1. INTRODUCTION

Background. Wireless sensor networks are often queried for

aggregates such as predicate count (e.g., number of sensors

sensing fire), sum, and average. To answer these aggregation

queries, traditional (non-secure) approaches typically use in-

network aggregation along an aggregation tree [16]. In the

aggregation tree, the root is the base station and all other tree

nodes are sensors. Each sensor combines the results from

its children, incorporates its own value, and then forwards

a single value to its parent. In untrusted environments, sen-

sors may potentially be compromised. These compromised

sensors may launch two kinds of attacks: i) report arbitrary

readings themselves, and ii) manipulate the partial aggrega-

tion results that pass through them. It is generally impossi-

ble to prevent the first attack without domain specific knowl-

edge. Fortunately, it is also well-know that for robust aggre-

gates [23] such as predicate count and sum, the first attack’s

influence is limited, as long as the fraction of malicious sen-

sors is not overwhelming. The second attack can be much

more serious since even a single malicious sensor can com-

pletely corrupt the final result. Thus the need to make ag-

gregation queries secure against the second attack has been

widely acknowledged [1, 2, 6, 10, 14, 15, 17, 25, 26].

Previous results and motivation. Most pioneering efforts [1,

6, 14, 15, 17] on secure aggregation queries make strong re-

strictive assumptions (e.g., assuming a single malicious sen-

sor [14, 15] or assuming single-level aggregation [1, 6, 17]).

Hierarchical secure aggregation [2, 10] is one of the first

protocols that make general aggregation queries secure with

provable guarantees. Unfortunately, the protocol can only

detect but not tolerate malicious sensors. Namely, they en-

able the user to verify whether the result is corrupted. But

even a single malicious sensor can keep preventing the ver-

ification from succeeding, in which case the user can never

get a correct result. Thus despite that compromising a sin-

gle sensor is a local attack on one sensor, the effect of such
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attack is “amplified” by the protocol into a global DoS at-

tack that renders the entire system unavailable. In such cases,

[2] suggests having all sensors send individual readings back

to the base station, which can be prohibitively expensive in

large-scale systems. Another recent approach [22] has sim-

ilar limitations – the attacker can launch multi-hop flooding

attacks [5, 21, 24] from a few malicious sensors to stall the

aggregation process.

We argue that for many applications, it is critical for the

system to tolerate instead of just detecting the adversary. In

other words, the aggregation queries must be both secure and

highly-available. When under attack, detecting the adversary

only makes the system harmless and not cause any damage.

It is tolerating the adversary that makes the system useful.

Without availability guarantees, the adversary (with human

intelligence and judgment) would make the system unavail-

able precisely when the service is needed the most. For ex-

ample, in battlefield monitoring, the enemy could cause the

system to be unavailable exactly when the battle starts.

Our approach and results. This paper aims to design pro-

tocols with provable guarantees that can always correctly an-

swer aggregation queries despite adversarial interference. To

the best of our knowledge, this is the first effort toward such a

goal in the general setting. A natural and seemingly obvious

direction is to extend previous detection-only protocols to

automatically pinpoint and revoke malicious sensors when-

ever the final result is corrupted. Unfortunately, because of

the nature of these protocols and also because the malicious

sensors may interfere with pinpointing as well, pinpointing

malicious sensors is far from trivial and is a active research

topic by itself. Secondly, malicious sensors may interfere se-

quentially one by one. This means that the service disruption

time and the revocation overhead are at least linear with the

number of malicious sensors.

As a result, we choose to substantially depart from most

existing approaches [1, 2, 6, 10, 14, 15, 17, 26], which typ-

ically try to fix the security holes in in-network aggregation.

We propose a novel tree sampling protocol that directly uses

randomized sampling to answer aggregation queries. De-

spite adversarial interference, tree sampling can always pro-

duce a standard (ǫ, δ)-approximation of the correct result

(i.e., the approximation is within (1±ǫ) multiplicative factor

of the correct result with probability at least 1 − δ).

Sampling has the nice security property that each sample

involves the reading of a single sensor, and thus its integrity

can be easily verified. This conveniently avoids the key chal-

lenge in in-network aggregation, where intermediate sensors

need to aggregate multiple values into a single one and ma-

licious sensors may not aggregate faithfully. However, sam-

pling has its own well-known challenge — it is only efficient

when the predicate count or sum is large. More precisely,

the well-known lower bound [4] shows that with n sensors

and the predicate count being b, Ω(n
b

1
ǫ2

log 1
δ
) samples are

needed to obtain an (ǫ, δ)-approximation for b . When b is

small, the term n
b

can approach Ω(n). Since all samples are

forwarded to the base station, the sensors near the base sta-

tion will thus send/receive Ω(n
b

1
ǫ2

log 1
δ
) bits. Such overhead

quickly makes naive sampling impractical.

To address this challenge, we propose a simple but pow-

erful set sampling technique to efficiently sample a set of

sensors together. Sampling a set will tell whether any sen-

sor in the set satisfies the predicate (but not how many sen-

sors), with only O(1) bits communication overhead on any

sensor. Leveraging set sampling, our tree sampling proto-

col uses a binary tree to construct randomized sets and then

samples those sets adaptively. This binary tree is a local data

structure maintained by the base station, and has no rela-

tion to network topology. To compute the predicate count

using tree sampling, each sensor only needs to send/receive

O( 1
ǫ2

log 1
δ′

log n) bits∗, where δ′ = δ/(logmax(4ǫ2n, 2)).
Under practical parameters, log 1

δ′
is almost never larger than

3 log 1
δ

.† In such cases, we have a cleaner form of

O( 1
ǫ2

log 1
δ

log n) as the total number of bits.

Obviously, tree sampling breaks the previous lower bound

of Ω(n
b

1
ǫ2

log 1
δ
), and reduces the linear communication over-

head to logarithmic overhead (with respect to n). Simula-

tion shows that under the same parameters, naive sampling

can achieve a similar estimation error as tree sampling only

when roughly b > 0.2n. Next, leveraging the nice security

property of sampling, we show that some minor (but subtle)

modifications to tree sampling are sufficient to make it robust

against malicious behavior (without affecting the protocol’s

overhead).

In summary, our novel tree sampling protocol provides

qualitatively improved functionality (i.e., guaranteed avail-

ability) compared to existing secure aggregation protocols. It

solves a key challenge in naive sampling, reducing the linear

overhead to logarithmic overhead. The protocol then lever-

ages the nice/clean security property of sampling to achieve

our end goal. It is worth noting that we do not aim for better

performance than previous detection-only protocols, though

we will see later that some of them have comparable perfor-

mance overheads as ours.

