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The tradeoffs between consistency, performance, and availability are well understood. Traditionally,
however, designers of replicated systems have been forced to choose from either strong consistency
guarantees or none at all. This paper explores the semantic space between traditional strong and
optimistic consistency models for replicated services. We argue that an important class of applica-
tions can tolerate relaxed consistency, but benefit from bounding the maximum rate of inconsistent
access in an application-specific manner. Thus, we develop a conit-based continuous consistency
model to capture the consistency spectrum using three application-independent metrics, numerical
error, order error, and staleness. We then present the design and implementation of TACT, a mid-
dleware layer that enforces arbitrary consistency bounds among replicas using these metrics. We
argue that the TACT consistency model can simultaneously achieve the often conflicting goals of
generality and practicality by describing how a broad range of applications can express their con-
sistency semantics using TACT and by demonstrating that application-independent algorithms
can efficiently enforce target consistency levels. Finally, we show that three replicated applications
running across the Internet demonstrate significant semantic and performance benefits from using
our framework.

Categories and Subject Descriptors: D.4.7 [Operating Systems]: Organization and Design—
Distributed systems; H.2.4 [Database Management]: Systems—Distributed databases

General Terms: Design, Experimentation

Additional Key Words and Phrases: Conit, consistency model, continuous consistency, network
services, relaxed consistency, replication

1. INTRODUCTION

Replicating distributed services for increased availability and performance has
been a topic of considerable interest for many years. Recently however, the expo-
nential increase in access to popular Web services provides concrete examples
of the types of services that benefit from replication, their requirements, and
semantics. One of the primary challenges to replicating network services across
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Fig. 1. (a) The spectrum between strong and optimistic consistency as measured by a bound
on the probability of inconsistent access. (b) The tradeoff between consistency, availability, and
performance depends upon application and network characteristics.

the Internet is maintaining consistency among the replicas. Providing strong
consistency (e.g., one-copy serializability [Bernstein and Goodman 1984]) im-
poses performance overhead and limits system availability. Thus, a variety of
optimistic consistency models [Guy et al. 1990; Guy et al. 1998; Kistler and
Satyanarayanan 1992; Saito et al. 1999; Terry et al. 1995] have been proposed
for applications that can tolerate relaxed consistency. Such models require less
communication, resulting in improved performance and availability.

Unfortunately, optimistic models typically provide no bounds on the inconsis-
tency of the data exported to client applications and to end users. A fundamental
observation behind this work is that there is a continuum between strong and
optimistic consistency and that this continuum is semantically meaningful for
a broad range of network services. This continuum is parameterized by the
maximum distance between a replica’s local data image and some final image
“consistent” across all replicas after all writes have been applied everywhere.
For strong consistency, this maximum distance is zero, while for optimistic
consistency it is infinite. We explore the semantic space between these two ex-
tremes. For a given workload, providing a per-replica consistency bound allows
the system to determine an expected probability, for example, that a write oper-
ation will conflict with a concurrent write submitted to a remote replica, or that
a read operation observes the results of writes that must later be rolled back.
No such analysis can be performed for optimistic consistency systems because
the maximum level of inconsistency is unbounded.

The relationship between consistency, availability, and performance is de-
picted in Figure 1(a). In moving from strong consistency to optimistic consis-
tency, application performance and availability increases. This benefit comes
at the expense of an increasing probability that individual accesses will
return inconsistent results, e.g., stale/dirty reads, or conflicting writes. In
our work, we allow applications to bound the maximum probability/degree
of inconsistent access in exchange for increased performance and availabil-
ity. Figure 1(b) graphs different potential improvements in application per-
formance versus the probability of inconsistent access, depending on work-
load/network characteristics. Moving to the right in the figure corresponds to
increased performance, while moving up in the figure corresponds to increased
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inconsistency. To achieve increased performance, applications must tolerate a
corresponding increase in inconsistent accesses. The tradeoff between perfor-
mance and consistency depends upon a number of factors, including applica-
tion workload, such as read/write ratios, probability of simultaneous writes,
etc., and network characteristics such as latency, bandwidth, and error rates.
At the point labeled “1” in the consistency spectrum in Figure 1(b), a mod-
est increase in performance corresponds to a relatively large increase in in-
consistency for application classes corresponding to the top curve, perhaps
making the tradeoff unattractive for these applications. Conversely, at point
“2,” large performance increases are available in exchange for a relatively
small increase in inconsistency for applications represented by the bottom
curve.

Thus, the goals of this work are to: (i) explore the issues associated with filling
the semantic, performance, and availability gaps between optimistic and strong
consistency models; (ii) develop a continuous consistency model that allows a
broad range of replicated services to conveniently and quantitatively express
their consistency requirements; (iii) ensure that the model is simultaneously
general—applicable to a broad range of applications—and practical—able to
efficiently enforce target consistency levels; (iv) quantify the tradeoff between
performance and consistency for a number of sample applications; and (v) show
the benefits of dynamically adapting consistency bounds in response to current
network, replica, and client-request characteristics. To this end, we present
the design, implementation, and evaluation of the TACT toolkit for wide-area
replication. TACT is a middleware layer that accepts specifications of applica-
tion consistency requirements and mediates read/write access to an underlying
data store. It also enforces the consistency requirements specified by the appli-
cation using built-in consistency protocols to shield application programmers
from the complexities of consistency maintenance. At a high level, if an opera-
tion does not violate prespecified consistency requirements, TACT allows it to
proceed locally (without contacting remote replicas). Otherwise, the operation
blocks until TACT is able to synchronize with one or more remote replicas (i.e.,
push or pull some subset of local/remote updates) as determined by system
consistency requirements.

To allow applications to export application-dependent consistency semantics,
we base our consistency model on the concept of a conit (for consistency unit).
Conceptually, a conit is a logical consistency unit. Consistency is then defined on
conits rather than physical data items. We propose three simple, application-
independent metrics, numerical error, order error, and staleness to quantify
conit consistency. Numerical error limits the total weight of writes on a conit
that can be applied globally across all replicas before being propagated to a
given local replica. Order error limits the number of tentative writes on a conit
(subject to reordering) that can be outstanding at any one replica, and staleness
places a real-time bound on the delay of write propagation among replicas.
Consider the concrete example of a replicated bulletin board service where
users may post/retrieve news messages to/from any replica. In the simplest
case where one conit is defined to cover all news messages, numerical error
bounds the total number of messages posted system-wide but not seen locally.
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Order error then limits the number of out of order messages on a given replica,
while staleness limits the delay of messages.

We present a number of algorithms to efficiently bound each of the three
metrics: a push approach based solely on local information bounds numerical
error; a write commitment algorithm allows replicas to agree on a global total
write order and enforces the order error bound; and staleness is maintained
using a real-time vector. At the lowest level, these protocols systematically con-
trol when and where to initiate communication between replicas based on the
application-defined conits and consistency bounds. To evaluate the effectiveness
of our system, we implement and deploy across the wide area three applications
with a broad range of dynamically changing consistency requirements using the
TACT toolkit: an airline reservation system, a distributed bulletin board ser-
vice, and replicated load distribution front ends to a Web server. Relative to
strong consistency techniques, TACT improves the throughput of these appli-
cations by up to a factor of 10. Relative to weak consistency approaches, TACT
provides strong semantic guarantees regarding the maximum inconsistency
observed by individual read and write operations.

The rest of this paper is organized as follows. Section 2 describes three net-
work services implemented in the TACT framework to motivate our consis-
tency model and system architecture. Section 3 presents the system model and
assumptions we make. Section 4 elaborates the conit-based continuous consis-
tency model, and Section 5 further discusses its generality. In Section 6, we
summarizes our insights on the consistency model. Next, Section 7 gives an
overview of the application-independent consistency protocols we implement,
and Section 8 details the TACT architecture. Section 9 evaluates the perfor-
mance of our three applications in the TACT framework. Finally, Section 10
places our work in the context of related work, and Section 11 presents our
conclusions.

2. APPLICATIONS

In this section, we describe three applications implemented in our framework.
Our system architecture and performance evaluation of these applications are
detailed in Sections 8 and 9, respectively. We present the requirements of these
applications here to motivate both the need for a continuous consistency model
and our particular solution.

2.1 Airline Reservations

Our first sample application is a simple replicated airline reservation system
designed to be representative of replicated e-commerce services that accept in-
quiries (searches) and purchase orders on a catalog. In our implementation,
each server maintains a full replica of the flight information database and ac-
cepts user reservations and inquiries about seat availability. Consistency in
this application is measured by the percentage of requests that access incon-
sistent results. For example, in the face of divergent replica images, a user
may observe an available seat, when in fact the seat has been booked at an-
other replica (false positive). Or a user may see a particular seat is booked
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when in fact, it is available (false negative). Intuitively, the probability of such
events is proportional to the distance between the local replica image and some
consistent final image.

