
DOI 10.1007/s00446-005-0133-8

SPECIAL ISSUE PODC 0 4

Haifeng Yu

Signed quorum systems

C©

Abstract With n servers that independently fail with prob-
ability of p < 0.5, it is well known that the majority quo-
rum system achieves the best availability among all quorum
systems. However, even this optimal construction requires
(n + 1)/2 functioning servers out of n. Furthermore, the
number of probes needed to acquire a quorum is also lower
bounded by (n + 1)/2.

Motivated by the need for a highly available and low
probe complexity quorum system in the Internet, this paper
proposes signed quorum systems (SQS) that can be avail-
able as long as any O(1) servers are available, and simulta-
neously have O(1) probe complexity. SQS provides prob-
abilistic intersection guarantees and exploits the property
of independent mismatches in today’s Internet. Such key
property has been validated previously under multiple Inter-
net measurement traces. This paper then extensively studies
the availability, probe complexity, and load of SQS, derives
lower bounds for all three metrics, and constructs match-
ing upper bounds. We show that in addition to the qualita-
tively superior availability and probe complexity, SQS also
decouples availability from load and probe complexity, so
that optimal availability can be achieved under most probe
complexity and load values.

Keywords Quorum systems · Availability ·
Probe complexity · Load · Tradeoff

1 Introduction

Quorum systems are well known techniques to achieve mu-
tual exclusion, preserve consistency on replicated data, im-
prove availability, and share load. A quorum system is a set
of quorums, each of which itself is a subset of servers from
a universe of servers. It is guaranteed that any two quorums
intersect. To perform an action potentially conflicting with
other actions, a client coordinates the action with a quorum.

H. Yu (B)
Intel Research Pittsburgh and Carnegie Mellon University
E-mail: yhf@cs.cmu.edu

System availability is improved because the system is avail-
able whenever a single quorum is available, while per-server
load is reduced because a client no longer needs to contact
all servers.

There have been three major measures of goodness for
quorum systems: availability, probe complexity, and load.
Intuitively, availability is the probability that the system has
at least one live quorum. Probe complexity describes the
number of messages (or probes) a client needs to send in
order to acquire a quorum. Finally, load is the probability of
accessing the busiest server (i.e., what fraction of the overall
load is sustained by the busiest server).

For traditional quorum systems, it is known [2] that when
servers fail independently (in fail-stop fashion) with proba-
bility of p < 0.5, the majority quorum system [15] (where
a quorum is any majority subset of all servers) achieves the
best availability. However, even in this optimal quorum sys-
tem, the system needs to have (n + 1)/2 functioning servers
to be available. Furthermore, the probe complexity is also
lower bounded by (n + 1)/2. By guaranteeing intersection
only with high probability, probabilistic quorum systems
(PQS) [9] overcome such fundamental limitation on avail-
ability and probe complexity. However, the PQS construc-
tion in [9] still needs θ(

√
n) functioning servers and simi-

lar probe complexity. Traditional quorum systems also have
fundamental tradeoffs [11] among availability, probe com-
plexity and load:

1-Availability ≥ pn×Load (1)

1-Availability ≥ pProbe Complexity (2)

Load ≥ 1/Probe Complexity (3)

Such fundamental tradeoffs prevent us from obtaining
the best of multiple measures simultaneously.

This paper is motivated by the need for a highly-
available and low probe complexity quorum system in the
Internet. For distributed systems in the wide-area environ-
ment, management is typically decentralized and nodes are
less well maintained, resulting in larger p values. Yet it
is still important to achieve good availability with a small

Received: 6 August 2004 / Accepted: 2 July 2005 / Published online: 13 January 2006
Springer-Verlag 2006

Distrib. Comput. (2006)

H. Yu

number of servers. The cost of wide-area communication in
the Internet is also much more expensive than local process-
ing, making it crucial to bound probe complexity.

1.1 Our results

To qualitatively improve the availability and probe com-
plexity of previous quorum techniques, this paper proposes
signed quorum systems (SQS) that can be available as long
as any O(1) servers are available, and simultaneously have
O(1) probe complexity. Furthermore, SQS breaks the trade-
off between availability and load/probe complexity (Inequal-
ity 1 and 2) – optimal availability can now be achieved under
most load and probe complexity values.

In signed quorum systems, a quorum may contain
negative elements. For example, over a three server uni-
verse {1, 2, 3}, a signed quorum system can be {{−1, 3},
{1,−2,−3}}. In the quorum of {−1, 3}, the element “3” is
interpreted same as before. Namely, the client needs to ob-
tain a reply from server 3. The element “−1” means that the
client believes that server 1 has failed, according to some
inaccurate failure detection mechanism. Since failure detec-
tion can be inaccurate, it is possible that another client can
still obtain a reply from server 1. Such an event is called a
mismatch.

Following the arguments of PQS, SQS also provides
probabilistic guarantee on intersection. However, SQS does
not achieve such guarantee via an explicit access strat-
egy [9]. Rather, SQS is designed for servers randomly dis-
tributed across the Internet, and we make a key assumption1

on the independence of mismatches on different servers. If
mismatches happen independently for different servers with
probability of ε, then the probability of one client acquir-
ing {−1, 3} and another client acquiring {1,−2,−3} is at
most ε2. This is true because two mismatches are needed
on server 1 and 3. We define a dual pair to be a pair in the
form of {i,−i}, and the number of dual pairs between two
quorums is called their dual overlap. The previous two quo-
rums thus have a dual overlap of two (from the dual pairs
of {−1, 1} and {3,−3}). In SQS, it is required that any two
quorums either intersect over some positive element, or their
dual overlap is at least 2α, where α is a positive constant. As
a result, if quorums Q and Q′ do not intersect on any positive
element, then the probability that they can be both acquired
is as small as ε2α .

To intuitively understand the validity of our key assump-
tion, notice that when mismatches are strongly correlated
for servers randomly distributed in the Internet, they tend
to indicate the existence of a “hard” partition. However, re-
cent network measurements and evaluation [1, 14, 18] have
shown that “hard” partitions where a significant fraction of
Internet nodes are unable to communicate with the rest of
the network, are rare in today’s Internet. A client with a lost
network connection can also observe correlated mismatches,

1 Section 2.2 will show that in fact, PQS also needs to make similar
assumptions in asynchronous systems.

1e-05

0.0001

0.001

0.01

0.1

1 2 3 4 5 6

P
ro

ba
bi

li
ty

Number of Simultaneous Mismatches

RON1
TACT

Fig. 1 Sample results from [17] to validate the assumption of indepen-
dent mismatches. Both curves are near-linear, indicating independence
mismatches

but we have previously shown [17] that a simple filtering
step can be quite effective to prevent those clients from ac-
quiring any quorum. The filtering step requires a client to
reach some node outside of its local domain (i.e., to test
whether it simply has lost its network connection) before it
is allowed to acquire a quorum.

Validating this key assumption of independent mis-
matches was one focus of our previous work [17] on the
witness model, an implicit (non-optimal) SQS construction.
Our results based on the RON traces [1] from MIT and the
TACT [18] trace from Duke show that the average correla-
tion among mismatches is below 5%. Figure 1 plots some
sample results. Notice that strictly speaking, mismatches
will not be fully independent. However, from a practical per-
spective, all we need is that the probability of having 2α
simultaneous mismatches is small.

Continuing from our earlier efforts, this paper proposes
and formalizes the concept of SQS, and then extensively
studies the availability, probe complexity, and load of SQS.
Specifically, we make the following contributions:

• We propose and formalize the concept of SQS, which
generalizes traditional quorum systems. SQS provides
probabilistic intersection guarantees and the probability
of non-intersection is exponentially small with 2α.

• We study the availability of SQS and prove that our
OPT a construction has optimal availability, where the
system is available as long as any α servers are avail-
able. Such availability is not possible under traditional
quorum systems or PQS (with non-zero intersection
guarantee).

• For the set of SQS with optimal availability, we derive
a lower bound for probe complexity. A matching up-
per bound is achieved by our OPT d construction that
has the same availability as OPT a . Specifically, the
expected probe complexity of OPT d is smaller than
2α/(1 − p) = O(1) under arbitrary n values. Such
probe complexity is again, not possible under traditional
quorum systems or PQS (with non-zero intersection
guarantee).

Signed quorum systems

Table 1 Important SQS constructions in this paper. We also indicate whether the achieved behavior is optimal

SQS construction Availability Expected probe complexity Load

OPT a available if any n 1
α out of n servers
are available (optimal)

OPT d same as OPT a < 2α/(1 − p) (optimal conditioned 1
upon optimal availability)

SQS constructed same as OPT a x , where x is tunable O(1/x) (optimal condition upon
from composition and x = �(α) and x = O(

√
n) probe complexity being x)

• We design a powerful composition technique that allows
us to compose certain traditional quorum system Q over
k servers with OPT a over n servers (k ≤ n). We prove
that the composition result is an SQS with OPT a’s
availability, and Q’s probe complexity and load. This
shows that SQS breaks the fundamental tradeoff between
availability and load/probe complexity (Inequality 1 and
2). Now optimal availability can be achieved all the time,
as long as probe complexity is �(α).

• We show that a similar load and probe complexity trade-
off (Inequality 3) exists for SQS. For any probe complex-
ity value x , x = �(α) and x = O(

√
n), we show that

composition allows us to construct an SQS with load of
O(1/x)2 and optimal availability.

Table 1 summarizes the major SQS constructions in this
paper. The next section discusses related work, and we in-
troduce the formal definitions of SQS, availability, load, and
probe complexity in Sect. 3. Section 4 formalizes the nota-
tion of mismatches and rigorously argues why our SQS def-
inition is able to bound the probability of non-intersection.
We construct SQS with optimal availability, optimal probe
complexity and optimal load in Sects. 5, 6, and 7. Finally,
Sect. 8 draws our conclusions.

2 Related work

This work is a continuation from our earlier work [17] on
the witness model, which is an implicit non-optimal SQS
construction. There we focus on validating the assumption
on independent mismatches and the application of the wit-
ness model to distributed consensus. The general concept of
SQS, their availability, probe complexity and load properties
are not studied in [17].

2.1 Strict quorum systems

Most traditional quorum systems are strict in the sense that
they always guarantee quorum intersection. Within such
context, there have been extensive research efforts [2,4–
7,11–13,15] on quorum systems, and we only focus on those
closely related to this paper.