2. RELATED WORK

Hierarchical secure aggregation [2, 10] assumes that the

exact set of live/reachable sensors is known. As a result, any

single dead sensor, destroyed sensor, radio-jammed sensor,

or compromised sensor can keep causing the final result to

fail verification. It is not obvious how to relax this assump-

∗With some additional algorithmic tricks, we can actu-
ally do better such that each sensor sends/receives only

O( 1

ǫ2
log 1

δ′
log min( 1

ǫ
, ǫ2n) + 1

ǫ
log 1

δ′
log max(ǫ2n, 2)) bits.

For clarity, we leave these additional tricks to our technical
report [27].
†For example, log 1

δ′
≤ 3 log 1

δ
holds for any ǫ ≤ 0.5, δ ≤ 0.1,

and n ≤ 1010.
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tion, especially because their protocol needs the base station

to verify the XOR of the MACs (i.e., Message Authentica-

tion Codes) generated by all sensors. Pinpointing and re-

voking the problematic sensors in untrusted sensor networks

can be far from trivial, and is an active research topic by it-

self. In particularly, when the verification fails in [2, 10], the

base station does not actually know which sensors’ MACs

are missing. Similarly, the recent SECOA secure aggrega-

tion protocol [20] also involves verification of folded values.

It can thus become unavailable whenever a single malicious

aggregator keeps corrupting the aggregation result.

Roy et al. [22] use verifiable Flajolet-Martin synopses [9]

to make the aggregation secure. The idea is for sensors to

generate MACs to “vouch” for the “1” bits in the Flajolet-

Martin synopsis. However, because the MACs can only be

verified by the base station and not by intermediate sensors

forwarding the message, such a design makes multi-hop flood-

ing attacks [5, 21, 24] possible. Namely, the adversary can

inject many messages with fake MACs, which will all be

forwarded to the base station and stall the propagation of

legitimate messages. Compared to both approaches [2, 10,

22], our protocol can always answer the aggregation query

despite all such attacks.

Yang et al. [26] propose a heuristic approach where the

sensors are partitioned into groups and each group produces

a single aggregation result. Groups with “outlier” results will

be further probed. The error bound in their approach depends

on deployment-specific factors such as sensor reading distri-

bution and positions of the malicious sensors. In compari-

son, we aim to achieve provable approximation error. For

secure aggregation in the Internet, Garofalakis et al. [12] use

a similar approach as [22] except that the vouches are public

key digital signatures. Generating digital signatures can be

(prohibitively) expensive for resource-constrained sensors.

To the best of our knowledge, this paper is the first to pro-

pose the concept of tree sampling and set sampling for es-

timating aggregates such as predicate count and sum. Sam-

pling of individual sensors is used in [1, 26] for detecting cor-

rupted aggregation results, instead of computing the result.

Sampling of individual sensors is also used in trusted envi-

ronment to catch big events or “elephants”[11] (similar to b
being large). Set sampling needs to leverage some properties

of sensor networks (i.e., the ability of preloading keys onto

the sensors). This could be part of the reason why despite

sampling being well-studied in many other contexts (e.g.,

databases), set sampling has not been used for estimating

aggregates. The well-known notion of Ranked Set Sampling

(RSS) [3] in statistics, though with a similar name, is funda-

mentally different from our set sampling. RSS is designed

for cases where each item may be either examined with low

fidelity (e.g., visual inspection) or with high fidelity (e.g.,

precise measurement). With RSS, a set of sampled items is

first examined with low fidelity and one of them is further

examined with high fidelity.

3. MODEL AND PROBLEM STATEMENT

We consider a multi-hop sensor network with n deployed

sensors and a trusted base station. The number of live sen-

sors is unknown to our protocol. Each sensor shares a unique

symmetric key with the base station. We assume that the base

station knows an upper bound on the (multi-hop) round-trip

time of the network.

Attack model. The adversary may compromise an arbi-

trary number of sensors, and potentially launch attacks from

more powerful devices such as laptops. The adversary has

a network-wide presence and may eavesdrop or inject mes-

sages at any point in the network. To make the system un-

available, the adversary may further launch a wide range of

DoS-related attacks: i) physically destroying the sensors, ii)

radio-jamming the sensors, and iii) launching DoS-related

attacks from compromised sensors. One example of the last

kind of attack is multi-hop flooding [5, 21, 24]‡ where the

compromised sensors generate many fake responses. These

responses are then all forwarded by honest sensors to the

base station, which can stall the propagation of legitimate

replies. Because the forwarding capacity of sensors is usu-

ally quite limited, it is rather easy for the fake messages to

saturate such forwarding capacity. Multi-hop flooding is a

serious attack in the sense that the honest sensors (by for-

warding the fake messages) are unknowingly helping to “am-

plify” the scope of the attack.

We aim to provide aggregation results of the readings from

those sensors that are not destroyed or radio-jammed. De-

stroyed sensors, radio-jammed sensors, and compromised

sensors may potentially partition the sensor network. In such

cases, our protocol will compute the aggregation results of

the readings from those sensors that have paths to and from

the base station. We do not assume symmetric links. If

needed, by computing a secure count in parallel, the base

station can estimate the number of reachable sensors which

have contributed to the final result.

In the remainder of the paper, to unify terminology and

simplify discussion, we pessimistically consider all physi-

cally destroyed, radio-jammed, compromised, and partitioned

sensors (that do not have paths to/from the base station) as

malicious sensors. Other sensors are honest. A malicious

sensor is byzantine and controlled by the adversary.

Approximation error and performance metrics. Our goal

is to compute (ǫ, δ)-approximation answers for aggregation

queries such as predicate count, sum, and average. An (ǫ, δ)-
approximation is guaranteed to be within (1± ǫ) multiplica-

tive factor of the correct answer with probability at least

1− δ.§ As in [1, 2, 10, 22], here a correct result allows mali-

‡[5, 21, 24] consider the multi-hop flooding attack (sometimes with
a different name) in contexts other than aggregation.
§This holds for all system sizes, not just for “sufficiently large” n.
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cious sensors to report arbitrary readings for themselves, but

they are not allowed to add additional fabricated readings or

change the reported readings of honest sensors. For conve-

nience later, we assume that ǫ ≤ 0.5 and δ ≤ 0.5. We further

define δ′ = δ/ logmax(4ǫ2n, 2). All log’s in this paper are

base-2.

We use communication complexity (also called node con-

gestion in [2]) as the performance measure, which is the

number of bits sent and received by each sensor (includ-

ing those bits forwarded for other sensors during multi-hop

forwarding). Tree sampling samples O( 1
ǫ2

log 1
δ′

log n) sets

in O(log n) stages, where all samples within a stage can be

done in parallel. We thus expect the time complexity to be

constrained by the communication complexity, and thus do

not discuss time complexity explicitly.

Our protocol will only use symmetric key cryptography.

Public key cryptography has become feasible [13] in some

specific contexts [7] with specific sensor hardware. But it re-

mains much more expensive than symmetric key operations.

Using only symmetric key cryptography thus makes our pro-

tocols more general and more efficient.