One interesting aspect of this application is that its consistency requirements
change dynamically based on client, network, and application characteristics.
For instance, the system may wish to minimize the rate of inquiries/updates
that observe inconsistent intermediate states for certain preferred clients. Re-
quests from such clients may require a replica to update its consistency level
(by synchronizing with other replicas) before processing the request or may be
directed to a replica that maintains the requisite consistency by default. As
another example, if network performance among replicas is high, the absolute
performance/availability savings available from relaxing consistency may not
be sufficient to outweigh the costs associated with reduced consistency. Finally,
the desired consistency level depends on individual application semantics. For
airline reservations, the cost of a transaction that must be rolled back is fairly
small when a flight is empty (one can likely find an alternative seat on the same
flight), but grows as the flight fills.

2.2 Bulletin Board

The bulletin board application is a replicated message posting service modeled
after more sophisticated services such as USENET. Messages are posted to
individual replicas. Sets of updates are propagated among replicas, ensuring
that all messages are eventually distributed to all replicas. This application
is intended to be representative of interactive applications that often allow
concurrent read/write access under the assumption that conflicts are rare or
can be resolved automatically.

Desirable consistency requirements for the bulletin board example include
maintaining causal and/or total order among messages posted at different repli-
cas. With causal order, a reply to a message will never appear before the origi-
nal message at any replica. Total order ensures that all messages appear in the
same order at all replicas, allowing the service to assign globally unique identi-
fiers to each message. Another interesting consistency requirement for interac-
tive applications, including the bulletin board, is to guarantee that at any time
t, no more than k messages posted before t are missing from the local replica.

2.3 QoS Admission Control

The final application implemented in our framework is an admission control
mechanism that provides Quality of Service (QoS) guarantees to a set of pre-
ferred clients. In this scenario, front-ends (as in LARD [Pai et al. 1998]) accept
requests on behalf of two classes of clients, standard and preferred. The front
ends forward requests to back end servers with the goal of reserving some prede-
termined portion of server capacity for preferred clients. Thus, front ends allow
a maximum number of outstanding requests (assuming homogeneous requests)
at the back end servers. To determine the maximum number of “standard” re-
quests that should be forwarded, each front end must communicate current
access patterns to all other front ends.
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One goal of designing such a system is to minimize the communication re-
quired to accurately distribute such load information among front ends. This
QoS application is intended to be representative of services that independently
track the same logical data value at multiple sites, such as a distributed sen-
sor array, a load balancing system, or an aggregation query [Hellerstein et al.
1997]. Such services are often able to tolerate some bounded inaccuracy in the
underlying values they track (e.g., average temperature or server load) in ex-
change for reduced communication overhead or power consumption (in the case
of a mobile node).

3. SYSTEM MODEL

For simplicity, we refer to application data as a database, though the data can
actually be stored in a database, file system, persistent object, etc. The database
is replicated in full at multiple sites. Each replica accepts logical reads and
writes from users that may consist of multiple primitive read/write operations.
Reads and writes are both called accesses. Our reads and writes are query
transactions and update transactions in database terminology except that they
may or may not be atomic or persistent when replicas fail. Besides primitive
reads/writes, a read or write also contains the associated application logic (e.g.,
conditional branch and computation) that controls the execution of the primitive
reads/writes.1 On a single replica, a read or write is isolated from other reads
or writes during execution.

Replicas maintain consistency by propagating writes rather than the
data written, as in Bayou [Petersen et al. 1997] and N -ignorant systems
[Krishnakumar and Bernstein 1994]. Writes are reexecuted at each replica
against the local database image. Because the system reexecutes writes rather
than directly applies new data, it does not need to resolve write conflicts. The ap-
plication logic in the write must have already handled conflicts, otherwise race
conditions may occur even if the write is processed by a centralized database
server. Compared to directly propagating new data images, this model allows
the application to specify alternative actions in case of conflicts, rather than dic-
tating that all conflicting writes be aborted. Reexecuting writes at each replica
does increase system load, but previous research on write procedures [Petersen
et al. 1997] has shown this approach can be implemented efficiently.

TACT mediates all accesses to the data store. Each replica maintains a write
log, containing all writes applied to its database image. Standard concurrency
control mechanisms (e.g., two-phase locking) are used on each replica to en-
sure local serializability. The replica that first accepts an access from a client is
called the originating replica for that access. All other replicas are remote repli-
cas. When first applied to a replica, a write is in a tentative state and returns
an observed result to the user. However, this observed result may not be ac-
curate because of an inaccurate local database image under weak consistency.

1Even though the original transaction concept in database does contain application logic, the trans-
action definitions in previous consistency models are often simplified to only containing primitive
data accesses. Here, we include application logic in the definition so that we can apply the same
write against different database images (at different replicas) under weak consistency.
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The write can then be propagated to other replicas. Writes in a replica’s write
log may be reordered, for example, rolled-back and then re-applied in a differ-
ent order, with potentially different results. Write reordering is assumed to be
isolated from the execution of reads and writes. At some point, a write becomes
committed, which means it will never be reordered again. The ideal result of
a write is thus defined to be its return value when finally committed. Reads
are processed once and are never reordered. The observed result of a read is
the value returned to a client query, while its ideal result is the value that
should be returned to the user if 1SR with external order (defined below) were
maintained.

The traditional definition of strong consistency for replicated data is one-copy
serializability (1SR) [Bernstein et al. 1987]. However, the lack of timing infor-
mation in 1SR makes it inappropriate for Internet applications. For example, in
replicated stock quotes systems, stale values are allowed to be read even if 1SR
is maintained, as such stale reads can be considered to execute “in the past” by
1SR. As in timed consistency [Singla et al. 1997; Torres-Rojas et al. 1999] and
external consistency [Adya et al. 1995], we augment 1SR with external order,
which is a partial order over all accesses. An access A1 externally precedes an-
other access A2 if A1 returns its observed result to the user (in strict wall-clock
time) before A2 is submitted to its originating replica. We say an execution on
replicated data is 1SR with external order (1SR+EXT) if the execution is equiv-
alent to a serial execution that is compatible to external order. The concept of
1SR+EXT is not completely new and is equivalent to the linearizability concept
for concurrent objects [Herlihy and Wing 1990]. Hereafter, we equate “strong
consistency” with 1SR+EXT, and it will be the strongest consistency level we
consider.

4. CONIT-BASED CONTINUOUS CONSISTENCY MODEL

In earlier sections, we motivated the need for a continuous consistency and
described our target system model. In this section, we describe our particular
continuous consistency model. We begin with a discussion of two key and typi-
cally conflicting requirements of any consistency model, generality and practi-
cality. We then formally describe the definition of conit consistency using three
application-independent metrics. Finally, we show how applications use the
consistency model and how the model captures application-specific consistency
requirements with relatively little effort from the application developer.

4.1 The Dual Requirements of Generality and Practicality

Broad diversity in the characteristics of wide-area applications imposes the
following two typically conflicting requirements, generality and practicality, on
the continuous consistency model:

Generality. Wide-area services have rich and application-specific consis-
tency semantics. For example, a shared editor may have well-defined, but to-
tally different consistency semantics from an inventory maintenance system
for e-commerce. Thus, the consistency model must be sufficiently general and
abstract to capture a wide range of consistency semantics.
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Practicality. The wide applicability of Internet data replication requires
the model to be practical to use in regular application design. More specifically,
by practicality, we mean (i) in spite of application-specific semantics, the pro-
tocols enforcing consistency requirements should be application-independent
and highly-efficient, and (ii) the way that consistency semantics are expressed
must be natural and easy to use.

The goals of generality and practicality typically conflict with one another.
One effective approach for achieving generality is to avoid defining a uniform
consistency model for all applications. Instead, applications are allowed to spec-
ify their own consistency semantics. However, the consistency protocols enforc-
ing such a model typically cannot be optimized in an application-independent
manner. Also, to capture arbitrary semantics, the model has to be abstract, pro-
viding no natural way for application programmers to use the model in many
cases.