2 Load itself has a lower bound of �(1/
√

n).

Most previous work [2, 12] on the availability of quo-
rum systems uses the same availability definition as ours,
namely, the probability that at least one live quorum exists
given that servers fail independently. The probe complexity
of quorum systems is first studied in [13], where only worse-
case probe complexity for deterministic probe algorithms is
considered. Later, Hassin et al. [6] study the average probe
complexity for deterministic algorithms and the worse-case
probe complexity for randomized algorithms. Another mea-
sure for probe complexity is the cost of failure [3], defined
as the normalized number of extra probes needed due to fail-
ures.

Load balancing in quorum systems is first studied in [7],
where the metric considered is the load ratio between the
busiest and least-loaded server. Naor et al. [11] define and
study load as the probability of accessing the busiest server.
Naor et al. further prove a tradeoff between availability and
load (Inequality 1). The other two tradeoffs (Inequality 2 and
3) also directly follow from their proof.

Quorum systems have also been used to mask Byzantine
failures [8]. To mask such failures, it is required that any two
quorums intersect on sufficient number of servers so that the
client will not be misled by malicious servers. In compari-
son, SQS only tolerates fail-stop failures and dual overlap is
for the number of dual pairs, instead of direct intersection.

2.2 Probabilistic quorum systems

SQS follows PQS’s spirit of providing probabilistic guar-
antees on quorum intersection. In PQS, such guarantee is
achieved by enforcing an access strategy on quorums. For
example, in one PQS construction [9], quorums are all the
sets of size l

√
n and each quorum is accessed with equal

probability. This guarantees an intersection probability of at
least 1 − e−l2

.
Compared to PQS, it may appear that SQS makes an ad-

ditional strong assumption of independent mismatches. In
asynchronous systems, however, we argue that implement-
ing PQS needs to make similar assumptions as well. The
fundamental reason is that with an asynchronous scheduler,
we do not have full control over the access strategy and the
intersection guarantee of PQS can be disrupted by the sched-
uler.

Following consider a concrete example with two servers
(1 and 2), and two clients (x and y). Construct a PQS

H. Yu

Q = {{1}, {2}, {1, 2}} and an access strategy that simply
chooses each quorum in Q with probability of 1/3. A simple
calculation can show that intersection happens with proba-
bility of 7/9. A straightforward implementation of the previ-
ous PQS would be simply to have every client try to acquire
each quorum with probability of 1/3. However, suppose that
the asynchronous scheduler delays all messages from x to
server 2. Since x cannot wait forever, it is forced to use the
quorum of {1} all the time. Similarly, the scheduler can force
y to (ultimately) always choose and use the quorum of {2}.
At this point, the actual access strategy is already different
from what we intend, and the intersection probability is ac-
tually zero. A closer look reveals that the problem is exactly
caused by mismatches on both 1 and 2. Thus to implement
PQS, some assumption needs to be made on mismatches to
limit the power of the asynchronous scheduler.

In SQS, such assumption on mismatches is explicitly
made and validated. Given that the access strategy can be
disturbed by the scheduler, it is no longer a convenient way
to define SQS. Instead, we directly impose a requirement on
dual overlap. Ultimately, there is still a distribution (access
strategy) on the quorums that are used in a given SQS. How-
ever, such distribution is determined by the scheduler and
failures in the system. The dual overlap requirement ensures
probabilistic intersection under any of the possible resulting
distributions.

It is interesting to see that after clearly stating our as-
sumption of independent mismatches and defining SQS
based on dual overlap, we are able to achieve an availability
and probe complexity not possible under PQS. In summary,
it seems to us that implementing PQS in asynchronous sys-
tems needs an implicit assumption on mismatches, but since
the assumption is implicit, PQS has not fully exploited its
power.

3 Preliminaries and definitions

3.1 Unsigned and signed quorum systems

We consider a universe U = {1, 2, . . . , n} of servers. An
unsigned set system over the universe U is a set of subsets of
U . For simplicity, we will drop the phrase “over the universe
U” in the following discussion.

Definition 1 An (unsigned) quorum system (UQS) Q =
{Q1, Q2, . . . , Qm} is an unsigned set system where Qi ∩
Q j �= ∅ (1 ≤ i, j ≤ m). Qi (1 ≤ i ≤ m) is called a quo-
rum.

For any element i ∈ U , its dual is −i , and the dual of −i
is i . For any set S ⊆ U , define its dual (denoted as Dual(S))
to be {Dual(i)|i ∈ S}. For any set S ⊆ (U ∪Dual(U)), define
its positive part (denoted as S+) to be S∩U , and its negative
part (denoted as S−) to be S ∩ Dual(U).

Definition 2 A signed set system over the universe U is a
set of subsets of U ∪ Dual(U), where for any set S in the
signed set system, S ∩ Dual(S) = ∅.

Definition 3 For a given positive integer α, a signed quorum
system (SQS) Q = {Q1, Q2, . . . , Qm} is a signed set system
where for any Qi and Q j , 1 ≤ i, j ≤ m, at least one of the
following two conditions is satisfied:

Intersection: Q+
i ∩ Q+

j �= ∅
Dual Overlap: |Qi ∩ Dual(Q j)| ≥ 2α

Since |Qi ∩ Dual(Q j)| = |Dual(Qi) ∩ Q j |, we do not
need to have two alternative definitions for dual overlap. By
definition, any UQS is also an SQS. When n < 2α, it is im-
possible to satisfy dual overlap. Thus we assume n ≥ 2α for
the remainder of the paper. Some of our results are obtained
under a stronger assumption of n ≥ 3α − 1 or n ≥ 3α + 1,
and we will state those stronger assumptions in individual
theorems. In SQS, any quorum must have at least one posi-
tive element, since otherwise the quorum can satisfy neither
intersection nor dual overlap with itself.

3.2 Availability

Next, we define three measures of quality for quorum sys-
tems: availability, load, and probe complexity. Throughout
this paper, we assume that each server fails independently
with probability of p, p < 0.5. Availability (informally) is
the probability that the system has at least one live quorum.
Following we formalize such definition using set operations.

Definition 4 A configuration of the system is a set C , such
that for any i ∈ U , either i or −i (but not both) is in C .

Each configuration captures a unique state of all the
servers. The element i belongs to the configuration if server
i is available, and −i belongs to the configuration otherwise.
Defining a configuration to be a set instead of a binary vector
allows the use of set operations for all our reasoning.

Let C denote the set of all 2n configurations. For conve-
nience, define Ci = {C |C ∈ C and |C+| = i}, 0 ≤ i ≤ n.

Definition 5 For any quorum Qi in an SQS Q =
{Q1, Q2, . . . , Qm}, its acceptance set (denoted as As(Qi))
is {C |C ∈ C and Qi ⊆ C}. The acceptance set of Q (de-
noted as As(Q)) is ∪1≤i≤m As(Qi). A signed set system is
called an acceptance set if it is the acceptance set of some
SQS.

Clearly, if Qi ⊆ C , it means that the quorum Qi can be
acquired under C . Each configuration C has a certain proba-
bility of occurring: Prob[C] = p|C−|(1 − p)|C+|. Availabil-
ity is then the probability of all configurations under which
some quorum can be acquired.

Definition 6 For any SQS Q, its availability (denoted as
Avail(Q)) is defined as

∑
C∈As(Q) Prob[C].

3.3 Probe complexity

Informally, probe complexity is the number of probes a
client needs to make in order to acquire a quorum, or to

Signed quorum systems

realize that no live quorum exists. Notice that to acquire a
quorum in SQS, the client also needs to probe (and fail to
obtain a reply) from those servers corresponding to the neg-
ative elements in the quorum.

To formalize, we first define the probe strategy used by
the client to determine which server to probe next:

Definition 7 Probe Strategy [13]: A probe strategy is a bi-
nary tree. Each non-leaf node of the tree is labeled with
a server, and two outgoing edges are marked by the two
possible outcomes of the probe, namely, success or failure.
Each leaf of tree denotes an outcome of the probe algorithm,
which can either be that a quorum has been acquired or that
no live quorums exist.

A probe strategy is non-adaptive if for any node in the
probe tree, both its children are labeled with the same server.
In other words, a non-adaptive probe strategy does not adjust
the probe sequence based on the results of earlier probes.

Let Q be an SQS and let � be the set of all probe strate-
gies for Q. For any configuration C ∈ C and any probe
strategy ψ ∈ �, define path(ψ, C) to be ψ’s branch cor-
responding to C , and define depth(ψ, C) to be the length of
path(ψ, C). The expected probe complexity for determinis-
tic probe algorithms (denoted as PCe(Q)) [6] is then:

PCe(Q, ψ) =
∑

C∈C
depth(ψ, C) · Prob[C]

PCe(Q) = min
ψ∈�

{PCe(Q, ψ)}

The worst-case probe complexity for deterministic probe
algorithms (denoted as PCw(Q)) [13] is defined as:

PCw(Q, ψ) = max
C∈C

{depth(ψ, C)}
PCw(Q) = min

ψ∈�
{PCw(Q, ψ)}

Randomized probe strategies are necessary to achieve any
non-trivial load. A randomized probe algorithm has a dis-
tribution µ over �. Let PC∗

e (Q) denote the expected probe
complexity for randomized probe algorithms:

PC∗
e (Q, µ) =

∑

C∈C
Eµ[depth(ψ, C), ψ ∈ �] · Prob[C]

PC∗
e (Q) = min

µ
{PC∗

e (Q, µ)}

It can be easily shown that PCe(Q) = PC∗
e (Q) for any

Q, and thus we will focus on PC∗
e (Q) only. The worse-case

probe complexity for randomized probe algorithms (denoted
as PC∗

w(Q)) [6] is:

PC∗
w(Q, µ) = max

C∈C
{ Eµ[depth(ψ, C), ψ ∈ �] }

PC∗
w(Q) = min

µ
{PC∗

w(Q, µ)}
For practical purposes, perhaps PC∗

e is the most important
metric, since it describes the expected message complexity
for acquiring a quorum.

3.4 Load

In most previous work [9, 11], load is defined based on the
access strategy of a quorum system. The access strategy is a
distribution over all quorums describing the probability that
each individual quorum is used. Load is then defined as the
probability of accessing the busiest server (as determined by
the access strategy).