4. OVERVIEW OF OUR APPROACH

The main challenge in secure in-network aggregation is to

prevent malicious sensors from behaving dishonestly when

aggregating multiple values into one. Somewhat ironically,

leveraging sensors to aggregate data in-network is exactly

the key idea behind in-network aggregation. In compari-

son, sampling has the nice security property that each sam-

ple only involves a single sensor’s reading and thus it is easy

to make it secure (e.g., by including a MAC on the sample).

The challenge is how to avoid requiring an excessive number

of samples when the predicate count or sum is small.

Our novel design of set sampling and tree sampling over-

comes this challenge. To ensure that the sample request (re-

ply) always reaches the sampled sensor (base station) despite

adversarial interference, the request (reply) often needs to be

flooded to all sensors already¶. Set sampling allows any sen-

sor in some given set to respond to the request, since they all

see the request already. But to avoid Ω(1) communication

complexity near the base station, only a single response will

be forwarded back to the base station. Sampling each set thus

conceptually involves flooding the network twice, requiring

each sensor to send/receive exactly two 8-byte payloads (see

later for explanation on the payload size).

It is worth emphasizing that flooding is not inherently more

expensive than local communication among neighboring sen-

sors. For example, most previous secure aggregation proto-

cols [2, 10, 12, 22] do not involve flooding, but require each

sensor to communicate with its neighbors. However, flood-

ing the network x times incurs exactly the same overhead as

¶One could use secure routing to avoid flooding, but secure routing
itself is an active research area and may not be “highly available”.

requiring each sensor to send/receive x messages to/from its

neighbors. Instead of quantifying the overhead as numbers

of flooding or numbers of local communication, we directly

use communication complexity as a unified metric.

Tree sampling samples O( 1
ǫ2

log 1
δ′

log n) sets where mul-

tiple samples can potentially be combined in one message.

Our simulation later will show that even under n = 10, 000,

tree sampling can achieve an average ǫ of 0.08 while incur-

ring only 250 to 300 samples. These samples are taken in

around 5–15 sequential stages. For smaller n, the number of

samples needed will be smaller as well.

Tree sampling has a rather similar communication com-

plexity as Roy et al.’s detection-only aggregation protocol [22]

and also Garofalakis et al.’s protocol [12]. All these proto-

cols have a 1
ǫ2

factor. This is quite fundamental in approxi-

mate counting and sampling: Even the well-know synopsis

diffusion protocol [19], which is for aggregation in trusted

environment, has such 1
ǫ2

factor. Because of this 1
ǫ2

fac-

tor, tree sampling works best if ǫ is not too small. As some

concrete examples, Garofalakis et al. [12] mainly focus on

ǫ between 0.1 and 0.25, while synopsis diffusion [19] con-

siders ǫ around 0.15. Quite interestingly, the motivation be-

hind synopsis diffusion is exactly to reduce the large ǫ error

(well above 0.15) that results from message losses in tradi-

tional tree-based aggregation such as TAG [16].‖ In other

words, driving ǫ much lower than 0.1 can be non-trivial even

in trusted environments.

5. SET SAMPLING

This section first describes a simple keyed predicate test

protocol to make sampling robust against multi-hop flood-

ing attacks, and then discuss set sampling. We discuss tree

sampling afterward.

Keyed predicate test. Sampling is in general quite robust

against adversarial interference. The sampled sensor can

generate a MAC (i.e., Message Authentication Code) on the

reading and then flood the reply back to the base station. But

the malicious sensors can still launch multi-hop flooding at-

tacks [5, 21, 24] and inject many fake replies to stall the

propagation of the legitimate reply. Without public key cryp-

tography, a forwarding sensor cannot authenticate the source

of a reply and thus cannot tell whether the reply originates

from the sampled sensor. As a result, the sensor will forward

all the fake replies, potentially exhausting its forwarding ca-

pacity. This is similar to a DoS attack on router forwarding

capacity in the Internet, except that multi-hop flooding at-

tacks are much easier to launch due to sensors’ limited for-

warding capacity. Rate limiting will not help because a mali-

cious sensor can claim that it is just forwarding replies orig-

‖One may wonder how message losses will affect the ǫ in tree sam-
pling. Because tree sampling uses flooding, its robustness against
message loss is at least as good as synopsis diffusion. One can
view tree sampling as simultaneously addressing the security issue
and the message loss issue.
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inated from other sensors. Public key cryptography will not

completely remove the problem either, since the sensors will

need to both generate and verify signatures. This restricts the

applicability of cryptographic techniques (e.g., Rabin signa-

tures) with asymmetric cost.

Fortunately, there are existing solutions to tolerate multi-

hop flooding attacks in the context of authenticated broad-

cast (from the base station). For example, Ning et al. [21]

mitigate such attacks using message puzzles created by the

base station (which has ample computational resources). Our

keyed predicate test protocol will leverage such multihop-

flooding-resilient “base station → sensor” communication to

enable multihop-flooding-resilient “sensor → base station”

communication (for the propagation of sample replies). From

now on, by “authenticated broadcast” or “broadcast”, we

mean authenticated broadcast approaches (e.g., [21]) that are

resilient to multi-hop flooding.

The keyed predicate test protocol tests whether any sen-

sor holding a particular symmetric key K satisfies a certain

predicate. We do not make any assumption on the number

of sensors holding K – this will be useful later. For now we

assume that a sensor holding K also knows some “name” for

uniquely referring to K , so that the base station can refer to

the key by its name without revealing the key itself. We re-

move this (mild) assumption later. In the protocol, the base

station first (authenticated) broadcasts to all sensors:

〈name of K , the predicate, N , H(MACK(N ))〉
Here N is a nonce and H() is some well-known one-way hash

function. MACK(N ) is the MAC generated on N using key

K . An honest sensor holding K and satisfying the predicate

will generate and locally broadcast the reply, 〈MACK(N )〉,
to its neighbors. Any malicious sensor holding key K may

do so as well. Other sensors simply record/store the hash

H(MACK(N )). This hash serves as a fingerprint of

MACK(N ). It allows the sensors to verify the valid reply of

〈MACK(N )〉, without enabling them to generate the reply

if they do not know K . A (malicious) sensor not knowing

K can replay the valid reply after seeing it at least once, but

we will show that this does not matter. If an honest sensor

receives a message whose hash matches the hash stored, it

forwards the message via a local broadcast and then discards

the stored hash.

Such design effectively prevents multi-hop flooding attacks:

The only message that will propagate in the network is

〈MACK(N )〉, and furthermore every sensor will forward it

at most once. Malicious sensors can inject fake responses,

but those will never be forwarded. Fundamentally, we can

achieve this because the base station knows the potential re-

ply (i.e., MACK(N )), and can pre-compute and broadcast its

hash. This also means that keyed predicate test only allows

the base station to pose “yes/no” questions.