In the context of traditional replicated databases, a large body of research
[Agrawal et al. 1993; Akibsi et al. 1990; Badrinath and Ramamritham 1992;
Dipippo and Wolfe 1993; Drew and Pu 1995; Gallersdorfer and Nicola 1995;
Krishnakumar and Bernstein 1994; Kuo and Mok 1992, 1993; Pitoura nad
Bhargava 1995; Pu et al. 1993; Pu and Leff 1991; Weihl 1988; Wong and Agarwal
1992; Wu et al. 1992] has focused on relaxed consistency models. However,
such traditional models typically achieve only one of generality and practicality.
Some of the consistency models [Agrawal et al. 1993; Kuo and Mok 1992, 1993;
Wong and Agarwal 1992] are general enough to allow a wide range of applica-
tions to express their consistency semantics. However, they provide no practical,
efficient, application-independent protocols to enforce the model and no natu-
ral application programmer interface (API) for application programmers, thus
failing to meet the practicality requirement. Other relaxed consistency mod-
els [Alonso et al. 1990; Badrinath and Ramamritham 1992; DiPippo and Wolfe
1993; Drew and Pu 1995; Gallersdorfer and Nicola 1995; Krishnakumar and
Bernstein 1994; Pitoura and Bhargava 1995; Pu et al. 1993; Pu and Leff 1991;
Weihl 1988; Wu et al. 1992] have easy-to-use interfaces and can be efficiently
implemented, but they typically only address the consistency requirements of
a specific class of applications.

To simultaneously achieve generality and practicality, we propose a conit-
based continuous consistency model for wide-area data replication (Figure 2).
Generality is achieved by our conit theory. Practicality is achieved in our model
by (i) using a simple set of metrics for conit consistency and (ii) expressing
application semantics through per-write weights.

4.2 Conit Theory, Application Semantics, and Conit Consistency

Applications observe consistency from the results of reads and writes. With
strong consistency, the observed result always equals its ideal result. As we
relax consistency, the observed result and the ideal result begin to diverge. The
meaning of this difference to end users depends on application semantics. Thus,
in order to quantify consistency and capture the semantic discrepancy between
observed and ideal results, we believe that a predefined uniform consistency
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model is inappropriate. Instead, the consistency model should allow the ap-
plication to export its specific consistency requirements so that the model can
address the consistency semantics that the application is sensitive to.

The approach we adopt in our model is to allow applications to define each
consistency requirement as a conit. Conceptually, a conit is a logical consistency
unit. For example, in a replicated bulletin board, sample consistency require-
ments include (i) the difference between observed/ideal number of messages,
(ii) the number of out-of-order messages in the current view, and (iii) the consis-
tency of messages posted by friends. These requirements can all serve as conit
definitions. Using these conit definitions, our conit theory maps the physical
world, composed of the physical database together with the reads and writes
operating on physical data items, to a logical world (Figure 3). The logical world
contains a semantics-base, consisting of application-specific consistency seman-
tics (conits), and reads/writes conceptually operating on the semantics. Here a
read/write depends on the conits with which it is concerned, and conits are af-
fected by writes. The semantic difference between the observed and ideal return
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value of an access is then solely determined by the depend-on conit set. For ex-
ample, suppose we define a conit to capture the consistency of messages posted
by a user’s friends. Then if the user only cares about messages posted by her
friends, the semantic difference between the observed and ideal result of a read
is solely determined by that conit. A write (message post) by a friend will affect
the conit, while a write from other users has no effect on the conit.

In dealing with consistency, only the semantics-base is interesting to the
application. Thus in our model, consistency is never specified on data items;
rather, each conit has a consistency level. Each access then specifies the re-
quired consistency level for each conit it depends upon. Because the definition
of each conit can be very flexible, we expect that the mapping between the
physical world and the logical world can “absorb” most application-specific con-
sistency semantics. This allows us to use a simple, application-independent set
of metrics for conit consistency.

For each conit, we quantify consistency continuously along a three-
dimensional vector:

Consistency = (numerical error, order error, staleness)

Each conit has a logical numerical value. For example, in a bulletin board,
the value of a conit could be the number of messages. Numerical error is the
difference between the observed value of a conit and its ideal value if strong
consistency were enforced. With the previous conit definition, numerical error
will be reflected back to the physical world as the difference between the ob-
served and ideal number of messages. Order error is the weighted out-of-order
writes (subject to reordering and changing behavior) that affect a conit. In the
bulletin board example, order error is the number of out-of-order messages.
Staleness is the maximum age of the oldest write (globally across the system)
affecting the conit that has not been seen by the local replica.

The intuition behind these three metrics comes from the execution of a
replicated state machine [Schneider 1990]. The status of a state machine is
uniquely determined by the instructions it executed. Replica coordination can
be achieved by imposing two requirements: agreement (all state machines
receive every instruction) and order (all state machines execute those in-
structions received in the same order). Numerical error is designed to cap-
ture how the agreement requirement is relaxed, while order error tries to
quantify the order requirement. Finally, for applications with real-time con-
sistency semantics, the staleness metric serves to explore the dimension of
real-time, since such semantics cannot be expressed elegantly with the nu-
merical error metric. Even though we do not claim that these three simple
metrics form a spanning set of metrics for all possible consistency seman-
tics, we believe they do capture some fundamental dimensions. Depending
on conit definitions, these three metrics for conit consistency will translate
to different application semantics. Section 5 will further discuss the generality
provided by user-defined conits and the meaning of these metrics in various
situations.

Figure 4 illustrates the definition of order error and numerical error in a
simple example. Two replicas, A and B, accept updates on a conit containing
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Fig. 4. Example scenario for bounding order error and numerical error with two replicas.

two data items, x and y . On A, one write is committed (indicated by the shaded
box), leaving three tentative writes. Thus, order error on A is three. Similarly,
with two tentative writes in its write log, B has an order error of two. Note
that this is independent of whether these two writes have been seen by A:
B’s order error is solely determined by the number of tentative writes on B.
Numerical error is the weight of all updates applied to a conit at all replicas
not seen by the local replica. In the example, the weight of a write is set to be
the update amount to either x or y , so that a “major” update is more important
than a “minor” update. The replica A has not seen one update (with a weight of
one) in this example, while B has not seen three updates (with a total weight
of five).

One benefit of our model is that conit consistency can be bounded on a per-
replica basis. Instead of enforcing a system-wide uniform consistency level, each
replica can have its own independent consistency level for a conit. A simple
analysis can show that as a replica relaxes its consistency while other replicas’
consistency levels remain unchanged, the total communication of that replica is
reduced. For relaxed numerical error, it means other replicas can push writes to
that replica less frequently, resulting in fewer incoming messages. The amount
of outgoing communication remains unchanged since that is determined by the
consistency levels of other replicas. However, since numerical error is bounded
using a push approach, if the replica is too busy to handle the outgoing com-
munication, writes submitted to it will be delayed. Similarly, if the replica re-
laxes order error and staleness, the amount of incoming communication will be
decreased. Thus, one site may have poor network connectivity and limited pro-
cessing power, making more relaxed consistency bounds appropriate for that
replica. Conversely, it may be cheap (from a performance and availability stand-
point) to enforce stronger consistency at a replica with faster links and higher
processing capacity. One interesting aspect of this model is that it potentially
allows the system to route client requests to replicas with appropriate con-
sistency bounds on a per-request basis. For instance, in the airline reserva-
tion system, requests from “preferred” clients may be directed to a replica that
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maintains higher consistency levels (reducing the probability of an inconsistent
access).

4.3 Formal Conit/Consistency Definition

We now formalize the previous discussion on conit and consistency, starting
from the concept of history. A history is a totally ordered (serial) set of reads
and writes. Because standard concurrency control mechanisms on each replica
ensure local serializability, we can define the local history of a replica to be
the history corresponding to the equivalent serial execution of all accesses pro-
cessed by that replica. The local histories are subject to reordering (due to
write reordering). Causal order is a partial order defined over all accesses. An
access A1 causally precedes another access A2 if A1 is in the local history of A2’s
originating replica when A2 is accepted. To define a consistency spectrum, we
need to use a global history that corresponds to a strongly consistent execution
as a reference. Thus, we define ECG history (external-order-compatible, causal-
order-compatible, global history) to be a history that is compatible with external
and causal order and contains all accesses accepted by the system. Unless oth-
erwise specified, the following discussion defines the consistency spectrum as
the distance between local histories and a particular ECG history.

We use D to denote the database state at a particular time. Define Dinit to be
the initial state of the database. The notation D+W denotes the database state
after applying write procedure W to database state D, while D+ H means the
database state after applying all writes in history H (in history order) to D.
For each access, its observed prefix history (P Hobserved) is its originating replica’s
local history when the access is submitted. Dinit+P Hobserved is called the access’s
observed database state (Dobserved), which determines the observed result of an
access. The ideal prefix history (P Hideal) of an access is the longest prefix of
the ECG history that does not contain that access. Dinit + P Hideal is called the
access’s ideal database state (Dideal), which determines the ideal result of the
access. The difference between the observed and ideal result of an access is then
determined by the “difference” between Dobserved and Dideal.