However, to acquire a quorum Q, we may potentially
probe and induce load on more servers than those in Q,
which makes the previous definition inaccurate. Thus this
paper uses a more practical definition directly based on
probe strategy. Such definition is part of our contribution.

For any node a in the probe strategy tree ψ , define its
load to be:

∑

C ∈ C and path(ψ, C) contains a

Prob[C]

Intuitively, the load defined above is simply the probability
of reaching node a (by multiplying the respect p and (1− p)
terms down the tree to a). Server i’s load is the sum of the
load of those tree nodes labeled i . With a deterministic probe
algorithm, the root of the probe tree always has a load of 1.0.
Thus, we are mainly interested in the load for randomized
probe algorithms. Let Q be an SQS, � be the set of all probe
strategies for Q, and µ be a distribution over �, we define
Q’s load (denoted as Load(Q)) to be:

min
µ

{
max

1≤i≤n
{Eµ[server i’s load under ψ , ψ ∈ �]}

}

With our new definition, the load of a quorum system is
at least as high as the load under previous definitions [9, 11].
Following is a proof sketch for such claim. The access strat-
egy τ is uniquely determined by the distribution of µ. For
any given µ, if a server has a load of l under the access-
strategy-based definition for the corresponding τ , then it is
present in acquired quorums with probability of l. With at
least such probability, it is probed by the client and will have
a load of at least l under our load definition. (The load may
be large than l because it may also be probed in other cases.)
Finally, since we have a corresponding τ for any µ, the min-
imum from all µ’s will not be smaller than the minimum
from all τ ’s.

All load lower bounds in this paper are applicable to the
traditional optimistic definition. (In fact, the only load lower
bound in this paper is Theorem 38, which is directly adopted
from [11].) On the other hand, all our load upper bounds
hold under our new pessimistic definition. This makes our
results as strong as possible.

Also notice that according to our definition, Load(Q)
and PC∗

e (Q) may or may not be achieved under the same
probe algorithm. But for all our probe complexity and load
upper bounds, we actually use the same probe algorithm,
which again makes our results strong.

H. Yu

4 Properly bounding the probability
of non-intersection in SQS

This section proves that our simple SQS definition is suffi-
cient to control the probability of non-intersection. We first
formalize our notion of mismatch and the independent mis-
match assumption. We say that a client reaches a server if
and only if it obtains a positive reply from the server. A
server probed by two clients can be in one of the follow-
ing four states: i) (−, −): Neither client reaches the server;
ii) (+, −): The first client reaches the server, but not the sec-
ond client; iii) (−, +): The first client does not reach the
server, but the second client does; iv) (+, +): Both clients
reach the server. The states of (−, +) and (+, −) are called
mismatches.

We assume that mismatch on one server is indepen-
dent of other servers’ states. Further, we assume that
Prob[mismatch | state is not (−, −)] ≤ ε for any server.
This intuitively means that given that one client reaches
a server, the probability that the other client cannot
reach the server is at most ε. Notice that just assuming
Prob[mismatch] ≤ ε is not sufficient. Otherwise we can let
Prob[(−, +)] = Prob[(+, −)] = ε/2, Prob[(+, +)] = 0,
and Prob[(−,−)] = 1 − ε, and intersection can never hap-
pen. Notice that in such a case, ε = Prob[mismatch] ≤
Prob[mismatch | state is not(−, −)] = 1.

From a practical perspective, independent mismatches
in the mathematical sense is not important. In fact, all we
care about is that the probability of having multiple simulta-
neous mismatches is small. We assume pure independence
here only to simplify discussion. Also, “hard” network par-
titions will result in dependent mismatches (as mentioned
in Sect. 1), but recent network measurements and evalua-
tion [1, 14, 18] have shown that “hard” partitions where a
significant fraction of Internet nodes are unable to commu-
nicate with the rest of the network, are rare in today’s Inter-
net.

We now use an example to show that the SQS definition,
solely by itself, may not yet properly bound non-intersection
probability. Dual overlap between two non-intersecting quo-
rums Q1 and Q2 does bound the probability that they are
both acquired. However, there can be many other quorums
that do not intersect with Q1 either, and the probability
of obtaining one of those quorums may not be low. Sup-
pose (n − 1) = (m − 1) × 2α and we consider the SQS
Q = {Q1, Q2, . . . , Qm}, where:

Q1 = {1, 2, . . . , (n − 1)}
Q2 = {−1,−2, . . . ,−2α, n}
Q3 = {−(2α + 1), −(2α + 2), . . . , −4α, n}

. . .

Qm = {−(n − 2α),−(n − 2α + 1), . . . , −(n − 1), n}
Now assume that the first client acquires Q1 and the second
client reaches the last server. The second client may or may
not reach the first n − 1 servers, and there is a mismatch

whenever it cannot reach a server. The independent mis-
match assumption controls the probability that mismatches
may occur for a given set of 2α servers. However, when n
grows we have many such sets, and with high probability,
the second client can actually find a quorum that does not
intersect with Q1.

Fortunately, we will show that under some easy-to-
satisfy conditions on probe strategies and client behavior,
the probability of non-intersection in an SQS is truly expo-
nentially small with 2α. This allows us to use the simple
definition of SQS and not to be concerned with the details of
such probability. All the lower bounds in this paper are de-
rived without these conditions, while all upper bounds sat-
isfy such restrictions.

We first describe the required condition on client behav-
ior. When a client acquires a quorum Q in an SQS using a
given probe strategy, define its probed servers to be the set
S where i belongs to S if the client reaches server i , and −i
belongs to S if the client does not reach server i . Clearly, S
is a superset of Q. S may contain elements not in Q because
the client may probe servers not belonging to the quorum ul-
timately acquired (i.e., wasted probes). In a traditional quo-
rum system, a client only needs to coordinate with (e.g., read
from) the servers in Q+. In SQS, we instead require that the
client coordinates with all servers in S+. Namely, the client
should coordinate with any server that it reaches during the
probing process. Since the servers in S+ are already reached
by the client, such a requirement does not result in mate-
rial difference from a practical perspective. In particular, it
does not affect the availability, probe complexity or load
of the SQS. Most protocols using quorum systems already
implicitly meet this requirement. One (contrived) counter-
example is when we use SQS to implement a shared register,
the reader can violate this requirement by explicitly discard-
ing the responses from servers not belonging to the acquired
quorum.

With the above requirement on client, we define inter-
section as following:

Definition 8 Consider two clients who each acquire Q1 and
Q2 in an SQS, respectively. Let S1 and S2 be the probed
servers of the two clients, respectively. We say that the two
clients intersect if and only if S+

1 ∩ S+
2 �= ∅.

We now prove that with the above intersection def-
inition and a deterministic, non-adaptive probe strat-
egy, SQS bounds the probability of non-intersection
(Prob[non-intersection]) within ε2α . Our guarantee will be
for the probability conditioned upon the event that both
clients acquire some quorum. Since it is conditioned upon
such event, the probability of intersection will actually be
smaller than 1-Prob[non-intersection] (in fact, the proba-
bility of intersection is roughly (1-Prob[non-intersection]) ·
availability), since there will be cases where both clients do
no acquire some quorum. We only consider the conditioned
non-intersection probability because availability is already
captured elsewhere, and also, availability is dependent on p
rather than ε.

Signed quorum systems

Theorem 9 Consider two clients using the same de-
terministic, non-adaptive probe strategy, and let “non-
intersection” denote the event that both clients ac-
quire some quorum, but they do not intersect. Then
Prob[non-intersection] ≤ ε2α .

Proof Let Q1 be the random variable denoting the quorum
acquired by the first client and S1 be the probed servers. Sim-
ilarly define Q2 and S2. Let D be the random variable denot-
ing the set of servers that are in the (−, −) state. It suffices
to prove that Prob[(S+

1 ∩ S+
2 = ∅)] ≤ ε2α under any D.

Since we are considering a deterministic, non-adaptive
probe strategy, the clients always probe the servers in the
same order. Let such order be T and next delete all servers
in D from T . We argue that if S+

1 ∩ S+
2 = ∅ (which implies

Q+
1 ∩ Q+

2 = ∅), then both clients must have probed the first
2α servers in T . The reason is that when Q+

1 ∩ Q+
2 = ∅, Q1

and Q2 must satisfy dual overlap. It is impossible for D to
contain any server in Q1 ∩ Dual(Q2), since the servers in D
are all in state (−, −). Thus every server in Q1 ∩ Dual(Q2)
must be in T , and each client probes at least 2α servers in
T . Finally, since T is the only probe sequence allowed, both
client must have probed at least the first 2α servers in T .

Now consider these first 2α servers in T . For S+
1 and

S+
2 not to intersect, there must be a mismatch on each of

these 2α servers. So we have Prob[(S+
1 ∩ S+

2 = ∅)] ≤
Prob[mismatches on first 2α servers in T] ≤ ε2α . �

To understand the previous theorem, consider the exam-
ple at the beginning of this section. With a deterministic and
non-adaptive probe strategy, the two clients will probe the
servers in exactly the same order. Further because of our ex-
tended definition of intersection, a client cannot intention-
ally skip any server causing intersection. This means that
even though the second client will still likely acquire some
Qi (2 ≤ i ≤ m) that does not intersect with Q1, the probed
servers of the second client will intersect with Q1 with high
probability.

The extended definition of intersection seems necessary
for Theorem 9 to hold. For probe strategies, Theorem 9 only
gives us sufficient conditions (i.e., “deterministic and non-
adaptive”) to properly bound Prob[non-intersection]. How-
ever, for all our upper bound constructions in this paper
(except for the SQS in Sect. 7.2), we only need to use
deterministic and non-adaptive probe strategies. The con-
structions in Sec. 7.2 use randomized and adaptive probe
strategies to achieve a matching upper bound on load. Since
the load under deterministic probe strategies is always 1.0,
randomized probe strategies are necessary to achieve a
matching upper bound on load. For those constructions in
Sect. 7.2, we will provide a customized proof showing that
Prob[non-intersection] is properly bounded.

It is yet unclear to us what are the exact suf-
ficient and necessary conditions to properly bound
Prob[non-intersection]. Following we show that the “deter-
ministic” requirement in Theorem 9 can be dropped (this
improved result, however, is not used anywhere in this pa-
per, and we only use Theorem 9 in its exact form). We will

first show that Theorem 9 holds even if the two clients use
two potentially different deterministic, non-adaptive probe
strategies (ψ1 and ψ2, respectively).