If within some timeout, the base station receives MACK(N ),

we say that the test succeeds. The following theorem sum-

marizes the security property of the protocol. Intuitively,

only a sensor holding K can potentially create the first re-

ply, and once a valid reply appears, it will keep propagating:

THEOREM 1. If some honest sensor holding K satisfies

the predicate, then the keyed predicate test always succeeds.

If no honest sensor holding K satisfies the predicate and no

malicious sensor holds K , then the keyed predicate test can

never succeed.

Proof sketch: The second claim is trivial since MACK(N )

will never be generated. For the first claim, it is obvious that

some honest sensor A will generate the reply MACK(N ).

The question is whether this reply will be propagated to the

base station, given that each sensor only forwards at most

one message. But if a sensor drops the reply from A because

it previously forwarded some other reply, that other reply

must be MACK(N ) as well. More formally, there exists a

path (which is implicit and unknown by the protocol) from

A to the base station that consists of only honest sensors (see

Section 3), and each sensor on that path must have forwarded

a reply MACK(N ). Thus the base station is guaranteed to

receive MACK(N ). 2

Sample a set efficiently. Set sampling enables the base sta-

tion to test whether any sensor in a given set satisfies the

predicate (but not how many sensors). It is straightforward to

implement set sampling using keyed predicate test. For ex-

ample, consider a set of three sensors {A, B, C}. At deploy-

ment time, we can load a symmetric key K corresponding to

the set onto the three sensors. To sample the set, the base sta-

tion simply performs a keyed predicate test on K . The com-

munication complexity incurred is always O(1) and is inde-

pendent of the set size. Notice that such set sampling is pos-

sible only because we can preload K onto the three sensors.

In other application domains of sampling (e.g., databases),

these properties usually do not hold.

Set sampling has several important restrictions. First, the

sets must be constructed before deployment. Second, since

sensors may be deployed incrementally, when adding new

sensors, we cannot change the set membership of old sen-

sors. Finally, due to limited capacity of sensors and because

each set requires loading a distinct symmetric key onto the

sensor, a sensor can only belong to a small number of sam-

ple sets. Thus, only an extremely small fraction of all the 2n

power sets of the sensors can be used.

6. TREE SAMPLING – ASSUMING ALL

SENSORS ARE HONEST

Section 6 through 8 explain the tree sampling protocol, in

a progressive fashion. Section 6 first describes tree sampling

for predicate count while assuming all sensors are honest.

Section 7 explains why the protocol can easily account for

malicious sensors, and proves formal guarantees. Section 8

generalizes to sum and average.
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meaning example values asymptotically

ǫ multiplicative approximation factor 0.2

δ probability of the error exceeding ǫ 0.05

δ′ defined as δ/ log max(4ǫ2n, 2) 0.0045

n maximum number of sensors deployed 10, 000

b number of black sensors (i.e., sensors satisfying the predicate) 0 to n

h height of the sampling tree log(4n)

ni number of keys at level i 2i

bi number of black keys at level i 0 to ni

ri bi/ni 0 to 1

α level α is the level found by the binary search

c1 # samples taken at each level examined by the binary search 40 Θ(log log log n
δ

)

c2 # samples taken at level α 200 Θ( 1
ǫ2

log 1
δ
)

c3 minimum # black keys needed to invoke the occupancy bound 30 Θ( 1
ǫ2

log 1
δ′

)

Table 1: Notations used in the tree sampling protocol. The example values are also what we use later in simulation.

6.1 Overview for Computing Predicate Count

We say that a sensor is black if it satisfies the predicate

in the predicate count query. Let b be the number of black

sensors (Table 1). The naive way of sampling would be to

draw certain number of uniformly random samples from the

n sensors, calculate the fraction of black sensors observed,

and finally multiply that fraction with n to obtain an esti-

mation for b. To obtain an (ǫ, δ)-approximation for b in the

above approach, we will need to sample Ω(n
b

1
ǫ2

log 1
δ
) sen-

sors [4]. Intuitively, when b is small, we need many samples

in order to encounter any black sensor. Before encountering

a reasonable number of black sensors, one cannot properly

estimate b.

Set sampling offers the potential of overcoming such lower

bound. Namely, we can construct the sets such that regard-

less of how small b is, some sets will contain black sensors.

For example, if we define a set to include all sensors, then

as long as b > 0, the keyed predicate test on that set will

succeed. This by itself of course, does not allow us to prop-

erly estimate b. In tree sampling, the basic idea is to leverage

different (related) sets of different sizes. The key research

question is how to define these sets and how to sample them

(not all sets will be sampled), with the goal of minimizing

the number of sets sampled.

Using the sampling tree to construct random sets. We

use a sampling tree to construct the sets for sampling. This

tree is an internal data structure stored by the base station,

where every tree node is a distinct symmetric key. The sam-

pling tree has no relation to the topology of the sensor net-

work. In particular, nodes/edges in the tree are not sen-

sors/communication links. Specifically, the sampling tree

is a complete binary tree with 4N leaves and log(4N) lev-

els. We will explain the magic number “4” later. N is a

reasonable upper bound on the intended sensor network de-

K4

: black sensor

: non−black sensor

: black key

: non−black key

r0 = 1

r4 = 3/16 

r3 = 3/8 

r2 = 2/4

r1 = 2/2

K1

sensor A

K2

K3

K5

Figure 1: Example sampling tree with n = 4 and b =
3. Square boxes are sensors and circles are tree nodes

(i.e., keys). Solid lines are tree edges and dashed lines are

“association” relations between sensors and tree leaves.

ployment size. If N is overly large (e.g., exponential of n),

tree sampling will unnecessarily incur O( 1
ǫ2

log 1
δ′

log N) in-

stead of O( 1
ǫ2

log 1
δ′

log n) communication complexity. The

practical difference is likely to be small though since it is

logarithmic. To simplify notation, we assume N = n in the

following.

The root of the sampling tree is at level 0 while the leaves

are at level h = log(4n) (Figure 1). Each tree node is a

distinct symmetric key. At deployment time, the base sta-

tion generates random keys as tree nodes. For each sensor

deployed (which can be deployed incrementally), the base

station picks a uniformly random leaf, and then loads onto

the sensor all log(4n) keys on the tree path from the root to

that leaf. For example, in Figure 1, the five keys K1 through

K5 are loaded onto sensor A. We say that the sensor is now

associated with that leaf. After deploying n sensors, it is

possible for some leaves never to be chosen or to be chosen

multiple times. The sampling tree is only stored by the base

station.