A conit is a function F that maps a database state D to a real number V . An
application defines a conit set F = {F1, F2, . . . }, which can be infinite, to export
its consistency semantics. Define the function nweight (numerical weight) of a
write W , conit F , and database state D to be nweight(W, F, D) = F (D +W )−
F (D). Define the function oweight (order weight) to be a mapping from the tuple
(W, F, D) to a nonnegative real value. To simplify discussion, we assume that
nweight and oweight are independent of D (although our model is more general),
so we can use the notations nweight(W, F ) and oweight(W, F ). A write affects
a conit F if either nweight(W, F ) 6= 0 or oweight(W, F ) 6= 0. For a history H,
define the write order projection of H on a conit set {F1, F2, .. , Fn} (denoted by
H|{F1, F2, .. , Fn}) to be the sequence of writes obtained by deleting all writes
W in H, such that oweight(W, Fi) = 0, ∀ i, 1 ≤ i ≤ n. Define prefix(H1, H2) to
be the longest common prefix of H1 and H2.

For an access A depending on a conit set {F1, F2, ..., Fn} consistency C is
defined for each Fi (1 ≤ i ≤ n) and is a three-dimensional vector (Numerical
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Fig. 5. Conit consistency metrics.

R1 dep−onW1 affect W2 affect W3 affect W4 affect W5 affect R2 dep−on

W1 affect W3 affect W4 affect W2 affect R2 dep−on

ECG History

Local History on Replica1

oweight(W, F) = 1

affected by write W:
nweight(W, F) = 1

{F1, F2} {F3} {F1} {F3} {F2} {F1} {F1, F2}

{F1, F2} {F3} {F2} {F1} {F1, F2}

For each conit F

Consistency of F1 for R2:      NE(absolute) = 1; OE = 1; ST = stime(R2) −  rtime(W5);

Consistency of F2 for R2:      NE(absolute) = 0; OE = 1; ST = 0;

Fig. 6. Conit consistency example.

error, Order error, Staleness) as in Figure 5. Figure 6 illustrates the definition of
our three consistency metrics. For simplicity, we assume that the writes do not
depend upon any conit and carry unit numerical weight and unit order weight
for each affected conit. In this example, the read R2 depends on two conits, F1
and F2. Since W1, W2 and W5 affect F1 and each write has a numerical weight
of 1, we have F1(Dideal) = F1(Dinit)+ 3 in the ECG history. On the other hand,
in the local history of Replica1, we have F1(Dobserved) = F1(Dinit)+ 2. Thus, the
absolute numerical error of F1 is 1 and staleness is stime(R2)− rtime(W5). For
order error, from the ECG history, we know that P Hideal|{F1, F2} = W1W2W4W5.
In the local history, for read R2, P Hobserved|{F1, F2} = W1W4W2. Thus, the order
error for F1 is oweight (W4, F1) + oweight (W2, F1) = 0 + 1 = 1. Similarly, the
consistency of F2 for read R2 is (0, 1, 0).

To choose a consistency level, the application specifies bounds for the three
metrics on a per-access and per-conit basis. Consistency is properly maintained
if an ECG history, H, exists such that the numerical error, order error, and stal-
eness of each (access, conit) tuple are within bounds with respect to H. Since
consistency of an access is defined independently of the consistency of other
accesses, the consistency model ensures a self-determination property for ac-
cesses. Such a property allows the system to provide differentiated consistency
quality of service on a per-access basis.
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4.4 Extremes of the Continuous Consistency Model

Tuning bounds on numerical error, order error, and staleness of each ac-
cess/conit can provide different levels of consistency. To determine the range
covered by our continuous consistency model, we study the two extremes of
the spectrum: when the metrics are set to (∞,∞,∞) and (0, 0, 0). In moving
from strong to optimistic consistency, applications bound the maximum logical
“distance” between the local replica image and the (unknown) consistent image
that contains all writes in serial order. This distance corresponds directly to the
percentage chance that a read will observe inconsistent results or that a write
will introduce a conflict. The weak consistency extreme is achieved when none of
the metrics are bounded and the system does not impose any restrictions on
execution. We will explore the properties of the strong consistency extreme of
our model by studying its relationship with 1SR [Bernstein et al. 1987]. An ex-
ecution on replicated data is 1SR if it is view equivalent [Bernstein et al. 1987]
to a serial execution on nonreplicated data. An access A reads from a write W
if A reads some data item that was last written by W , and two executions are
view equivalent if each access reads from the same write in the two executions.

THEOREM 4.1. The conit-based continuous consistency model produces
1SR+EXT history if the application specifies the following consistency:

(1) A conit F is defined for each data item in the database, where F (D) is the
total number of writes applied to that data item.

(2) A write affects the conit set corresponding to the data items the write updates,
with unit order weight.

(3) Each access depends upon the conit set corresponding to the data items it
reads.

(4) Zero numerical error (implying zero staleness) and zero order error are en-
forced in all cases.

PROOF. By definition of the continuous consistency model, an ECG history
exists such that numerical error and order error are zero with respect to it.
This ECG history is serial and compatible with external order and contains
all accesses processed by the system. Thus, to prove the produced local histo-
ries are 1SR+EXT, we only need to show they are view equivalent to the ECG
history. For each data item an access A reads, consider the set of writes (W S)
that updates that data item. Since numerical error is zero and each write car-
ries a unit numerical weight for each data item it writes, we know that the
same number of writes from W S precedes A in P Hobserved as in P Hideal, where
P Hobserved/P Hideal is the observed/ideal prefix history of A. Because ECG his-
tory is compatible with causal order, if W (W ∈ W S) precedes A in P Hobserved,
then W precedes A in P Hideal. So we know that the same set of writes from
W S precedes A in P Hobserved as in P Hideal. Since each write also carries unit
order weight for each data item it writes, zero order error ensures that these
writes are in the same order in P Hobserved and P Hideal. So access A reads from
a write W in P Hobserved iff it reads from W in P Hideal. Thus, the local histories
are 1SR+EXT.
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In the Section 3, we discussed the self-determination of each access. Now we
highlight the implications of this result for strongly consistent accesses.

COROLLARY 4.2 (SELF-DETERMINATION OF STRONGLY CONSISTENT ACCESSES). If a
conit is defined for each data item and each write carries a unit numerical/order
weight for each affected conit, then for an access requiring zero numerical error
and zero order error on all conits it depends upon, the observed result equals the
ideal result.

PROOF. Directly from Theorem 1.

If we only require 1SR for the strong consistency extreme, then reads are
allowed to observe nonzero numerical error:

THEOREM 4.3. The conit-based continuous consistency model produces 1SR
history if the application specifies the following consistency:

(1) A conit F is defined for each data item in the database, where F (D) is the
total number of writes applied to that data item.

(2) A write affects the conit set corresponding to the data items the write updates,
with unit order weight.

(3) Each access depends upon the conit set corresponding to the data items it
reads.

(4) Zero numerical error and zero order error are enforced for all conits a write
depends upon.

(5) Zero order error is enforced for all conits a read depends upon.

PROOF. Again, we consider the ECG history of the execution. However, be-
cause of nonzero numerical errors for reads, the produced local histories may
have different read-from relations from those in the ECG history. We will con-
struct another global history H ′ by reordering the reads in the ECG history in
the following manner. For a read R depending upon conit set {F1, F2, . . . , Fn},
suppose W is the last write in P Hobserved|{F1, F2, . . . , Fn}, where P Hobserved is the
observed prefix history of R. Since the ECG history is compatible with causal
order, we know W must precede R in the ECG history. To obtain H ′, every R
in the ECG history is moved from its original place forward to the place im-
mediately after the corresponding last write W in P Hobserved|{F1, F2, . . . , Fn}.
Next, we will show that the produced local histories are view equivalent to the
global history H ′. From the proof of Theorem 1, we know that a write reads
from the same write in the local history as in H. All writes in H and H ′ are
in the same order; thus a write reads from the same write in the local history
as in H ′. For a read R, define P Hideal’ to be the longest prefix of H ′ that does
not contain R. Because the order error of each conit that R depends upon is
zero and each write carries a unit order weight for at lease one conit, we know
that P Hobserved|{F1, F2, . . . , Fn} = P Hideal’|{F1, F2, . . . , Fn}. So R reads from a
write W in the local history iff it reads from W in H ′. Thus, the local histories
are 1SR.
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Fig. 7. Using weight specification in replicated bulletin board.