Lemma 10 Consider two clients using two potentially dif-
ferent deterministic, non-adaptive probe strategies, ψ1 and
ψ2, respectively. Then there must exist some fixed server i ,
such that i is always probed by both clients as long as they
both acquire some quorum.

Proof Let T1 be the shortest sequence of servers that the first
client probes under any configuration where it acquires some
quorum. Similarly define T2 for the second client. T1 and T2
must intersect. Otherwise we can construct a configuration
where both clients acquire quorums, but they did not probe
any server in common. This in turn, would mean that the
quorums they acquire satisfy neither intersection nor dual
overlap. Given that T1 and T2 intersect, any server in T1 ∩ T2
thus is always probed by both clients as long as they both
acquire some quorum. �
Lemma 11 Consider two clients using two potentially dif-
ferent deterministic, non-adaptive probe strategies, and
let “non-intersection” denote the event that both clients
acquire some quorum, but they do not intersect. Then
Prob[non-intersection] ≤ ε2α .

Proof We consider α as a variable, and define Prob[non-
intersection] more precisely as the Prob[non-intersection]
when 2α is used as the threshold for the dual overlap con-
dition in SQS definition. We will show via an induction on
2α that the theorem holds under any 2α ≥ 0. Here to sim-
plify discussion, we temporarily allow 2α to take any non-
negative integer values (rather than just positive even in-
tegers). This only makes our results stronger than strictly
necessary.

The theorem trivially holds for 2α = 0. Suppose the
theorem holds for 2α = w (i.e. Prob[non-intersection for
2α = w] ≤ εw), and let us consider the case for 2α = w+1.
Lemma 10 tells us that there must exist a fixed server i that
is probed by both clients (if they both acquire some quo-
rum). Now consider the four possible states of i , and let
Prob[(+, +)] = x1, Prob[(−, −)] = x2, Prob[(+, −)] =
x3, and Prob[(−,+)] = x4. We have:

Prob[non-intersection for 2α = w + 1]
= x1 · 0 + x2 · Prob[non-intersection for 2α = w + 1]
+ x3 · Prob[non-intersection for 2α = w]
+ x4 · Prob[non-intersection for 2α = w]

Solve the above equation and we obtain:

Prob[non-intersection for 2α = w + 1]
= x3 + x4

1 − x2
· Prob[non-intersection for 2α = w]

The term of (x3+x4)/(1−x2) is exactly Prob[mismatch |
state is not (−, −)], so we know that (x3 + x4)/(1 − x2) ≤
ε. Thus we have Prob[non-intersection for 2α = w + 1] ≤
εw+1. �

H. Yu

Theorem 12 Consider two clients using non-adaptive
probe strategies, and let “non-intersection” denote the event
that both clients acquire some quorum, but they do not inter-
sect. Then Prob[non-intersection] ≤ ε2α .

Proof We only need to consider the most general case
where both clients use randomized probe strategies. A ran-
domized non-adaptive probe strategy is modeled (Sect. 3)
by each client randomly picking a strategy (according
to some distribution) out of a set of deterministic non-
adaptive probe strategies. Thus we only need to show that
Prob[non-intersection] ≤ ε2α regardless of which two probe
strategies the two clients pick. This is already proved by
Lemma 11. �

The removal of the “deterministic” requirement on probe
strategies means that we can use any randomized, non-
adaptive probe strategies to achieve a load smaller than 1.
However, we should also emphasize that the remaining re-
quirement of “non-adaptive” is still not trivial. It has been
proved [10] that for UQS, if the load is O(1/

√
n), then us-

ing non-adaptive probe strategies can at best give us a PC∗
e

of O(
√

n log n). Adaptive probe strategies make it possible
to reduce PC∗

e to O(
√

n). In fact, this is exactly the reason
why our constructions in Sect. 7.2 have to use randomized
and adaptive probe strategies, in order to match the lower
bounds.

Finally, we summarize the set of (sufficient) conditions
to properly bound the probability of non-intersection in SQS
within ε2α:

• Mismatch on one server is independent of other servers’
states.

• For any server, Prob[mismatch | state is not (−, −)] ≤
ε.

• Clients should coordinate with all probed servers rather
than only the servers in the acquired quorum.

• The probe strategy is non-adaptive.

5 SQS with optimal availability

Starting from this section, we search for the “best” SQS in
terms of availability (Sect. 5), probe complexity (Sect. 6),
and load (Sect. 7). We derive lower bounds for all three met-
rics, and achieve matching upper bounds (within constants).
Our results will clearly determine the benefits we can obtain
in exchange for a small probability of non-intersection.

5.1 Sufficient and necessary conditions for optimal
availability

SQS relaxes from UQS by allowing dual overlap to re-
place intersection. This improves availability because quo-
rums may now contain only a small number of positive ele-
ments and rely on the negative elements to satisfy the dual
overlap condition. In order to find the SQS with the highest

Fig. 2 OPT a . All quorums have size of n and at least α positive ele-
ments

availability, we first restrict ourselves to acceptance sets. It is
easy to show that acceptance sets themselves are SQS also.
Furthermore, an SQS’s acceptance set has the same avail-
ability as the SQS. This means that there must exist an ac-
ceptance set that can achieve optimal availability.

Theorem 13 If Q is an SQS, then: i) As(Q) is an SQS; ii)
As(As(Q)) = As(Q); iii) Avail(Q) = Avail(As(Q)).

Proof The first two claims are obvious, and we only prove
the last claim. Consider any S ∈ As(As(Q)). There must
exist S′ ∈ As(Q) and S′′ ∈ Q, such that S′′ ⊆ S′ ⊆ S.
Since S′′ belongs to Q and S is a configuration, we know
that S ∈ As(Q) and As(As(Q)) ⊆ As(Q). This means
As(As(Q)) = As(Q). Finally, directly from the definition
of availability, we have Avail(Q) = Avail(As(Q)). �

An acceptance set has the nice property that its quorums
are actually configurations. As a result, the availability of an
acceptance set Q is simply

∑
Q∈Q Prob[Q].

Since the size of any quorum in an acceptance set is n, as
long as all quorums have at least α positive elements, dual
overlap or intersection must be satisfied. Thus, we construct
the following SQS OPT a = ∪n

i=αCi . OPT a contains all
configurations that have at least α available servers (Fig. 2).
It is obvious that OPT a is an SQS:

Theorem 14 OPT a is an SQS.

It is easy to see that OPT a is at least “locally optimal”.
Namely, we cannot add another configuration into OPT a
while still keeping it an SQS. We now intend to prove that
OPT a is also “globally optimal”. The challenge is to show
that availability cannot be improved by replacing some ex-
isting quorums in OPT a with some new ones. We prove this
by carefully grouping the new quorums to correspond to the
sets of Cα , . . . , C2α−1. We will show that the size of each
group cannot be larger than the number of deleted old quo-
rums from the corresponding Ci . We do this using a bipartite
graph with the new quorums on the left and the configura-
tions in the corresponding Ci on the right. An edge is added
if two quorums cannot coexist. The claim is then proved by
counting the number of edges in the graph. Finally, it is easy
to show that with p < 0.5, any new quorum contributes less
to availability than any old quorum in the corresponding Ci .
Following we formalize our arguments:

Lemma 15 For any acceptance set Q, if Ci ∩ Q �= ∅ for
some 0 ≤ i ≤ α − 1, then Avail(Q) < Avail(OPT a).

Signed quorum systems

Proof Let Ti = Ci ∩Q, for 0 ≤ i ≤ n. Since Ti and T j must
be disjoint for different i and j , we know that the availabil-
ity of Q is �n

i=0�C∈Ti Prob[C]. Similarly, the availability of
OPT a is �n

i=α�C∈Ci Prob[C].
Next, we show that |Ti |+ |T2α−i−1| ≤ |C2α−i−1| for 0 ≤

i ≤ α−1. We construct the following bipartite graph, which
contains all configurations in Ti (left side of the graph) and
C2α−i−1 (right side of the graph) as nodes. An edge is added
between two vertices C ∈ Ti and C ′ ∈ C2α−i−1 in the bipar-
tite graph if and only if C+ ∩ C ′+ = ∅. Because |C+| = i
and |C ′+| = 2α − i − 1, C and C ′ can never satisfy the
dual overlap condition. Thus adding an edge between C and
C ′ means that they cannot both appear in Q. Each vertex in
the left part of the bipartite graph has a degree of exactly
(

n−i
2α−i−1). On the other hand, the degree of the vertices in

the right part of the graph is at most (
n−2α+i+1

i). We want

to show that (
n−i

2α−i−1) > (
n−2α+i+1

i):

(
n − i

x

)

>

(
n − x

i

)

(where x = 2α − i − 1 > i)

⇔ (n − i)!i ! > x !(n − x)!
⇔ (n − i)(n − i − 1) . . . (n − x + 1)

> x(x − 1) . . . (i + 1)

Both sides in the last inequality have x − i terms. Since
n − i > x (given that n ≥ 2α), the last inequality holds, as
well as all inequalities above.

With |Ti | vertices at the left side of the graph, the graph
has altogether |Ti |×(

n−i
2α−i−1) edges. Since each vertex at the

right side of the graph has at most a degree of (
n−2α+i+1

i),

and also because (
n−i

2α−i−1) > (
n−2α+i+1

i), there must be at
least |Ti | (or |Ti | + 1 when Ti is not empty) vertices with
non-zero degree at the right side of the graph. None of these
configurations can appear in Q. As a result, we know that
|T2α−i−1| ≤ |C2α−i−1| − |Ti |. The “≤” sign becomes “<” if
Ti is nonempty.

For any configuration C ∈ Ci and C ′ ∈ C2α−i−1 (0 ≤
i ≤ α−1), it must be true that Prob[C] ≤ Prob[C ′] (because
p ≤ 0.5 and also 2α − i − 1 > i). As a result, we have
�C∈Ti Prob[C]+�C∈T2α−i−1Prob[C] ≤ �C∈C2α−i−1Prob[C],
where “≤” becomes “<” if Ti is nonempty. Now we have:

Avail(Q) =
n∑

i=0

(∑

C∈Ti

Prob[C]
)

=
α−1∑

i=0

(∑

C∈Ti

Prob[C] +
∑

C∈T2α−i−1

Prob[C]
)

+
n∑

i=2α

∑

C∈Ti

Prob[C]

<

2α−1∑

i=α

∑

C∈Ci

Prob[C] +
n∑

i=2α

∑

C∈Ci

Prob[C]

=
n∑

i=α

∑

C∈Ci

Prob[C] = Avail(OPT a) �

Theorem 16 For any SQS Q, Avail(OPT a) ≥ Avail(Q).