Protocol overview. From now on, when we say “sample a

key K”, we mean invoking the keyed predicate test on key

6



Step # samples

1 Sample the root and return b̂ = 0 if the root is not black; O(1)

2 Use binary search (Figure 3) to find level α with rα not too close to 0 or 1; o(log n log 1
δ
)

3 Sample level α using c2 samples to get r̂α; O( 1
ǫ2

log 1
δ
)

4 If r̂α < 3
20 , set r̂α = 3

20 ; If r̂α > 5
6 , set r̂α = 5

6 ; —

5 If r̂αnα ≥ c3, return b̂ = log(1 − r̂α)/ log(1 − 1/nα); —

6 Exhaustively sample all keys at level α (where the number of keys is guaranteed to be small); O( 1
ǫ2

log 1
δ′

)

7 Track down the tree level by level starting from level α and let i be the current level: O( 1
ǫ2

log 1
δ′

log n)

8 If ri > 5
6 , set ri = 5

6 ; —

9 If rini ≥ c3, return b̂ = log(1 − ri)/ log(1 − 1/ni); —

10 If i = h, sample sensors associated with black leaves and return the # of black sensors; —

Figure 2: Pseudo-code for the tree sampling protocol (see text for where the constants (e.g., 3/20) are from).

K . The tree sampling protocol will sample some carefully

(and adaptively) chosen keys on the sampling tree. A key K
at level i corresponds to a random set containing roughly 1

2i

fraction of all sensors.

A key K in the sampling tree is black if there is at least one

black sensor holding K . Obviously, if a leaf key is black,

then all keys on the path from that leaf to the root must be

black as well. We use ni and bi to denote the number of keys

and black keys at level i, respectively. We define ri = bi/ni

(Figure 1).

If we knew the color of all tree nodes (i.e., keys), then

one could estimate b relatively easily. However, the color of

the keys are unknown beforehand, since it depends on which

sensors satisfy the predicate in the current query. We can

sample individual keys to reveal their colors, and the goal

of tree sampling is to estimate b by revealing the colors of

only a small fraction of the keys. To do so, the protocol will

leverage a number of interesting properties of the sampling

tree.

Figure 2 presents the high-level pseudo-code of the pro-

tocol, where Step 2 in the protocol is detailed in Figure 3.

The protocol starts by sampling the root key, and returns the

precise count of 0 if the root key is not black. Otherwise it

uses the binary search protocol from Figure 3 to find a cer-

tain level α on the tree where rα is bounded away from both

0 and 1. Later at Step 5, if r̂α · nα is larger than some num-

ber c3, the protocol can translate r̂α to the final estimation for

b. (Here the hat “ ˆ ” means estimated value, same below.)

If not, the protocol continues onto lower levels until certain

conditions are met, and then return an estimation for b. The

next explains the protocol in much greater detail, while ig-

noring Step 4 and 8. Section 7 will explain those two steps,

which serve to deal with malicious sensors.

6.2 The “Appropriate” Level α and Finding It
via Binary Search

As explained earlier, the challenge in naive sampling arises

2.1 x = 0, y = h;

2.2 repeat forever

2.3 i = ⌊(x + y)/2⌋;

2.4 take c1 samples at level i to get r̂i;

2.5 if (r̂i > 5
8 ) x = i;

2.6 else if (r̂i < 3
16 ) y = i;

2.7 else return i;

2.8 if (x + 1 = y) return x;

Figure 3: Binary search on the levels.

when b/n is small. From the structure of the sampling tree,

one can trivially prove that bi/ni = ri monotonically in-

creases as we move up the tree (Figure 1). At the root level,

we must have b0/n0 = r0 = 1 as long as b > 0. This sug-

gests that we can at least effectively use naive sampling to

estimate bi for all those levels near the top of the tree. How-

ever, knowing those bi’s may or may not help us to estimate

b. For example, knowing that b1 = 2 gives us little informa-

tion about b: We can only infer that b ≥ 2, without having

any likely upper bound for b. But if bi/ni is not close to 1,

then those (ni − bi) non-black keys are evidence that b is not

likely to be larger than some value. Thus we need to find

an “appropriate” level i where bi/ni is neither too close to 0

(so we can estimate bi effectively via naive sampling on that

level) nor too close to 1 (so we can translate bi to b). Or rig-

orously speaking, ri needs to be bounded away from 0 and 1

by constants.

For any i, we must have ni+1 = 2ni and bi ≤ bi+1 ≤ 2bi.

This in turn means that on the sampling tree, 0.5 ≤ ri+1

ri

≤ 1
(Figure 1). In other words, as we move down the tree, ri

monotonically decreases and the maximum decrease is half.

At the bottom of the tree, we must have rh ≤ b/(4n) ≤
n/4n = 1

4 . Together with r0 = 1, this guarantees the exis-

tence of an “appropriate” level:

LEMMA 2. If b0 = 1, then there must exist an i (0 ≤ i ≤
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h) such that ri ∈ [14 , 1
2 ].

Proof sketch: Prove by contradiction. Since rh < 1
4 and

r0 = 1, we must be able to find two adjacent levels j and

j + 1, where rj > 1
2 and rj+1 < 1

4 . But this would imply

rj+1/rj < 0.5, which is impossible. 2

The interval of [14 , 1
2 ] in the lemma is chosen for simplicity.

Any interval [x, 2x] where 0 < x < 0.5 will work, as long

as the sampling tree has n/x leaves. Since we use x = 1
4 ,

our sampling tree is designed to have 4 · n leaves.

To find such an “appropriate” level, since ri is monotonic

with i, we use a binary search on the log(4n) levels (Fig-

ure 3). For each level i examined, the protocol samples c1

uniformly random keys on that level to generate an estimate

r̂i. Namely, r̂i is simply calculated as the faction of black

keys among the c1 sampled keys. Here c1 = c′1 log log log n
δ

for some universal constant c′1. Classic sampling theory [4]

shows that taking c1 samples gives the following error guar-

antee:

LEMMA 3. There exists a universal constant c′1, such that

taking c1 = c′1 log log log n
δ

samples on any level i will al-

low us to produce r̂i satisfying the following property: With

probability at least 1 − δ
log log(4n) :

{

|r̂i − ri| ≤ 1
4ri for ri ≥ 3

20

r̂i <
(

1 + 1
4

)

× 3
20 for ri < 3

20

(1)

We say that an r̂i is good if it satisfies Equation 1. The

first inequality above says that if ri is not too small, then r̂i is

within (1± 1
4 ) factor of ri. The second inequality shows that

if ri is small, then at least r̂i is not likely to be too large. We

pick the factor 1
4 for simplicity – any constant smaller than

1
4 will work as well. All other constants in tree sampling are

derived from this 1
4 factor and the interval [ 14 , 1

2 ] in Lemma 2.

Lemma 2 tells us that some ri must be within [14 , 1
2 ]. Tak-

ing estimation error into account, the binary search thus stops

and returns if it finds a level α with r̂α between 1
4×(1− 1

4 ) =
3
16 and 1

2 × (1 + 1
4 ) = 5

8 (Figure 4). Notice that if r̂α ∈
[ 3
16 , 5

8 ], then rα may not actually be in [ 14 , 1
2 ], but it is guar-

anteed to be within 3
16/(1 + 1

4 ) = 3
20 and 5

8/(1 − 1
4 ) = 5

6 .