4.5 Exporting Conit Definitions through Weight Specification

To achieve practicality, we associate application-specific weights with each
write to provide a natural API for application programmers and to avoid
the complexity of exporting abstract conit definition functions. Recall from
Section 4.3 that we define a conit as a function mapping database states to
real numbers. However, to use our model, application programmers do not
need to formally, or even conceptually, define such functions. Through the
AffectConit()API call, the application directly tells the system how each write
affects the return value of a conit F , and the system can then infer the return
value of F by summing all accumulated numerical weights. The required con-
sistency level on each access is declared using the DependonConit() API. With
these two APIs, application programmers may even be unaware of the conit
functions they implicitly define.

Figure 7 is a concrete example of a replicated bulletin board. We first de-
fine a conit with symbolic name “AllMsg,” whose value is the number of news
messages, to export the consistency requirements on all news messages. Be-
sides these semantics, a user Alice also defines another conit with a symbolic
name “MsgFromFriends,” whose value is the number of news messages posted
by Alice’s friends. Thus, each write has a numerical weight of 1 for each af-
fected conit. For simplicity, we also use unit order weight. Figure 7(a) is the
message posting routine. In this example, a write does not depend on any
conits and each message posted affects the conit “AllMsg” with unit numer-
ical weight and unit order weight. If the author of the message is a friend
of Alice, the message also affects the conit “MsgFromFriends.” When Alice
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uses the routine in Figure 7(b) to retrieve news messages, she specifies the
required consistency levels for the two conits the read depends on. For ex-
ample, she requires the numerical error, order error and staleness on conit
“MsgFromFriends” to be within 3, 0, and 60 (seconds), respectively. In this
way, the actual definitions of the two conits “AllMsg” and “MsgFromFriends”
are never directly exported to the system. Weight specification can even ex-
press subjective conit functions. For instance, a subjective nonunit numeri-
cal weight can be attached to each news message to export its relative im-
portance so that postings from certain friends may carry higher weight than
others.

4.6 Continuous Consistency Programming

One philosophy behind our model is that only the application can know its spe-
cific consistency requirements. At a very high level, this philosophy is consistent
with that of extensible systems [Bershad et al. 1995; Kaashoek et al. 1997]. The
major implication of such an approach is that application programmers are now
responsible for determining the application-specific consistency semantics. We
call the process of consistency-aware application design (continuous) consis-
tency programming. Consistency programming can conceptually be done in the
following top-down steps, with more concrete examples in Section 5:

(1) Crystallize high-level application consistency semantics and determine
what “continuous consistency” means for this application from the user’s
perspective. For example, application programmers may start by asking
“What does 90% consistency mean for this application?” It is possible
that consistency has multiple aspects for an application, in which case
the designer needs to answer this question for each aspect. This step
should be completely independent of the the conit-based consistency model.
Note that a continuous consistency model cannot and should not quan-
tify high-level application semantics for programmers. Rather, it should
only serve as a unified way to express and enforce such quantified con-
sistency semantics. We believe one common pitfall here is to start with
determining conits and write weights directly, and then to try to interpret
these conits and weights into high-level semantics. Such a bottom-up ap-
proach can easily result in cases where the three application-independent
metrics and various conits do not translate to any meaningful high-level
semantics.

(2) Based on the quantified high-level consistency semantics, study how each
write affects such semantics and determine the corresponding numeri-
cal/order weight. In the previous step, the high-level consistency semantics
have been quantified, which allows numerical/order weight to be naturally
derived. In the case where consistency has multiple aspects, multiple conits
should be used and numerical/order weight should be determined for each
conit. In most cases (in fact in all applications we studied), the weight can
be solely determined by the write itself, without considering the state of the
local database or remote replicas.
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(3) Use the AffectConit() API calls to attach numerical/order weights to
writes.

(4) Based on the quantified high-level consistency semantics, determine the
depend-on conit set and consistency level of each access according to user
requirements.

(5) Add the DependonConit() API calls to accesses to express these
requirements.

Consistency programming can be directly incorporated into application logic,
which entails modifying or instrumenting legacy code. An alternative is to
export such semantics using a semantics library layer. The library layer sits
between the application and TACT, intercepting reads and writes from ap-
plications. By examining the access from the application, the library layer
inserts AffectConit() or DependonConit() into the access, then passes it
on to TACT. This mechanism is similar to that of a locking-based sched-
uler [Bernstein et al. 1987] for traditional databases that inserts lock() and
unlock() calls into transactions. In the extreme case, each application will
have its own semantics library. However, similar to libOSes in the exok-
ernel approach [Kaashoek et al. 1997], we believe many applications with
similar consistency semantics may share the same semantics library, allow-
ing some library reuse. We envision the development of a suite of com-
mon semantics libraries to aid application programmers with the use of our
model.

In cases where the overhead of modifying legacy code or designing
application-specific semantics libraries is prohibitive, some “general” seman-
tics libraries can be used to run unmodified applications. For example, one
“general” semantics library may define one conit per object, and attach unit
weight to all writes. With “general” semantics libraries, our model can have the
benefits of application-independent relaxed consistency models (e.g. epsilon-
serializability [Pu and Leff 1991]), namely, supporting legacy code. In fact, an
application-independent model can be viewed as a consistency model with a
single semantics library already incorporated into that model. The relation-
ship between application-independent models and our application-dependent
model is then similar to the relationship between a monolithic operating system
kernel and an extensible exokernel.

It may appear that continuous consistency programming imposes an extra
burden on application programmers, since they now need to determine consis-
tency semantics. However, we believe quantifying consistency in the most ap-
propriate way entails such an effort from programmers (hopefully with the help
of semantics libraries). A possible analog here is the relational data model [Codd
1970]. To exploit the power of the relational model, applications must be de-
signed with such a model in mind. While it imposes an extra burden on pro-
grammers and potentially requires special training, the benefits of the rela-
tional model outweigh the costs. A long-term goal of this work is to demonstrate
the requisite performance, availability, and semantic benefits of a continuous
consistency model necessary to justify any additional cost associated with the
model.
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Table I. Expressing High-Level Application-Specific Consistency Semantics Using the TACT
Continuous Consistency Model: NE=numerical error, OE= order error, ST= staleness

Application Bulletin board Airline Adm. control, Dynamic
reservation resource Acc., Web

sensor networks content
Consistency A. Message ordering A. Resv. conflict A. Accuracy of A. Subjective
semantics B. Unseen messages rate R resource info. freshness

C. Message delay B. Inconsistent of Web
query result content

Conit Def. A Newsgroup Seats on a flight Resource info. Web object
Weight Def. Subjective importance Reservation: 1 Req. forward: 1 Update

of the news message Req. return: −1 significance
Metrics A. OE A. Relative NE A. Relative NE A. Absolute
capturing B. Absolute NE Rmax = NE
semantics C. ST 1− 1/(1+ γ ) and ST

Ravg = Rmax/2
B. OE and ST

Table II. Expressing High-Level Application-Specific Consistency Semantics Using the TACT
Continuous Consistency Model: NE=numerical error, OE= order error, ST= staleness.

(Continued)

Application WAN shared Distributed games, Traffic monitoring Abstract
editor virtual reality data

types
Consistency A. Unseen A. Accuracy of A. Accuracy of Varies
semantics modifications object position traffic condition

B. Stability of and orientation B. Unseen reservations
local version C. Reservation stability

Conit def. Characters in Object position, Section of a road Varies
a paragraph object orientation

Weight def. Insert: 1 Change in position Size of the vehicle Varies
Delete: −1 and orientation

Metrics A. Absolute NE A. NE A. NE Varies
capturing B. OE B. NE
Semantics C. OE

5. GENERALITY OF THE CONIT-BASED CONSISTENCY MODEL

5.1 Exporting Application Semantics through Conits

In Section 4, we elaborated our consistency model and explain how our
model combines generality and practicality using conit theory, application-
independent metrics and simple APIs. In this section, we further argue for
the general utility of our approach by discussing how a number of wide-area
applications (in addition to the previous bulletin board example) can specify
their consistency semantics using conits. We also describe how a number of
existing consistency models can be expressed using TACT. We will further ad-
dress practicality issues in later sections. Note that because our consistency
model is designed to capture a wide range of semantics, not all applications
below will use all three consistency metrics. Table I and II summarize these
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application-specific consistency semantics and their expression using TACT, as
detailed in the discussion below.