Proof From Theorem 13, we know that As(Q) has the same
availability as Q. If Ci ∩ As(Q) �= ∅ for some i , 0 ≤ i ≤
α − 1, Lemma 15 tells us that As(Q) has lower availability
than OPT a . On the other hand, if Ci ∩ As(Q) = ∅ for all i ,
0 ≤ i ≤ α − 1, then As(Q) can have availability no higher
than OPT a . �
Corollary 17 For any SQS Q, if OPT a ⊆ As(Q), then
Avail(Q) = Avail(OPT a).

From Lemma 15, we can prove a stronger result, which says
that we always get OPT a if we “expand” any SQS with
optimal availability:

Corollary 18 For any SQS Q, Avail(Q) = Avail(OPT a) if
and only if As(Q) = OPT a.

5.2 Non-existence of “global minimum”

Even though OPT a achieves optimal availability, it has
some undesirable properties. For example, all its quorums
are of size n, which means n probes are needed to acquire
any quorum. Are there any SQS with better properties but
still preserving optimal availability? Such definition of “bet-
ter” is usually defined as domination [4]:

Definition 19 Two SQS Q and Q′, Q dominates Q′ (de-
noted as Q � Q′) if for ∀Q′ ∈ Q′, ∃Q ∈ Q, such that
Q ⊆ Q′.
If Q dominates Q′, it usually means that Q has both better
probe complexity and load.

For UQS, it can be easily shown that the majority quo-
rum system dominates any UQS that has optimal availabil-
ity, which means that the majority system is the “globally
minimum”. If we can find such a “global minimum” for
SQS, then that “minimum” will likely give us the best probe
complexity and load. Interestingly however, we will show
that such a “global minimum” does not exist for SQS.

To prove this result, we first study the common proper-
ties of SQS with optimal availability (illustrated in Fig. 3):

Theorem 20 Suppose n ≥ 3α − 1. For any SQS Q where
Avail(Q) = Avail(OPT a), it must be true that:

1. ∀Q ∈ Q, |Q+| ≥ α.
2. Cα ⊆ Q.
3. ∀Q ∈ Q, if α ≤ |Q+| ≤ 2α−1, then |Q| ≥ n+α−|Q+|.
4. ∀Q ∈ Q, |Q| ≥ 2α.

H. Yu

Fig. 3 Any quorum in Q, where Avail(Q) = Avail(OPT a), must be
one of the forms above

Proof

1. Prove by contradiction and suppose ∃Q ∈ Q, such that
|Q+| < α. Then there must exist C ∈ C|Q+| such that
Q ⊆ C and C ∈ As(Q). However, from Lemma 15, we
know that As(Q) (and in turn, Q) cannot have optimal
availability. Contradiction.

2. Prove by contradiction and assume ∃C ∈ Cα , such
that C /∈ Q. Without loss of generality, suppose C =
{1, 2, . . . , α, −(α + 1), . . . , −n}. Since Q has optimal
availability, Corollary 18 tells us that C ∈ As(Q). Thus
there exists Q ∈ Q such that Q ⊂ C . Since |Q+| ≥ α
(from 1), again without loss of generality, assume Q =
{1, 2, . . . , α,−(α + 1), . . . , −x}, where x ≤ n − 1.
Next we will find a quorum Q′ ∈ Q such that Q and Q′
cannot satisfy intersection or dual overlap. Because Q
has optimal availability and As(Q) = OPT a , we know
that ∃T ∈ As(Q), where T = {−1,−2, . . . ,−(n −
α), n − α + 1, . . . , n}. Since n ≥ 3α − 1, we have
n − α + 1 > α and T + ∩ Q+ = ∅. Furthermore, it is
clear that |T ∩ Dual(Q)| = 2α + x − n ≤ 2α − 1. Since
T ∈ As(Q), there must exist Q′ ∈ Q such that Q′ ⊆ T .
Based on the property between T and Q, it is easy to see
that Q+ ∩ Q′+ = ∅ and |Q ∩ Dual(Q′)| ≤ 2α − 1. This
means that Q cannot be an SQS. Contradiction.

3. Prove by contradiction and assume there exists Q ∈ Q,
such that |Q+| = x and |Q| = y, where α ≤ x ≤ 2α−1
and x ≤ y ≤ n + α − x − 1. Without loss of gen-
erality, suppose Q = {1, 2, . . . , x,−(x + 1), . . . , −y}.
Since Cα ⊆ Q, we have Q′ ∈ Q, where Q′ =
{−1,−2, . . . ,−(n − α), n − α + 1, . . . , n}. Since n ≥
3α − 1 and α ≤ x ≤ 2α − 1, it must be true that
n − α + 1 > x and Q+ ∩ Q′+ = ∅. Furthermore, be-
cause y ≤ n + α − x − 1, we have |Q ∩ Dual(Q′)| =
x + (y − (n − α)) ≤ 2α − 1. As a result, Q and Q′
satisfy neither intersection nor dual overlap. Q is not an
SQS. Contradiction.

4. From 1, we already know that ∀Q ∈ Q, |Q+| ≥ α.
If |Q+| ≥ 2α, then trivially |Q| ≥ 2α. If α ≤ |Q+| ≤
2α−1, then from 3, we know that |Q| ≥ n+α−|Q+| ≥
n − α + 1 ≥ 2α. �

To make our result on “global minimum” strong, we de-
fine a weaker form of domination to eliminate the effects of
permutation. Doing so is necessary to make the result inter-
esting, since otherwise an SQS may not even dominate itself
after a permutation of server indexes.

Definition 21 Consider a permutation X = (x1, x2, . . . , xn)
of (1, 2, . . . , n). For any set S ⊆ U ∪ Dual(U), S’s per-
mutation according to X (denoted as PermX (S)) is {i |xi ∈
S} ∪ {−i |(−xi) ∈ S}. An SQS Q’s permutation according
to X (denoted as PermX (Q)) is {PermX (Q)|Q ∈ Q}. Two
SQS Q and Q′, Q dominates Q′ after permutation (denoted
as Q �∃ Q′) if ∃X , such that Q � PermX (Q′).

The crux of proving the non-existence of “global min-
imum” is the next two SQS constructions, where no SQS
can dominate both of them. In the following, HOLE is in-
tuitively the set containing all size-(n − 1) quorums with
exactly α + 1 positive elements. Namely, there is one miss-
ing server (hence the name “hole”) in any of these quorums.
An important property of HOLE is that it remains the same
after any permutation.

OPT b = {{1, 2, . . . , 2α}} ∪ OPT a

HOLE = {S | |S+| = α + 1 and |S| = n − 1

and ∃i such that ∀ j ∈ U and j �= i ,

either j or − j (but not both) is in S}
OPT c = HOLE ∪ OPT a

We can easily prove that both OPT b and OPT c are
SQS with optimal availability:

Theorem 22 OPT b is an SQS and Avail(OPT b) =
Avail(OPT a).

Theorem 23 OPT c is an SQS and Avail(OPT c) =
Avail(OPT a).

Proof Obviously, OPT c is a signed set system. Consider
any two sets S and T in OPT c. If both of them belong to
OPT a , then clearly they satisfy either intersection or dual
overlap. If none of them belong to OPT a , and S+∩T + = ∅,
then it must be true that |S+ ∩ Dual(T −)| ≥ α. Similarly,
we have |T + ∩ Dual(S−)| ≥ α. Thus, S and T must sat-
isfy the dual overlap condition. Finally, if S ∈ HOLE and
T ∈ OPT a , suppose T ∈ C j (j ≥ α). If S+ ∩ T + =
∅, it must be true that |S+ ∩ Dual(T −)| ≥ α + 1 and
|T + ∩ Dual(S−)| ≥ α − 1. Then again, S and T sat-
isfy the dual overlap condition. Thus we have shown that
OPT c is an SQS. Finally, since OPT a ⊆ As(OPT c),
we know from Corollary 17 that Avail(OPT c) =
Avail(OPT a). �

Now notice that OPT b contains the quorum of
{1, 2, . . . , 2α}, while OPT c contains the quorum of
{−2,−3, . . . , −(n − α − 1), (n − α), . . . , n}. When n ≥
3α + 1, these two quorums do not satisfy either intersection
or dual overlap. From this observation, we can prove that no

Signed quorum systems

SQS can dominate both OPT b and OPT c. This is true even
after permutation since OPT c remains unchanged after any
permutation.

Theorem 24 Suppose n ≥ 3α + 1. There does not exist an
SQS Q, such that for ∀Q′ where Avail(Q′) = Avail(OPT a),
Q �∃ Q′.

Proof We will show that there does not exist an SQS Q such
that Q �∃ OPT b and Q �∃ OPT c. Prove by contradic-
tion and suppose such Q exists. This means there exist two
permutations X and Y such that Q � PermX (OPT b) and
Q � PermY (OPT c). Let X be X ’s reverse permutation, i.e.,
PermX (PermX (S)) = S for ∀S. Obviously, such X must ex-
ist.