This explains why we used 3
20 in Lemma 3. On the other

hand, 3
20 is not necessary for the lemma to hold – the lemma

actually holds for any positive constant bounded away from

0.

It is critical to notice that the binary search now operates

on r̂i’s instead of on the accurate ri’s. Because of estima-

tion error, r̂i’s may not actually be monotonic with i. The

following theorem proves that despite non-monotonic r̂i’s,

with probability at least 1 − δ, rα is guaranteed to be within

[ 3
20 , 5

6 ]. The theorem is a special case of a stronger theorem

later (Theorem 6). We thus do not provide a redundant proof.

THEOREM 4. Suppose b0 = 1. With probability at least

1 − δ, the binary search is successful in the sense that it

returns a level α where rα ∈ [ 3
20 , 5

6 ].

Z

6
51

4
1
2 8

53
20 16

3

X

Y

Figure 4: Three intervals X = [14 , 1
2 ], Y = [ 3

16 , 5
8 ] and

Z = [ 3
20 , 5

6 ]. With (1± 1
4 ) multiplicative estimation error,

the estimation of any value in X must be in Y , while the

estimation of any value outside of Z can never be in Y .

The total number of samples taken by the binary search is

O(log log n · log log log n
δ

) = o(log n log 1
δ
). The protocol

then (at Step 3) further uses c2 = Θ( 1
ǫ2

log 1
δ
) samples at

level α to obtain an (ǫ, δ)-approximation of r̂α for rα. This

is possible because bα/nα is already known to be larger than
3
20 (assuming the binary search was successful).

6.3 Using Occupancy Bound to Estimate b

The binary search finds a level α where rα is bounded

away from 1. Tree sampling will eventually estimate b based

on either r̂α or some ri where i > α. Notice that since i > α
and ri ≤ rα, ri will be guaranteed to be bounded away from

1 as well.

To obtain some intuition for the final estimation, consider

any given level i and the ni subtrees rooted at the ni keys

at that level. The probability that a given sensor is associ-

ated with any of the leaves of a given subtree is exactly 1
ni

.

We can thus draw a connection to the classic balls-into-bins

problems [18] where each black sensor is a ball and goes

into a uniformly random bin out of ni bins. A key at level i
is black iff the bin is not empty. Our task is to estimate the

number of balls (b) given the number of occupied bins (bi).

Given b balls and ni bins, we have the expected number

of occupied bins E[bi] = ni · (1 − (1 − 1/ni)
b). If we sub-

stitute E[bi] with bi and solve for b, we obtain one possible

estimator for b:

b̂ = log(1 − bi/ni)/ log(1 − 1/ni)

= log(1 − ri)/ log(1 − 1/ni) (2)

The crux, of course, is to understand how accurate the esti-

mator is. We are able to prove that the above b̂ is an (ǫ, δ)-
approximation of b if i) ri is bounded away from 1 by some

constant, and ii) ri · ni ≥ c3 = c′3 · 1
ǫ2

log 1
δ′

= Θ( 1
ǫ2

log 1
δ′

)
for some universal constant c′3. The proving technique is

largely standard except that it uses a Chernoff-type occu-

pancy tail bound from [8]. Due to space limitations, we

leave the detailed proof to [27]. It is worth noting that c3

contains the term log 1
δ′

(with δ′ = δ/ logmax(4ǫ2n, 2)) in-

stead of log 1
δ

. This is because our proof needs to invoke a

union bound across all O(log(4ǫ2n)) levels below level α.

6.4 “Tracking Down” the Tree

After the binary search returns a level α, the protocol first
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tries to invoke an occupancy bound on level α (Step 5) to

estimate b from r̂α
∗∗. If this is not possible because r̂α ·nα <

c3, the protocol exhaustively samples all nα keys at level α
(Step 6). Quite interestingly, we can efficiently do so exactly

because r̂α · nα < c3, which implies that nα < c3/r̂α <
20
3 c3 = O( 1

ǫ2
log 1

δ′
).

Only black keys can have black children keys. Thus after

knowing the color of all keys at level α, we can “track down”

the tree efficiently starting from level α (Step 7). To “track

down” to level α + 1 and reveal the color of all the keys

on that level, the protocol simply samples all the children

of the level-α black keys, incurring exactly 2bα ≤ 2nα =
O( 1

ǫ2
log 1

δ′
) samples.

We now know the color of all keys at level α + 1. If

rα+1 · nα+1 ≥ c3, we can output b̂ from Equation 2 with

i = α + 1. Otherwise the protocol continues on and tracks

down to level α + 2 by taking 2bα+1 = rα+1 · nα+1 <
2c3 = O( 1

ǫ2
log 1

δ′
) samples, and so on. A critical property

here is that the number of samples incurred (for each level

tracked) is independent of ni and is always O( 1
ǫ2

log 1
δ′

).
With O(log n) levels, this becomes O( 1

ǫ2
log 1

δ′
log n).

6.5 Reaching the Bottom

We may reach the bottom of the tree without being able to

invoke the occupancy bound. In such a case, we must have

bh < c3 = Θ( 1
ǫ2

log 1
δ′

). The protocol then directly samples

all sensors associated with the bh leaf black keys (Step 8).

Classic balls-into-bins problem [18] tells us that if we throw

n balls into 4n bins uniformly randomly, with probability

at least 1 − 1
n

, the most loaded bin contains O(log n) balls.

Thus the expected number of balls in the most loaded bin

will be at most (1− 1
n
) ·O(log n) + 1

n
· n = O(log n). This

mean that the bh leaves will have on expectation O(bh log n)
sensors associated with them. Sampling all these sensors will

take O( 1
ǫ2

log 1
δ′

log n) samples on expectation.

7. TREE SAMPLING – ACCOUNTING FOR

MALICIOUS SENSORS

This section models the disruptive behavior of malicious

sensors, and then proves the end guarantees of tree sampling

despite the malicious sensors. In particular, we will explain

why Step 4 and 8 in Figure 2 are needed. We leave the

full proofs for Theorem 6 and 7 to [27], and focus on the

intuitions behind these theorems in this section.

7.1 Modeling the Adversary

We say that a sensor is black if it is honest and it satisfies

the predicate. It is white if it is honest but does not satisfy

the predicate. A sensor is grey if it is malicious. We use b, w,
∗∗Step 5 invokes Equation 2 using r̂α instead of the accurate rα.
Using the fact that rα is bounded away from 1, one can easily ver-
ify that the ǫ-factor error in r̂α can be amplified by at most some
constant factor when plugged into Equation 2. Thus the asymptotic
property will not be affected.

and g to denote the number of black, white, and grey sensors,

respectively. As discussed in Section 3, we do not aim at

preventing the malicious sensors from lying about their own

readings. Thus any result within [b, b + g] is considered as

correct for the predicate count query.

A key in the sampling tree is black if at least one black

sensor holds it. A key is white if only white sensors hold it.