Airline Reservation System. One important aspect of consistency for this
application is the percentage of reservations that must later be aborted as a
result of simultaneous, conflicting updates at remote replicas. This consistency
requirement can be captured using numerical error in the following manner. A
conit F is used for each flight, with the conit value defined to be the number
of available seats on that flight. Assuming single-seat reservations (though
our model is more general) and that reservations are randomly distributed
among all available seats, the probability P that a reservation conflicts with
another remote (unseen) reservation is 1−F (Dideal)/F (Dobserved). Since relative
numerical error N E of the conit equals 1 − F (Dobserved)/F (Dideal), we can use
N E to express the conflict rate: P = 1 − 1/(1 − N E). Thus, the system can
limit the rate of reservation conflicts by bounding relative numerical error.
The above formula has been verified through experiments with our prototype
implementation (see Figure 13). Nonrandom reservation behavior will result
in a higher conflict rate, but the application may still limit conflict rates by
defining multiple conits over the flight. For example, two separate conits can
be defined for first class seats and coach seats. Other consistency semantics for
the airline reservation example can be expressed using order error or staleness.
For example, the system may wish to limit the percentage of queries that access
an inconsistent image, for instance, that see a multiseat reservation that must
later be rolled back because of a conflicting single-seat reservation at another
replica. Such consistency semantics can be enforced by properly bounding order
error.

QoS Admission Control. In this example application, we consider the case
where replicated front-end load balancing switches wish to maintain some per-
centage of back-end server capacity for “preferred” clients. Here, front ends
estimate the total resource consumption for standard clients as the total num-
ber of outstanding standard requests on the back ends. This value also serves as
the definition of a conit for this application. Front ends increase this value by 1
upon forwarding a request from a standard client and decrease it by 1 when the
request returns. If this value exceeds a predetermined resource consumption
limit, front ends will not forward new standard client requests until resource
consumption drops below this limit. The relative numerical error of each front
end’s estimate of resource consumption captures this application’s consistency
semantics—each front end is guaranteed that its estimate of resource consump-
tion is accurate within a fixed bound. Note that this load balancing application
is not concerned with order error (writes are interchangeable) or staleness (no
need to synchronize if the mix of requests does not change).

Dynamic Content Distribution. Modern Web services produce much of their
content dynamically based on database state. Consistency is a key hurdle to
replicating dynamic services across the wide area. Conits address this prob-
lem by applying application-specific semantics to allow services to relax from
strong consistency under certain circumstances. Consider a dynamic Web page
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tracking the score of a football game. The application can define a conit for this
page and attach subjective numerical weights to changes in the score. For ex-
ample, score changes near the end of a close game may be assigned more weight
(signifying more importance). Conits may similarly be used to limit discrepan-
cies in inventory for e-commerce services or the error in stock quotes provided
by financial services.

Shared Editor. We use this application to represent wide-area collabora-
tive applications [Dewan et al. 1994]. In a shared editor, multiple authors work
on the same document simultaneously. Consistency requirements include the
“amount” of modifications from remote authors not seen by a user and the
“instability” of the current version due to uncommitted modifications. Several
definitions of conits are possible. One approach is to define two conits per para-
graph representing the number of characters in the paragraph. One conit tracks
character additions, while the other tracks deletions. Numerical error then cap-
tures the “amount” of modifications not seen by a user. We can also define the
order weight of a modification to be the number of characters it affects, and
order error will capture the “instability” of the observed version. More func-
tionality can be provided by, for example, defining a conit for each (paragraph,
author) pair, so that modifications from different authors can have different
consistency levels. Finally, staleness can be used to enforce a bound on modifi-
cation propagation delay.

WAN Resource Accounting/Sensor Networks. These two very different ap-
plications represent a broader class of services that maintain pure numerical
records that are read/updated from multiple locations. In resource accounting,
the data records are the resource consumption of principles, while in sensor net-
works, the data records are the data measured by the sensors. A conit can be
defined for each data record or group of records with numerical error capturing
the accuracy of the record values.

Distributed Games/Virtual Reality/Teleimmersion. Most of the consis-
tency issues for these applications [Gautier and Diot 1998; Honda et al. 1995]
concern the positions and orientations of objects in the virtual world. Since
both position and orientation are pure numerical data, their consistency se-
mantics can be captured by numerical error. Furthermore, using different con-
sistency levels for each conit/access can allow differentiated focus and nim-
bus [Benford et al. 1994] to represent the degree of interest objects have in each
other.

Traffic Monitoring and Road Reservation. Advances in mobile technology
have made “road reservation” possible. Here a mobile device is equipped to
each vehicle and base stations collect and distribute traffic information to allow
drivers to choose the “best” route. Road reservation helps to avoid the situation
where many drivers choose the same “best” route and suddenly the route be-
comes overcrowded. Consistency here is the accuracy of the traffic/reservation
information. We can define each section of the road to be a conit, its value being
the number of vehicles in that section. To be more precise, different weights
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can be assigned to different vehicles to take into account the vehicle size, etc.
Numerical error, again, describes the accuracy of the traffic/reservation infor-
mation. Order error of the conit also plays a role here. A larger order error
indicates that more “reservations” on the road have not been committed and
may be canceled.

Abstract Data Types. Abstract data types naturally fit into our consistency
model. For example, consider a set (or hashtable) with methods add(), remove(),
size(), and contains(). We can define a conit whose value is the number of
elements in the set. The accuracy of the return value of size() can then be re-
flected in the numerical error of the conit. Similarly, the probability of contain()
returning a correct value is determined by the numerical error. Using the same
reasoning as in airline reservations, we can derive a functional relationship
between the conflict probability of add() (remove()) and numerical error. Other
abstract data types, such as FIFO queues, can also express their consistency
requirements naturally using our conit-based model.

5.2 Relationship to Other Consistency Models

To further demonstrate the generality of our conit-based consistency model,
below we discuss how a number of existing relaxed consistency models can be
expressed as special instances of our model.

Conflict Matrix. The use of a conflict matrix [Badrinath and Ramamritham
1992; DiPippo and Wolfe 1993; Weihl 1988] is a well-studied technique for re-
laxing the consistency of abstract data types. Each entry in the conflict matrix
determines whether two methods on the same object can proceed in parallel.
Our consistency model can achieve the same functionality using the following
conit definition. Each method is considered a write. The ith row of the con-
flict matrix (associated with method Mi) is assigned a conit Fi, 1 ≤ i ≤ n. For
a method M j corresponding to the j th column of the conflict matrix, M j af-
fects Fi iff the matrix entry (i, j ) is a “conflict” entry. For each conit affected,
M j carries a unit numerical weight. Each method Mi depends on conit Fi and
requires zero numerical error. In this way, all pairs of nonconflicting method
invocations can be processed in parallel, while conflicting invocations have to
be processed in a manner equivalent to 1SR. Note that if we enforce finite, in-
stead of zero/infinity, numerical error for a matrix entry, we can provide the
semantics of “bounded conflict” that cannot be obtained from a conflict matrix.
For example, a getBalance() method on a bank account is allowed to miss no
more than $50 deposited by deposit() operations.

Three-Level Consistency in Lazy Replication. Ladin et al. [1992] proposed
three different consistency levels in lazy replication. A causal transaction is
causally ordered to all other causal transactions, a forced transaction is totally
ordered across all replicas with respect to all other forced transactions, and im-
mediate transactions are totally ordered across all replicas with respect to all
transactions. These consistency levels can be expressed using the following con-
flict matrix regarding the three types of transactions, and thus can be captured
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Table III. Emulating Three-Level Consistency

Immediate
Causal Forced (affectF1,

Transaction type (affect F3) (affect F2 and F3) F2, and F3)
Causal (dep-on F1) No conflict No conflict Conflict
Forced (dep-on F2) No conflict Conflict Conflict
Immediate (dep-on F3) Conflict Conflict Conflict

using TACT as described above. Sample conit specifications are included in the
Table III.

Cluster Consistency. Cluster consistency [Pitoura and Bhargava 1995] is a
two-level consistency model proposed for mobile environments. In this model,
data copies are partitioned into clusters, where consistency constraints within
a cluster must be preserved while intercluster consistency may be violated. Two
kinds of operations are allowed: strict operations and weak operations. The con-
sistency requirements of these operations can again be expressed as a conflict
matrix, and thus can be captured by our model. To enforce “m-consistency” [Pi-
toura and Bhargava 1995] for some entries in the matrix, we can allow nonzero
numerical/order error for the conit corresponding to that row.

N-ignorant System. In an N -ignorant system [Krishnakumar and Bern-
stein 1994], a transaction can run in parallel with at most N other trans-
actions. To emulate the behavior of an N -ignorant system, we define a conit
whose value is the number of transactions being applied to the database.
A beginTransaction operation will increment the conit value, while an
endTransaction operation will decrement the value. Bounding numerical er-
ror within N will make the system behave the same as an N -ignorant system.