Now we have:

Q � PermX (OPT b)

⇒ PermX (Q) � PermX (PermX (OPT b))

⇒ PermX (Q) � OPT b

and:

Q � PermY (OPT c)

⇒ PermX (Q) � PermX (PermY (OPT c))

⇒ PermX (Q) � OPT c

(because OPT c remains unchanged

after any permutation)

Since Q is an SQS, PermX (Q) must also be an SQS.
Let Q′

1 = {1, 2, . . . , 2α} ∈ OPT b. There must ex-
ist Q1 ∈ PermX (Q), such that Q1 ⊆ Q′

1. Let Q′
2 =

{−2,−3, . . . , −(n−α−1), (n−α), . . . , n} ∈ OPT c. There
must exist Q2 ∈ PermX (Q), such that Q2 ⊆ Q′

2.
Now we will show that with both Q1 and Q2, PermX (Q)

cannot be an SQS. Since n ≥ 3α + 1, we know that Q′+
1 ∩

Q′+
2 = ∅, which implies Q+

1 ∩ Q+
2 = ∅. Furthermore, |Q1 ∩

Dual(Q2)| ≤ |Q′
1 ∩ Dual(Q′

2)| = 2α − 1. Thus, Q1 and Q2
satisfy neither intersection nor dual overlap, and PermX (Q)
is not an SQS. Contradiction. �

6 SQS with optimal probe complexity

When we only optimize for probe complexity, the trivial
SQS {{1}} gives the best probe complexity of 1, which is not
interesting. From a practical perspective, we usually want an
SQS with good availability and good probe complexity. It is
reasonable to argue that “good” availability at least means
Avail(Q) → 1.0 when n → ∞.3 It is easy to show that sim-
ply to satisfy such a weak requirement would entail at least
2α probes:

Theorem 25 For any SQS Q and any probe strategy ψ for
Q, if depth(ψ, C) ≤ 2α − 1 for any configuration C, then
limn→∞ Avail(Q) �→ 1.0.

3 Such property is formally called Condorcet in [12].

Proof We consider two cases:

1. The path corresponding to C ultimately acquires a quo-
rum Q. Since depth(ψ, C) ≤ 2α − 1, it must be true
that |Q| ≤ 2α − 1. Q thus can never satisfy the dual
overlap condition with another quorum, which means
that Q intersects with every quorum in Q. If all servers
in Q fail, then no quorum can be acquired. The proba-
bility that all servers in Q fail is p|Q| ≥ p2α−1. Thus
limn→∞ Avail(Q) ≤ 1 − p2α−1 �→ 1.0.

2. The path corresponding to C ultimately claims that no
quorum can be acquired under C . Suppose the path con-
tains successful probes from the set S1 of servers, and
failed probes from the set S2 of servers. We know that
|S1| + |S2| ≤ 2α − 1. Obviously, with probability of at
least (1 − p)|S1| · p|S2| ≥ (p − p2)2α−1, no quorum from
Q can be acquired. As a result, limn→∞ Avail(Q) ≤
1 − (p − p2)2α−1 �→ 1.0. �
On the other hand, interestingly, we will show that even

if we insist on optimal availability, there exists an SQS
whose probe complexity is smaller than 2α/(1 − p).

6.1 Probe complexity lower bounds for SQS with optimal
availability

The main challenge in deriving the lower bounds comes
from the fact that the probe algorithm can be adaptive based
on the results of previous probes. We first discuss how to ob-
tain a lower bound for PC∗

e . In the same client-server con-
text for SQS, we define a ServerProbe problem. This prob-
lem has its own probe complexity (or simply complexity).
Later we will show that the expected probe complexity of
an SQS with optimal availability is at least as large as the
complexity of the ServerProbe problem. On the other hand,
in this ServerProbe problem, all servers play identical roles,
which makes it easier to compute its complexity.

Definition 26 ServerProbe Problem: A client probes the n
servers one by one according to a particular strategy, and
stops after the ith probe if any of the following conditions
are met (let pos be the number of successful probes and neg
be the number of failed probes, where pos + neg = i):

1. pos ≥ 2α.
2. pos ≥ n + α − i .
3. neg ≥ n + 1 − α.

Under a given configuration, the number of probes be-
fore stopping is called the total probes. The expected total
probes under all configurations is called the complexity of
the ServerProbe problem.

It is important to see that even though the definition of
the problem has the concept of a “strategy”, the complexity
of ServerProbe is not affected by the strategy. This is true
because all servers are identical and none of the termination
conditions distinguish between different servers.

Following we compute the complexity of the Server-
Probe problem. Let f (i) = Prob[total probes ≤ i] and

H. Yu

a(x, y) = (x
y

)
px−y (1 − p)y . Suppose n ≥ 3α − 1 and

we consider the following cases:

1. 0 ≤ i ≤ 2α − 1. None of the three conditions can possi-
bly be met. Thus f (i) = 0.

2. 2α ≤ i ≤ n − α. It is impossible to meet the last con-
dition of neg ≥ n − α + 1. The first two conditions can
be merged into a single condition of pos ≥ 2α. Thus we
have f (i) = �i

j=2αa(i, j).
3. n − α + 1 ≤ i ≤ n. The three conditions can be merged

into the following two: pos ≥ n + α − i or pos ≤ i +
α − (n + 1). Thus we have f (i) = �

i+α−(n+1)
j=0 a(i, j) +

�i
j=n+α−i a(i, j).

The complexity of ServerProbe is then g(n) = ∑n
i=1 i ×

(f (i) − f (i − 1)). Based on the original definition of the
ServerProbe problem (Definition 26), even if we only use the
first termination condition of pos ≥ 2α and even if n → ∞,
the complexity is always upper bounded by 2α/(1 − p)
(i.e., expected number of trials before 2α successes with
the success probability being 1 − p). Thus, we always have
g(n) < 2α/(1 − p).

Lemma 27 Suppose n ≥ 3α − 1. Let Q be any SQS
where Avail(Q) = Avail(OPT a). Let ψ be Q’s probe strat-
egy. Consider any configuration C and ψ’s corresponding
branch of path(ψ, C):

• If the leaf of path(ψ, C) claims that no quorum can pos-
sibly be acquired under C, then path(ψ, C) contains at
least n + 1 − α failed probes.

• If the leaf of path(ψ, C) claims that Q ∈ Q has been
acquired, then path(ψ, C) contains at least 2α or n +
α − depth(ψ, C) successful probes.

Proof

• Proof by contradiction. Since Q has optimal availability,
from Theorem 20 we know that Cα ⊆ Q. If path(ψ, C)
contains n − α or fewer failed probes, then it is still
possible that some quorum in Cα is available. Thus
the leaf cannot claim that no quorum can be acquired.
Contradiction.

• If the leaf claims that Q ∈ Q has been acquired, from
Theorem 20, we know that |Q+| ≥ α. If |Q+| ≥
2α, then clearly path(ψ, C) has at least 2α successful
probes. If α ≤ |Q+| ≤ 2α − 1, from Theorem 20, we
know that depth(ψ, C) ≥ |Q| ≥ n + α − |Q+|. �

Lemma 28 Suppose n ≥ 3α − 1. For any SQS Q where
Avail(Q) = Avail(OPT a), we have PC∗

e (Q) ≥ g(n).

Proof For any probe strategy ψ for Q, we consider a Server-
Probe problem using the same strategy. Under any configu-
ration C where depth(ψ, C) = i , the total probes of the
ServerProbe problem must be equal to or smaller than i
(Lemma 27). This means that PC∗

e (Q) is at least the com-
plexity of the ServerProbe problem, which is g(n). �

We now move on to worst-case probe complexity. For
PCw, it is easy to show that the lower bound is n. This is
true because from Theorem 20, Cα ⊆ Q and in the worst
case, n probes are already necessary to determine whether
some quorum in Cα is alive:

Lemma 29 For any SQS Q where Avail(Q) =
Avail(OPT a), PCw(Q) = n.

Proof Construct an adversary which crashes n − α servers
among the first n − 1 servers probed by the client. We
show that the client cannot stop within or immediately af-
ter these n − 1 probes. Proof by contradiction. Suppose the
client returns and claims that a quorum has been acquired.
Since the client does not know the state of the last server, it
must be true that Q contains a quorum Q accepted by some
C ∈ Cα−1. However, this is impossible because otherwise Q
will not have optimal availability (Lemma 15). On the other
hand, if the client stops and claims that no quorum can be
acquired, then consider the configuration composed of the
state of the first n − 1 servers as seen by the client, and also
an available last server. Clearly, this configuration belongs to
Cα , and thus also belongs to OPT a and As(Q) (since Q has
optimal availability). As a result, the configuration would
accept a quorum in Q. Contradiction. �

To derive a lower bound on PC∗
w, as in [6], we use Yao’s

theorem [16]. The theorem says that the expected time of
a randomized algorithm A1 with any input distribution D1
is always bounded from below by the expected time of the
best deterministic algorithm A2 on inputs coming from any
distribution D2. Thus all we need to do is to construct a diffi-
cult distribution D2 such that any A2 will perform poorly on
average. Following we first cite a lemma from [6] and then
prove our lower bound.

Lemma 30 [6] Consider an urn containing n elements of
which w are white and b are black, and suppose elements
are taken out one by one without replacement. Then the ex-
pected number of trials until obtaining the i th white element
is i(n+1)

w+1 .

Lemma 31 Suppose n ≥ 3α − 1. For any SQS Q where
Avail(Q) = Avail(OPT a), PC∗

w(Q) ≥ (n−α+1)(n+1)
n−α+2 =

�(n).

Proof Consider the distribution of all configurations in
Cα−1, where each element is chosen with a probability of
1/|Cα−1|. Lemma 15 tells us that no quorum in Q can be
accepted under any configuration in Cα−1. By Lemma 27,
we know that the probe algorithm needs to observe at least
n + 1 − α failed probes. After each probe, the remaining
servers are totally symmetric in the sense that their prob-
ability of being available is equal. Thus it does not matter
which server is probed first. The problem now is exactly as
in Lemma 30 and the expected number of probes needed is
(n−α+1)(n+1)

n−α+2 . �
Theorem 32 Suppose n ≥ 3α − 1. For any SQS Q, where
Avail(Q) = Avail(OPT a), we have:

Signed quorum systems

PCw(Q) = n

PC∗
e (Q) = PCe(Q) ≥ g(n)

PC∗
w(Q) = �(n)

Proof From Lemma 28, Lemma 29 and Lemma 31. �

6.2 Probe complexity upper bounds for SQS with optimal
availability

We now try to construct an optimal-availability SQS that can
reach the lower bound on PC∗

e . (The lower bounds on PCw

and PC∗
w are trivially met.) The only way we can match this

lower bound is to stop immediately after the conditions in
Lemma 27 are satisfied. The only way we can match this
lower bound is to stop immediately after satisfying any of
the earlier three conditions: (i) 2α successful probes, (ii) n +
α − i successful probes, and iii) n + 1 − α failed probes.
Just to meet these requirements, some of the quorums are
already determined. It is then important to ensure that these
quorums can actually constitute an SQS, and further, an SQS
with optimal availability.