Finally, a key is grey if it is neither black nor white. We let

bi, wi, and gi be the number of black, white, and grey keys

at level i, respectively. The total number of keys at level i is

still ni. Similar as before, we consider an ri value as correct

for level i if ri ∈ [ bi

ni

, bi+gi

ni

]. Namely, any value within the

previous range corresponds to some possible “instantiation”

of the readings from the malicious sensors. One can trivially

prove the following simple sandwiching property:

LEMMA 5. If ri and r′i (ri < r′i) are both correct for level

i, then any r′′i ∈ [ri, r
′
i] is correct for level i as well.

Now let us consider how the adversary can attack tree sam-

pling. A nice feature of tree sampling is that the protocol is

executed locally by the trusted base station, except when the

protocol invokes keyed predicate tests to sample keys. Keyed

predicate tests always return a binary result. This extremely

simple interface allows us to reason about security cleanly.

When we sample a key, we say that the key tests black if

the keyed predicate test succeeds. Otherwise it tests white.

Applying Theorem 1 immediately tells us that black keys

always test black and white keys always test white. Thus

the only possible attack on tree sampling is for the adversary

to manipulate the (binary) sample results of grey keys. We

assume that tree sampling never samples the same key more

than once. This can be trivially achieved by the base station

remembering the color of the keys already sampled. Now all

the adversary can do is to control which grey keys should test

black and which should test white.

On a given level i, regardless of the adversary’s choices,

tree sampling is guaranteed to “observe” some correct ri

when operating on that level. Namely, the ri “observed”

must fall between bi

ni

(when all grey keys test white) and
bi+gi

ni

(when all grey keys test black). Thus Lemma 3 still

holds, except that it now holds for some correct ri ∈ [ bi

ni

, bi+gi

ni

]

instead of for ri = bi

ni

. Similarly, Equation 2 (i.e., the oc-

cupancy bound) can still produce an (ǫ, δ)-approximation,

since it is only concerned with the probabilistic property of

a single level. On the other hand, the situation can become

trickier when tree sampling relies on properties across mul-

tiple tree levels. As an example, the grey sensors can make

the observed ri and ri+1 to differ by more than a factor of

2, if they let all the level-i grey keys test black and all the

level-(i + 1) grey keys test white. The next will prove tree

sampling’s guarantees despite all such attacks.

7.2 Provable Property of the Binary Search
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We will first show that despite the existence of grey keys,

the binary search from Figure 3 still provides a similar guar-

antee as before:

THEOREM 6. Suppose the root key tests black. Regard-

less of the behavior of the adversary, with probability at least

1 − δ, the binary search is successful in the sense that it re-

turns a level α where there exists some correct rα ∈ [ 3
20 , 5

6 ].

To obtain some intuition on why the theorem holds, we

will refer to the steps in Figure 3. We say that an r̂i obtained

at Step 2.4 in Figure 3 is good if there exists some correct ri

satisfying Equation 1. Assuming all r̂i’s being good, if the

binary search does find a level α with r̂α ∈ [ 3
16 , 5

8 ], then by

definition, some correct rα is guaranteed to be within [ 3
20 , 5

6 ].
The tricky part is that the adversary may prevent the al-

gorithm from finding an r̂α ∈ [ 3
16 , 5

8 ], and the binary search

may reach two adjacent levels with r̂i > 5
8 and r̂i+1 < 3

16 .

But if the two estimates r̂i > 5
8 and r̂i+1 < 3

16 are both

good, we must have some correct ri > 1
2 and some cor-

rect ri+1 < 1
4 . Given the correct ri+1 < 1

4 , one can show

the existence of a second correct r′i < 1
2 . The sandwiching

property then immediately tells us that r′′i = 1
2 is correct for

level i as well. In other words, even if the binary search sim-

ply returns level i here (as at Step 2.8), we are still assured

that some correct r′′i is within [ 3
20 , 5

6 ].

7.3 Main Theorem on Tree Sampling

We can now prove the main theorem on tree sampling re-

garding its communication complexity and approximation

error. We first provide some intuition while referring to Fig-

ure 2. Tree sampling may return an estimation for b at Step

1, 5, 9, or 10. The result returned at Step 1 and 10 is al-

ways correct regardless of the behavior of the grey sensors.

In particular for Step 10, when tracking down the tree, the al-

gorithm will always track down black keys since the parent

of a black key must be black as well. Step 5 and 9 invoke the

occupancy bound. As explained earlier, the approximation

error guarantee of the occupancy bound relies on the prob-

abilistic property of a single level, and thus will still hold

despite the grey keys.

The only tricky part is that the occupancy bound invoked

by Step 5 implicitly requires that r̂α be bounded away from

1. Without grey keys and after a successful binary search,

this requirement will always be met because a successful bi-

nary search guarantees rα ≤ 5
6 . With grey keys, the binary

search still guarantees that some correct rα is no larger than
5
6 . But the grey keys on level α may interfere by testing black

at Step 3††. This may cause the r̂α obtained at Step 3 to be

close to 1.

The key observation here is that this close-to-one r̂α is

entirely artificial, and is caused by the grey sensors testing

††Step 3 takes a larger number of samples on level α than Step 2.
Thus even though we never sample the same key twice, Step 3 may
still encounter grey keys that are sampled for the very first time.

black. Given that a successful binary search already guaran-

tees the existence of some correct rα ≤ 5
6 , if Step 3 obtains

an r̂α > 5
6 , we can simply ignore that r̂α and use 5

6 instead.

This is exactly what Step 4 does. By a similar argument,

Step 4 can safely substitute overly small r̂α with 3
20 . The

purpose of doing so is to ensure that the occupancy bound

can be successfully invoked when nα is Ω( 1
ǫ2

log 1
δ′

). Other-

wise we might be forced to sample Ω( 1
ǫ2

log 1
δ′

) keys in Step

6, which would disrupt the asymptotic performance of the

protocol.

A similar issue can arise when Step 9 invokes the occu-

pancy bound, if the grey sensors cause the observed ri to be

close to 1. Similar as before, we already know that there is

some correct rα ≤ 5
6 . This means there exists some correct

r′i ≤ 5
6 (since i > α at Step 9). If we observe an ri > 5

6 ,

there must exist another correct r′′i = 5
6 (from the sandwich-

ing property). This means that we can safely ignore the ri

obtained and use 5
6 instead (Step 8).

The theorem below summarizes these arguments:

THEOREM 7. Consider any given 0 < δ0 ≤ 0.5 and

0 < ǫ0 ≤ 0.5. (We use δ0 and ǫ0 to avoid notation col-

lision.) Regardless of the behavior of the adversary, tree

sampling in Figure 2 outputs a predicate count after tak-

ing on expectation O( 1
ǫ2
0

log 1
δ′

0

log n) samples, where δ′0 =

δ0/ log max(4ǫ20n, 2). Furthermore, with probability at least

1 − δ0, the output b̂ is guaranteed to be within (1 ± ǫ0) mul-

tiplicative factor of some x where x ∈ [b, b + g].