Timed Consistency/Delta Consistency. These models [Singla et al. 1997;
Torres-Rojas et al. 1999] address the lack of timing in traditional consistency
models such as sequential consistency. They require the effect of a write to
be observed everywhere within time 1. TACT can readily express such timed
models by using the staleness metric on conits.

Quasi-Copy Caching/Its Generalization. Quasi-copy caching [Alonso et al.
1990; Gallersdorfer and Nicola 1995] proposes four coherency conditions: de-
lay condition, frequency condition, arithmetic condition, and version condition.
Delay condition imposes an upper bound on propagation delay for a data item,
which is a special case of staleness on conits. Frequency condition requires the
copies of a data item to be synchronized every t seconds. We believe in most
cases frequency condition can be more efficiently achieved by bounding stale-
ness. Arithmetic condition bounds the difference between copies of numerical
data items, which can be captured by the numerical error on conits. The last
condition, version condition, bounds the version difference among copies. It can
be achieved by using a conit whose value is the number of updates applied to
a data item and by bounding the absolute numerical error of the conit. More
recently, quasi-copy caching has been generalized and a few more coherency
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conditions have been proposed [Gallersdorfer and Nicola 1995]. Due to space
limitations, we will only discuss the most distinct one, object condition. This
condition requires the copies of an object x to be synchronized when: (i) at least
i subobjects of x have been modified, (ii) at least q percent of the subobjects of
x have been modified, or (iii) sub-object y of x has been modified. Emulating
this condition requires three conits (F1, F2, and F3), one for each of the three
cases, to be defined for each object. The value of both F1 and F2 is the number
of modified subobjects. To enforce case (i) and case (ii), we bound the absolute
error of F1 within i and bound the relative error of F2 within q. The value of
the third conit F3 is the number of updates on subobject y . The numerical er-
ror of F3 is bounded to zero, which means updates on y will force immediate
synchronization.

Memory Consistency Models in Multiprocessors. Numerous memory consis-
tency models [Keleher et al. 1992; Patterson and Hennessy 1996; Shen et al.
1999; Zekauskas et al. 1994] have been proposed in the context of multiproces-
sors/distributed shared memory. Due to space limitations, we cannot discuss
these models individually and can only give a high-level abstract discussion.
Most of the consistency models are defined by imposing ordering requirements
on load, store, and other synchronization (e.g. fence, barrier, lock acquire) in-
structions. The system is allowed to reorder instructions, that is, violate pro-
gram order, during execution, as long as the ordering imposed by the consistency
model is preserved. Although our consistency model cannot be directly used
in computer architecture (because reads/writes are heavy-weight compared to
load/store instructions), the conit concept can still be applied. Consider a con-
sistency model for a multiprocessor and a program running under this model.
The ordering requirements imposed by the model on the program can always
be viewed as a directed acyclic graph (DAG), whose nodes are instructions and
edges are ordering requirements among instructions. To apply the conit theory,
we need to redefine the reference history to be the history compatible to the
DAG. Next, we assign a conit for each edge in the DAG. Each node in the DAG
is modeled as a write and it depends on/affects the conit set corresponding to
the set of incoming/outgoing edges of the node. Last, we enforce zero numerical
error on all conits. It can then be shown that the resulting model is equivalent
to the original memory consistency model. Different from the way we emulate
other consistency models in this section, here conits must be dynamically de-
fined and the number of conits can be quite large, making the implementation
impractical. In Section 6, we further discuss the class of applications to which
our consistency model may not be applicable.

6. DISCUSSION

In this section, we discuss our insights and experiences with the model.

Diminishing Returns from Additional Metrics. Section 5 demonstrated that
our model is able to express a wide range of consistency semantics and that
many previous models can be viewed as special instances of our model. Inter-
estingly, the numerical error metric itself achieves much of the flexibility in our
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model, while the order error metric and staleness metric capture much of the
semantics not already covered by numerical error. Adding additional metrics
beyond our three metrics may make the model more general, but the marginal
benefit in generality will become smaller and smaller and will come at the cost
of higher complexity. Thus, we believe our metric set is a good tradeoff between
complexity and the semantics space covered. Furthermore, our model mainly
targets wide-area applications and our experiences suggest these three metrics
are a good fit for these applications.

Amount of Continuity in Consistency. Following from our belief that the
exact definition of consistency is application-specific, the question of whether
consistency is “continuous” or how “continuous” it is also depends upon ap-
plication semantics. Even though our consistency model allows consistency
quantification to the finest granularity (all three metrics are continuous as
real numbers), application programmers should only quantify consistency to
the extent allowed by application semantics. Not all applications require the
full spectrum of possible consistency values. For example, a distributed sensor
system monitoring traffic conditions may be interested in all possible values of
staleness bounds, while a banking system may be interested in only four dif-
ferent staleness bounds: zero, 1 hour, 1 day, and 1 week. Such “noncontinuity”
on the consistency spectrum is inherent to the application’s semantics. While
consistency is not fully continuous for some applications, our goal of develop-
ing a general consistency model with broad applicability leads us to export the
entire consistency spectrum to applications. In general, it is difficult to predict
which discrete consistency levels are appropriate for which applications. It is
straightforward to layer simpler or more restricted models on top of TACT.

Limitations of the Weight Specification API. Using per-write weights to
avoid explicitly defining conits simplifies our model’s API. However, such sim-
plification does come with a cost. We have been assuming that the numerical
weight and order weight of a write are independent of the database state, which
enables the application to determine the weight solely based on the write itself.
However, this precludes some possible conit definitions such as F (D) = x × y ,
where x and y are two numerical values in D. Interestingly, from the general-
ity discussion in previous sections, we can see that imposing such a restriction
does not significantly impact our model’s generality, since all of the considered
examples can be addressed using weights that are independent of the database
state.

Limitations of the Conit-Based Consistency Model. The ability to define
conits arbitrarily makes our model quite flexible. For example, the model is
able to precisely express all ordering relations in an arbitrary DAG for desired
access ordering, as we explained earlier. However, for an arbitrary DAG, conits
must be dynamically defined on the fly as new accesses are added into the DAG.
The set of affected conits of a write may also expand after the write is accepted,
since new outgoing edges need to be created for new accesses. Furthermore,
because the number of conits grows with time and is unbounded, garbage col-
lection for old conits may become necessary. A similar, but less severe problem
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exists in the replicated bulletin board example if we want to define one conit
per message thread. Here no modification to the affected conit set of a write is
necessary, but conits still need to be generated on the fly. In cases where the set
of conits changes rapidly, further study on protocol design and implementation
is necessary to make our model practical.

Combining Generality and Practicality. One major merit of the conit-based
consistency model is that it simultaneously achieves generality and practicality.
This allows us to reuse the consistency protocols and implementation for a broad
range of application semantics. Fundamentally, however, we believe that gen-
erality and practicality conflict. By reusing consistency protocols, we necessar-
ily sacrifice some opportunities for case-specific optimizations. Our conit-based
consistency model can only combine generality and practicality to a particular
point, beyond which application-specific optimizations based on semantics are
necessary to make the implementation efficient. One simple example is causal
consistency, which dictates causal order among writes. Causal order can be ex-
pressed using a DAG, and the discussion in Section 5 demonstrated that the
conit-based model can theoretically emulate causal consistency. However, even
if we solve the efficiency issues with dynamically defined conits, it is unlikely
that the implementation will be as efficient as a straightforward protocol that
always propagates writes causally. In this case, we believe optimizations ex-
ploiting the properties of the DAG become necessary to make the implementa-
tion efficient. Similar conclusions can be drawn for using our conit-based model
for achieving release consistency [Keleher et al. 1992].

In these cases with special consistency semantics, specialized protocols can
be used in place of our consistency protocol to achieve better performance. For
example, we can add additional binary choices (besides the three continuous
metrics) to our model so that the system can utilize better protocols when the
semantics fit. One such binary choice may be causal consistency. When applica-
tions choose this option, a specialized protocol that propagates writes causally
will be used to achieve causal consistency.

Replica Control and Concurrency Control. Informally, replica control is the
coordination of replicas to properly maintain consistency across replicas in a
distributed system, while concurrency control algorithms schedule the accesses
to data within a single machine to ensure consistency. Continuous or relaxed
consistency can be applied to both replica control and concurrency control. The
TACT consistency model is for replica control only, since we dictate that local
histories on each replica are serializable (Section 3). Most consistency models
we mentioned in Section 5.2 are designed for replica control. In the traditional
database context, there are also many relaxed consistency models designed for
concurrency control, including the ANSI SQL isolation levels [ANSI 1992], its
improved version [Adya et al. 2000], and relative serializability [Agrawal et al.
1994]. Whether these relaxed concurrency control models can be combined or-
thogonally with our model requires further study. However, our current design
of requiring local serializability on each replica does offer some advantages.
It potentially allows us to use off-the-shelf database servers on each replica
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with standard concurrency control and recovery mechanisms. Our continuous
consistency will not interfere with the various (potentially tightly coupled) mod-
ules in a database management system. Furthermore, since our model targets
wide-area data replication where communication overhead among replicas can
easily dominate, replica control tends to be the bottleneck.