Our SQS here can be best explained intuitively if we de-
scribe it together with a probe strategy. The basic idea is
simply to arrange the servers in a fixed order. Each client
probes the servers one by one according to that order. The
client stops as long as it collects 2α positive replies (quo-
rum acquired). If the client has probed all servers, then the
client consider a quorum being acquired as long as it has at
least α positive replies. Finally, if the client collects fewer
than α positive replies after probing all servers, then it fails
to acquire a quorum. Since ultimately, a quorum is always
acquired as long as any α servers are available, the SQS
has optimal availability. To reach the exact lower bound on
PC∗

e , we only need one small optimization. When the client
has probed almost all n servers, it may stop with somewhat
fewer than 2α positive replies (but still more than α). Do-
ing so will ensure that the probing process stops under the
exactly same conditions as the ServerProbe problem (Defi-
nition 26), whose complexity is a lower bound for PC∗

e .
Following is a standard, combinatorial definition of our

SQS (Fig. 4):

Fig. 4 Construction of OPT a

LADi = {S | |S| = i and ∀ j such that 1 ≤ j ≤ i ,

either j or − j (but not both) is in S}
LADAi = {S | S ∈ LADi and |S+| ≥ 2α}

for 2α ≤ i ≤ n − α

LADBi = {S | S ∈ LADi and |S+| ≥ n + α − i}
for n − α + 1 ≤ i ≤ n

OPT d =
(n−α⋃

i=2α

LADAi

) ⋃(n⋃

i=n−α+1

LADBi

)

It is easy to show that OPT d is an SQS with optimal
availability:
Lemma 33 ∀S ∈ LADi and ∀T ∈ LAD j , i ≤ j :
1. If |S+|+ |T +|− (j − i) ≥ 2α, then either S+ ∩ T + �= ∅

or |S ∩ Dual(T)| ≥ 2α.
2. If |S+| ≥ 2α, then either S+ ∩ T + �= ∅ or |S ∩

Dual(T)| ≥ 2α.

Proof 1. If S+ ∩ T + �= ∅, then we are done. Otherwise let
T ′ = {x | − i ≤ x ≤ i and x ∈ T }. Since |T | − |T ′| =
j − i , we know that |T ′+| ≥ |T +| − (j − i). Given that
S+ ∩ T ′+ = ∅, it is obvious that |S ∩ Dual(T)| = |S ∩
Dual(T ′)| = |S+|+|T ′+| ≥ |S+|+|T +|−(j −i) ≥ 2α.

2. If S+ ∩ T + �= ∅, then we are done. Otherwise we have
|S ∩ Dual(T)| ≥ |S+| ≥ 2α. �

Theorem 34 OPT d is an SQS and Avail(OPT d) =
Avail(OPT a).

Proof First, it is clear that OPT d is a signed set system. For
any two sets S and T in OPT d , consider the following three
cases:
1. S ∈ LADAi and T ∈ LADA j for some i and j , 2α ≤

i ≤ j ≤ n − α. Because |S+| ≥ 2α, we know from
Lemma 33 that either S+ ∩ T + �= ∅ or |S ∩ Dual(T)| ≥
2α.

2. S ∈ LADAi and T ∈ LADB j for some i and j , 2α ≤
i ≤ n − α and n − α + 1 ≤ j ≤ n. Because |S+| ≥ 2α,
we know from Lemma 33 that either S+ ∩ T + �= ∅ or
|S ∩ Dual(T)| ≥ 2α.

3. S ∈ LADBi and T ∈ LADB j for some i and j , n −
α + 1 ≤ i ≤ j ≤ n. We have |S+| + |T +| − (j − i) ≥
(n + α − i) + (n + α − j) − (j − i) = 2n + 2α − 2 j ≥
2n + 2α − 2n = 2α. We now know from Lemma 33 that
either S+ ∩ T + �= ∅ or |S ∩ Dual(T)| ≥ 2α.
Thus, OPT d is an SQS. Finally, it is obvious that

OPT a = LADBn ⊆ As(OPT d), and from Corollary 17,
we have Avail(OPT d) = Avail(OPT a). �

Our probe strategy for OPT d simply probes the servers
one by one according to increasing indexes. It is easy to see
that the achieved expected probe complexity is exactly g(n):

Theorem 35 If n ≥ 3α − 1, then:
Avail(OPT d) = Avail(OPT a)

PC∗
e (OPT d) ≤ g(n) < 2α/(1 − p)

H. Yu

6.3 Notes on novelty and practicality of OPT d

Our OPT d construction is extremely simple with its se-
quential probe strategy. Sequential probing, by itself, is not
a novel idea at all. However, OPT d shows that sequential
probing, coupled with some small modifications and some
extra requirements, can provide very different guarantees (in
terms of availability and probe complexity) from those we
achieve in traditional quorum systems. To emphasize, these
simple modifications are:

• In traditional cases, it may not be required that all clients
probe the servers in the same order. In OPT d , it is neces-
sary for all clients to use the same order. Even though in
traditional systems, people may still implement the pro-
tocol by having all clients use the same order, it is not
an explicit requirement for correctness. In fact, for load
balancing purposes, there may even be an explicit reason
for not doing so.

• If we use sequential probing in traditional quorum sys-
tems and n ≥ 4α, then not all possible sets of 2α posi-
tive replies can be quorums (otherwise quorum intersec-
tion cannot be guaranteed). In comparison, OPT d only
needs any 2α positive replies.

Because of it simplicity, OPT d can be easily imple-
mented in practical systems. OPT d has a large load of 1.0,
making it more suitable for cases where load is less impor-
tant. In some cases, load balancing can be achieved across
multiple quorum systems rather than within a single quorum
system. Consider an example where we intend to replicate a
set of total o objects on n servers. For different objects, we
can use different orders for the n servers. For example, for
the i th object (assuming i ≤ n), the order can be i , i + 1,
. . . , n, 1, 2, . . . i − 1. Here as long as o is a multiple of n,
the load will be perfectly balanced. In practical systems it
is likely that o � n, in which case the load is close to per-
fectly balanced. OPT d is thus applicable to these scenarios
as well.

7 SQS with optimal load

7.1 Lower bounds

Different from previous load definitions, our more practical
definition captures the load induced by wasted probes. Such
a definition introduces an extra challenge because we can no
longer compute load based on distributions on the quorums.
To address such a challenge, since one major goal/benefit
of SQS is high availability, we focus on SQS whose avail-
ability is greater than 0.5. We first obtain lower bound given
that some quorum is acquired. The overall load is then lower
bounded within a 1/2 factor. We use the following notations:

Load A(Q) = Load(Q) given that a quorum is acquired

Load F(Q) = Load(Q) given that no quorum can be

acquired

By definition, we have the following relationship:

Load A(Q) · Avail(Q) + Load F(Q) · (1 − Avail(Q))

= Load(Q)

Similarly, we define PC A∗
e(Q) and PC F∗

e (Q) for probe
complexity. From the above relationship, we trivially have:

Lemma 36 When Avail(Q) ≥ 0.5, we have Load(Q) ≥
Load A(Q)/2 and PC∗

e (Q) ≥ PC A∗
e(Q)/2.

Lemma 37 For any SQS Q, suppose the smallest quorum
size in Q is x, then PC A∗

e(Q) ≥ x.

Our lower bound on load is exactly the same as for
UQS [11]. The reason is that if we make all negative ele-
ments positive, then an SQS becomes a UQS. The load of the
SQS cannot be better than that of the corresponding UQS.
Thus the result from [11] applies. This also means that if we
are only concerned with load, then SQS does not provide
any benefits:

Theorem 38 For any SQS Q, suppose the smallest quorum
size in Q is x, then Load A(Q) ≥ max(x/n, 1/x).

Corollary 39 For any SQS Q where Avail(Q) ≥ 0.5, we
have Load(Q) ≥ 1/(2

√
n) and Load(Q) ≥ 1/(4PC∗

e (Q)).

This shows that SQS has similar tradeoff between load and
probe complexity as UQS.

7.2 Composition of UQS and OPT a

To approach the lower bound on load, we compose certain
UQS with OPT a to obtain new SQS. The nice property of
composition is that the resulting SQS has the availability of
OPT a , and the load and probe complexity of the UQS. The
client will first try to use the UQS, and if it fails to acquire
a quorum, it will try to acquire a quorum in OPT a . Be-
cause the probe complexity of OPT a is quite bad, we need
to add some cushion between the UQS and OPT a to control
the probe complexity. The cushion is similar as the OPT d
construction. Finally, we need to carefully ensure that the
composition result is still an SQS.

Definition 40 Consider any UQS UQ over the universe of
{1, 2, . . . , k} (k ≤ n), where the size of any quorum in UQ
is at least 2α. Define the composition of UQ and OPT a
(denoted as UQ + OPT a) to be the signed set system Q
where:

LADCi = {S|S ∈ LADi and |S+| = k} for k ≤ i ≤ n

Q = UQ ∪ (∪n
i=kLADCi) ∪ OPT a

Figure 5 illustrates the composition technique. From
now on, when we use the notation UQ + OPT a , we im-
ply that UQ satisfies the conditions in the above definition.

Theorem 41 For any UQ, UQ + OPT a is an SQS.

Signed quorum systems

Fig. 5 Composition of UQ and OPT a

In order to preserve the load and probe complexity of
UQ in UQ + OPT a , our probe algorithm first probes the
quorums in UQ, and then moves on to other quorums in
UQ + OPT a . If the availability of UQ is reasonably high
(with respect to the value of k), the possibility of probing
other quorums is low. Thus the resulting probe complexity
and load will be dominated by the probe complexity and load
of UQ. On the other hand, as long as we try all quorums in
UQ + OPT a , the availability of OPT a is preserved.

Theorem 42 For any UQ and Q = UQ + OPT a:

Load(Q) ≤ Load(UQ) + (1 − Avail(UQ))

PC∗
e (Q) ≤ PC∗

e (UQ) + (1 − Avail(UQ)) · k/(1 − p)

Avail(Q) = Avail(OPT a)

Proof By definition, there exists a probe algorithm A for
UQ that can achieve load of Load(UQ) and probe complex-
ity of PC∗

e (UQ). We construct a probe algorithm for Q as
following:

1. Use A on the servers {1, 2, . . . , k}. If a quorum in UQ is
acquired, return.

2. Probe the servers one by one from 1 to n. If a quorum in
(∪n

i=kLADCk) is acquired, return.
3. At this point, all servers have been probed. If some

quorum in OPT a has been acquired, return. Otherwise
claim that no quorum can be acquired.