8. GENERALIZING TO SUM / AVERAGE

The tree sampling protocol for predicate count can be eas-

ily generalized to sum and average. Without loss of general-

ity, we will assume that the reading on each sensor is an inte-

ger within [1, m]. The simplest way to compute the sum is to

do a predicate count for each of the log2 m bits in the binary

form of readings. A much better approach, however, is for

each sensor to “emulate” v virtual sensors. Predicate count

can then be invoked on the v ·n virtual sensors. At each invo-

cation, a (physical) sensor can report a value between [0, v].
If we represent the sensor readings in base-(v + 1) format,

we will only need to invoke predicate count logv+1 m times.

In each keyed predicate test, the communication complex-

ity of a physical sensor is independent of the number of vir-

tual sensors it emulates, since the physical sensor only needs

to locally broadcast/forward the reply MACK(N ) at most

once. Thus the only cost of emulating v virtual sensors is to

store O(log(vn)) keys for each of them. In most cases, we

can afford to have v =
√

m, and thus only need to invoke

predicate count logv+1 m = O(1) times. The resulting com-

munication complexity is then O( 1
ǫ2

log 1
δ′

log(nm)), which

is the same as O( 1
ǫ2

log 1
δ′

log n) if m = O(n).
Finally, average is simply sum divided by count. The gen-

eralization of the formal arguments on approximation error

to sum and average is straightforward.
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Figure 5: Relative estimation error (i.e., |b̂ − b|/b)

achieved by tree sampling. The “x percentile” value

means that x% of the 200 trials have an error below that

value.

9. IMPLEMENTATION ISSUES

Despite the subtlety in some of its algorithmic concepts,

tree sampling is rather straightforward to implement. Our

simulator later implements the protocol from Figure 2 in less

than 200 lines of Java code. A salient feature of tree sam-

pling is that the resource-constrained sensors only needs to

implement the simple keyed predicate test from Section 5.

The main protocol (i.e., Figure 2) is only on the base station.

Also, only the base station needs to store the sampling tree

and each sensor only stores O(log n) keys.

Several important optimizations below should be used in a

real implementation. Each sample in the protocol involves a

keyed predicate test. The predicate and the nonce N in the

test are the same for all samples, and thus only need to be dis-

seminated once. The base station does not need to indicate

the name of the key either, since a sensor only has a lim-

ited number of keys and it can simply try all of them. Thus

each sample will only involve the base station broadcasting

H(MACK(N)), and then waiting for the potential reply of

MACK(N). This means that every sample will require each

sensor to send and receive two 8-byte payloads. Tree sam-

pling only has O(log n) stages, where all samples within a

stage can be taken in parallel and can thus be combined into

smaller number of message.

10. SIMULATION RESULTS

Our simulation aims to better understand the hidden con-

stants in the asymptotic communication complexity of tree

sampling, under some example parameter values. Our simu-

lator does not simulate malicious sensors because simulation

experiments fundamentally cannot cover all possible strate-

gies of the adversary. Thus ultimately, the only way to reason

about the impact of malicious sensors is via rigorous formal

proofs, as in Section 7.

For all experiments, we use n = 10, 000. This n value

is intentionally chosen to be large so that it can capture most

sensor networks today. Smaller n only makes our results bet-
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Figure 6: Average number of samples taken by tree sam-

pling. In addition to the “total” number of samples, we

also plot the number of samples taken during “binary

search”, for “sampling level α”, and also for “tracking

down the tree”. The number of samples taken in all other

steps are negligible.

ter. We aim to achieve an ǫ of 0.2 and a δ of either 0.05 or

0.02. The average ǫ will be lower and will be around 0.08.

Our choice of ǫ is consistent with prior work [12, 19]. We

incorporate the following natural optimization: If the proto-

col intends to take s samples on a level (on the sampling tree)

with less than s keys, it simply samples all keys on that level.

We use c1 = 40, c2 = 200, and c3 = 30 (as in Table 1) in

our simulation.

For a given b, we perform 200 simulation trials, and cal-

culate the relative approximation error (i.e., |b̂ − b|/b) in

every trial. Figure 5 plots the average, 95-percentile, and

98-percentile approximation error achieved under different

b values. The average error is around 0.08, while the 95-

percentile is about 0.2. This means that the quality of the fi-

nal estimate is roughly an (ǫ, δ)-approximation with ǫ = 0.2
and δ = 0.05. Figure 6 further quantifies the average number

of samples taken by the algorithm. The total number of sam-

ples is roughly between 250 and 300, for all b values. These

samples are taken in around 5–15 sequential stages.

As a quick comparison, our simulation also shows that

naive sampling with 300 samples can provide a similar ap-

proximation error guarantee (i.e., ǫ = 0.2 and δ = 0.05) only

when b is above 2, 000 (i.e., n/b < 5). For b < 2, 000, the

lower bound of Ω(n
b

1
ǫ2

log 1
δ
) starts to become prominent.

We explained earlier that while we do not aim at better per-

formance, tree sampling’s asymptotic communication com-

plexity is similar to some previous aggregation-based ap-

proaches [12, 22]. These two approaches [12, 22] are rather

similar and both use Flajolet-Martin sketches with signatures

on the bits. They thus are likely to have similar communica-

tion complexity. We will compare against proof sketches [12]

since their paper provides detailed performance results. Proof

sketches can achieve roughly (ǫ = 0.1, δ = 0.05) using 256

Flajolet-Martin sketches. Each sketch contains up to log2 n
signatures. If each signature is a MAC, then sending a sig-

nature back (8 bytes) will incur half of the communication

11



complexity as taking a sample (8 × 2 bytes) in our protocol.

Using public key signatures will simply make the signature

size larger and make our results better. Under n = 10, 000,

proof sketches will incur a communication complexity of

roughly 256 × log2 105 ≈ 3, 328 signatures. One would ex-

pect that under (ǫ = 0.2, δ = 0.05), the number of signatures

will be reduced by a factor of (0.2/0.1)2 = 4. This yields

832 signatures, which is comparable to taking 416 samples.

Remember that tree sampling achieves (ǫ = 0.2, δ = 0.05)
with below 300 samples. This means that tree sampling’s

communication complexity is at least comparable to proof

sketches.

11. CONCLUSION

This paper proposes a novel tree sampling protocol with

provable guarantees to always correctly answer aggregation

queries in sensor networks despite adversarial interference.

As a sharp contrast to conventional approaches, tree sam-

pling directly uses sampling to answer these queries. It lever-

ages a novel set sampling technique to overcome a funda-

mental linear lower bound in traditional sampling, and takes

only logarithmic number of samples (with respect to the num-

ber of sensors). We believe that the concept of set sampling

and tree sampling can be rather general, and thus can poten-

tially be applied to other problems as well.
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