If the client returns in the first step, then the load on any
server must be no larger than Load(UQ). If the client con-
tinues to the second step (which happens with probability of
1 − Avail(UQ)), then the load on any node can be at most 1.
Thus we have Load(Q) ≤ Load(UQ) + (1 − Avail(UQ)).
For probe complexity, if the client returns in the first step, the
expected probe complexity is PC∗

e (UQ). If the client contin-
ues to the second step, then it will stop as soon as having k
successful probes (or having probed all servers). A simple
calculation can show that the expected number of probes is
upper bounded by k/(1 − p) for arbitrary n. Finally, it is
obvious that OPT a ⊆ As(Q) and Corollary 17 tells us that
Avail(Q) = Avail(OPT a). �
Corollary 43 For any UQ where 1 − Avail(UQ) ≤ 1/k · c
for some constant c, then:

Load(UQ + OPT a) = O(Load(UQ))

PC∗
e (UQ + OPT a) = O(PC∗

e (UQ))

Avail(UQ + OPT a) = Avail(OPT a)

Proof Probe complexity and availability are trivial from
Theorem 42. For load, notice that the lower bound
on Load(UQ) is �(1/

√
k), which already dominates

1/k · c. �

Different from our previous SQS constructions, UQ +
OPT a uses a potentially randomized and adaptive probe
strategy (because of the probe strategy on UQ), and Theo-
rem 9 does not apply. Following we prove that the probabil-
ity of non-intersection is still properly bounded under such
probe strategy:

Theorem 44 For any UQ and Q = UQ + OPT a, con-
sider two clients using our previous probe strategy on
Q, and let “non-intersection” denote the event that both
clients acquire some quorum, but they do not intersect. Then
Prob[non-intersection] ≤ 2ε2α .

Proof Let Q1 be the random variable denoting the quorum
acquired by the first client and S1 be the probed servers. Sim-
ilarly define Q2 and S2. Let SQ = Q − UQ. We trivially
have Prob[non-intersection and Q1 ∈ UQand Q2 ∈ UQ] =
0. Now consider the case where Q1 ∈ UQ and Q2 ∈
SQ. Because the second client must have probed all of
the first k servers, it must have probed all servers in Q1.
In order for the two clients not to intersect, there must be
mismatches on all servers in Q1. Since |Q1| ≥ 2α, we
have Prob[non-intersection |(Q1 ∈ UQ and Q2 ∈ SQ)] ≤
ε2α . Similarly, we can prove that Prob[non-intersection |
(Q1 ∈ SQ and Q2 ∈ UQ)] ≤ ε2α .

For the case where both Q1 and Q2 belong to SQ,
notice that SQ is an SQS itself. We construct a probe
strategy for SQ using the second and the third step of
the probe strategy for Q. Clearly, this new probe strategy
is deterministic and non-adaptive. From Theorem 9, we
know that the probability (denoted as δ) that two clients of
SQ acquire quorums in SQ but do not intersect is upper
bounded by ε2α . Define the global state to be the vector
describing the exact state (i.e., (+,+), (+, −), (−,+) or
(−, −)) of all servers when probed by two clients.4 Con-
sider any global state where i) two clients of Q acquire
quorums Q1 and Q2, and ii) Q1 ∈ SQ and Q2 ∈ SQ,
and iii) the two clients do not intersect. Then under the
same global state, the two clients of SQ will also acquire
Q1 and Q2, and they will not intersect either. So we have
Prob[non-intersection and Q1 ∈ SQ and Q2 ∈ SQ)] ≤ δ.
Finally, Fig. 6 puts the above four cases together and proves
that Prob[non-intersection] ≤ 2ε2α . �

4 We cannot use the notion of configuration here because configura-
tion only describes the server states as observed by a single client.

H. Yu

Fig. 6 Putting the four cases of non-intersection together

7.3 Composition with the paths UQS

Next we compose the Paths [10, 11] UQS with OPT a . We
first provide a brief, informal review of the Paths UQS. Con-
sider an l × (l + 1) (i.e., l rows and l + 1 columns) grid G.
Define G∗ to be the grid obtained by rotating G clockwise
by 90 degrees. In order words, G∗ is an (l + 1) × l grid.
Lay G∗ on top of G so that each edge in G∗ (except for the
edges at the boundary) crosses over an edge in G. An edge in
G∗, together with the edge it crosses in G, is called an edge
pair. Each edge pair corresponds to a server in the universe.
A quorum is the union of (servers identified with) the edges
of a left-right path in G and the edges of a top-bottom path
in G∗. The intersection property is guaranteed since every
left-right path in G crosses every top-bottom path in G∗.

Following are the results from [10, 11] regarding the
Paths UQS:

Theorem 45 [10, 11] Let PH(l) denote the Paths quorum
system with k = 2l2 + 2l + 1 servers. Then:

Load(PH(l)) = O(1/ l)

PC∗
e (PH(l)) = O(l)

1-Avail(PH(l)) = O(e−l)

It is simple to show that the smallest quorum size in
PH(l) is l.

Corollary 46 Let 2α ≤ l ≤ (
√

2n − 1 − 1)/2, then:

Load(PH(l) + OPT a) = O(1/ l)

PC∗
e (PH(l) + OPT a) = O(l)

Avail(PH(l) + OPT a) = Avail(OPT a)

Setting different values for l yields SQS constructions
that reach the optimal tradeoff between load and probe com-
plexity while preserving optimal availability.

8 Conclusions

Motivated by the need for highly available and low probe
complexity quorum systems in the Internet, this paper pro-
poses signed quorum systems (SQS). SQS provides proba-
bilistic intersection guarantee and utilizes the independent
mismatch property in today’s Internet. We show that our op-
timal SQS construction OPT d is available as long as any α
servers are available, and simultaneously has a probe com-
plexity of at most 2α/(1− p). These properties qualitatively

improve upon traditional quorum systems, where even the
optimal construction requires (n + 1)/2 available servers.
Our composition technique further shows that SQS can de-
couple availability from load and probe complexity, and op-
timal availability can now be achieved under most load and
probe complexity values.

Acknowledgements The dropping of the “deterministic” requirement
in Theorem 9 resulted from discussions with Praveen Yalagandula dur-
ing his 2004 summer internship with me at Intel Research Pittsburgh.
I would like to thank Phillip B. Gibbons, Dahlia Malkhi, David Peleg,
Adrian Perrig, Dazhi Wang, Avishai Wool, and Peng Yin for help-
ful discussion on various issues related to this paper. I also thank the
anonymous reviewers for their detailed feedbacks, which significantly
improved this paper.

References

1. Andersen, D., Balakrishnan, H., Kaashoek, F., Morris, R.: Re-
silient overlay networks. In: Proceedings of the 18th Symposium
on Operating Systems Principles, (October 2001)

2. Barbara, D., Garcia-Molina, H.: The reliability of voting mech-
anisms. IEEE Transactions on Computers 36(10), 1197–1208
(1987)

3. Bazzi, R.: Planar quorums. Theoretical Computer Science 243(1–
2), 243–268 (2000)

4. Garcia-Molina, H., Barbara, D.: How to assign votes in a dis-
tributed system. Journal of the ACM 32(4), 841–860 (1985)

5. Gifford, D.K.: Weighted voting for replicated data. In: Proceed-
ings of the 7th Symposium on Operating Systems Principles,
(December 1979)

6. Hassin, Y., Peleg, D.: Average probe complexity in quorum sys-
tems. In: Proceedings of the ACM Symposium of Principles of
Distributed Computing, (August 2001)

7. Holzman, R., Marcus, Y., Peleg, D.: Load balancing in quorum
systems. SIAM Journal on Discrete Mathematics 10(2), 223–245
(1997)

8. Malkhi, D., Reiter, M.: Byzantine quorum systems. In: Proceed-
ings of the 29th ACM Symposium on Theory of Computing, (May
1997)

9. Malkhi, D., Reiter, M., Wool, A., Wright, R.: Probabilistic Quo-
rum Systems. The Information and Computation Journal 170(2),
184–206 (2001)

10. Naor, M., Wieder, U.: Scalable and dynamic quorum systems. In:
Proceedings of the ACM Symposium of Principles of Distributed
Computing, (July 2003)

11. Naor, M., Wool, A.: The load, capacity, and availability of quorum
systems. SIAM Journal on Computing 27(2), 423–447 (1998)

12. Peleg, D., Wool, A.: The availability of quorum systems. Informa-
tion and Computation 123(2), 210–223 (1995)

13. Peleg, D., Wool, A.: How to be an efficient snoop, or the probe
complexity of quorum systems. In: Proceedings of the ACM Sym-
posium of Principles of Distributed Computing, (May 1996)

Signed quorum systems

14. Savage, S., Anderson, T., Aggarwal, A., Becker, D., Cardwell,
N., Collins, A., Hoffman, E., Snell, J., Vahdat, A., Voelker, G.,
Zahorjan, J.: Detour: A Case for Informed Internet Routing and
Transport. IEEE Micro 19(1), 50–59 (1999)

15. Thomas, R.H.: A majority consensus approach to concurrency
control for multiple copy databases. ACM Transactions on
Database Systems 4(2), 180–209 (1979)

16. Yao, A.: Probabilistic computations: Towards a unified mea-
sure of complexity. In: Proceedings of the 17th Annual Sympo-
sium on Foundations of Computer Science, (October–November
1977)

17. Yu, H.: Overcoming the majority barrier in large-scale systems. In:
Proceedings of the 17th International Symposium on Distributed
Computing, (October 2003)

18. Yu, H., Vahdat, A.: The costs and limits of availability for repli-
cated services. In: Proceedings of the 18th ACM Symposium on
Operating Systems Principles, (October 2001)

Haifeng Yu is currently a Researcher at Intel Research Pittsburgh.
He is also an Adjunct Assistant Professor at the Department of
Computer Science, Carnegie Mellon University. His research inter-
ests cover the general area of distributed systems, as well as related
fields such as operating systems, database systems, fault-tolerance and
large-scale peer-to-peer systems. Haifeng receives his Ph.D. and M.S.
from Duke University, and his B.E. from Shanghai Jiaotong Uni-
versity, China. More information about his research is available at
http://www.cs.cmu.edu/˜yhf.

http://www.cs.cmu.edu/~yhf