Having discussed the difference between replica control and concurrency con-
trol, we also believe there is a high-level one-to-one mapping between consis-
tency models for replica control and consistency models for concurrency control.
A natural question, then, is whether new consistency models for concurrency
control or replica control can be derived using this mapping. We believe this
is not always practical because, in replica control, the information needed to
make a decision may or may not be available locally, while for concurrency con-
trol, the algorithm has all knowledge regarding the execution. Thus, from this
perspective, replica control is harder than concurrency control, and the goal of
replica control is to increase concurrency while reducing the communication
overhead incurred by information collection. Mapping a consistency model for
concurrency control to replica control may result in excessive communication
overhead. A further difference between consistency models for replica control
and those for concurrency control is that, in concurrency control, external con-
sistency can be ensured trivially, since there is only one copy of the data. Thus,
external consistency is not explicitly discussed in most consistency models for
concurrency control, because it is ensured by standard implementation tech-
niques. On the other hand, external consistency is a major issue in replica
control; two of our metrics, numerical error and staleness, were developed par-
ticularly to address this requirement.

7. ENFORCING CONIT CONSISTENCY

In previous sections, we described the TACT continuous consistency model,
its application to a broad range of applications, and its relationship to existing
relaxed consistency models. However, a consistency model will not be of general
interest unless efficient algorithms can be developed to enforce desired levels
of consistency. In this section, we provide an overview of our algorithms for
enforcing conit consistency; one benefit of our model is that the simplicity of
the consistency metrics enables the protocols to be highly optimized.

The absolute/relative numerical error bounding algorithms [Yu and Vahdat
2000] for pure numerical data items are adopted for bounding the numerical
error of conits. Note that the details and correctness proofs for our numerical
error algorithms are available separately [Yu and Vahdat 2000]; we present
an overview here for completeness. The first algorithm, split-weight AE (abso-
lute error), employs a “push” approach to bound absolute numerical error. It
“allocates” the allowed positive and negative error for a server evenly to other
servers. Each serveri maintains two local variables x and y for server j , j 6= i.
Intuitively, the variable x is the total weight of negatively weighted writes that
serveri accepts but have not been seen by server j . serveri has only conserva-
tive knowledge (called its view) of the writes server j has seen. The variable x
is updated when serveri accepts a new write with a negative weight or when
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serveri ’s view is advanced. Similarly, the variable y records the total weight
of positively weighted writes. Suppose the absolute error bound on server j is
α j . In other words, we want to ensure that |F (Dideal − F (Dobserved)| ≤ α j on
server j . To achieve this, serveri makes sure that at all times, x ≥ −α j /(n−1) and
y ≤ α j /(n−1), where n is the total number of servers in the system. This may re-
quire serveri to push writes to server j before accepting a new write. Split-weight
AE is pessimistic in the sense that serveri may propagate writes to server j
when not actually necessary. For example, the algorithm does not consider
the case where negative weights and positive weights may offset each other.
We developed another algorithm, compound-weight AE [Yu and Vahdat 2000],
to address this limitation at the cost of increased space overhead. How-
ever, simulations have indicated that potential performance improvements
do not justify the additional computational complexity and space overhead
[Yu and Vahdat 2000].

A third algorithm, inductive RE (relative error), provides an efficient mecha-
nism for bounding the relative error in numerical records. The algorithm trans-
forms relative error into absolute error. Suppose the relative error bound for
server j is γ j , that is, we want to ensure |1−F (Dobserved)/F (Dideal)| ≤ γ j , equiva-
lent to |F (Dideal)− F (Dobserved)| ≤ γ j × F (Dideal). A naive transformation would
use γ j × F (Dideal) as the corresponding absolute error bound, requiring a con-
sensus algorithm to be run to determine a new absolute error bound each time
F (Dideal) changes. Our approach avoids this cost by conservatively relying upon
local information as follows. We observe that the current value F (Dobserved) on
any serveri was properly bounded before the invocation of the algorithm and is
an approximation of F (Dideal). So serveri may use F (Dobserved) as an approximate
norm to bound relative error for other servers. More specifically, for serveri, we
know that F (Dideal)−F (Dobserved) ≥ −γi×F (Dideal), where γi is the relative error
bound for serveri, which reduces to F (Dideal) ≥ F (Dobserved)/(1+ γi). Using this
information to substitute for F (Dideal) on the right-hand side in the previous
inequality produces

|F (Dideal)− server j ’s F (Dobserved)| ≤ γ j × serveri ’s F (Dobserved)
1+ γi

Thus, to bound relative error, serveri only needs to recursively apply split-
weight AE, using γ j × (serveri ’s F (Dobserved))/(1+ γi) as α j . Note that while this
approach greatly increases performance by eliminating the need to run a con-
sensus algorithm among replicas, it uses local information (F (Dobserved)/(1+γi))
to approximate potentially unknown global information (F (Dideal)) in bound-
ing relative error. Thus it behaves conservatively (bounding values more than
strictly necessary) when relative error is high, as will be shown in our evalua-
tion of these algorithms in Section 9.

To bound order error on a per-conit basis, a replica first checks the number
of tentative writes on a conit in its write log. If this number exceeds the order
error limit, the replica invokes a write commitment algorithm to reduce the
number of tentative writes in its write log. A write commitment algorithm is
an algorithm that allows replicas to agree on a write order. A number of write
commitment algorithms [Golding 1992a; Holliday et al. 2000; Keleher 1999;
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Petersen et al. 1997] have been proposed and they can all be used to bound
order error. We have implemented three popular write commitment algorithms
(Golding’s algorithm [Golding 1992a], primary copy [Petersen et al. 1997], and
voting [Holliday et al. 2000; Keleher 1999]) in our prototype. However, our
evaluation focuses on Golding’s algorithm.

To bound the staleness of a replica, each server maintains a real time vector.
The vector has an entry for each replica in the system. Similar to logical time
vector [Golding 1992a], here a “coverage property” is preserved between the
writes a server has seen and the real time vector. If A’s real time vector entry
corresponding to B is t, then A has seen all writes accepted by B before real
time t. Even though the size of the real time vector grows linearly with the
number of replicas, various techniques [Ratner et al. 1997; Torres-Rojas and
Ahamad 1996] for reducing the vector size can be used for better scalability.
To bound staleness within l , a server checks whether current time−t < l holds
for each entry in the real time vector.2 If the inequality does not hold for some
entries, the server must pull writes from corresponding replicas to advance
its real time vector. This pull approach may appear to be less efficient than a
push approach because of unnecessary polling when no updates are available.
However, a push approach cannot bound staleness if there is no upper limit on
network delay or processing time.

All our protocols for bounding the three metrics are scalable relative to the
number of conits. Such scalability is crucial for our model because the number
of conits can be large (on the order of the number of data items in the database),
depending on application semantics. In numerical error bounding protocols, we
avoid maintaining constant-size bookkeeping information for each conit. In-
stead, necessary states are dynamically created when necessary and deleted
when no longer in use. In the write commitment algorithms, scalability can be
achieved by ignoring order relaxations enabled by multiple conits. In the ex-
treme, if we simply use a conventional write commitment algorithm to generate
a total order on all writes, the overhead incurred will be independent of the total
number of conits. Our staleness bounding algorithm, by nature, is insensitive
to the number of conits, since the algorithm needs to pull writes based on the
smallest staleness bound specified across all conits.

Finally, we would like to emphasize that application consistency seman-
tics, conit definitions, etc., are completely independent of the consistency pro-
tocols used to enforce the model. In some sense, the model, together with
exported application consistency semantics, serves as a “specification,” while
our consistency protocols are just one possible “implementation” to achieve
this specification. Decoupling implementation from specification allows ap-
plication programmers to concentrate on high-level semantics without wor-
rying about underlying protocols, while simultaneously enabling protocol

2We assume that server clocks are loosely synchronized. This assumption can be removed if we only
update A’s real time vector entry for B when A directly receives B’s local writes from B. This will
allow us to use A’s clock to advance the real time vector entry rather than B’s. Of course, this design
precludes the possibility that A can advance the vector entry for B when it receives B’s writes via
other replicas.
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designers to optimize the implementation without knowledge of application
semantics.

8. SYSTEM ARCHITECTURE AND IMPLEMENTATION

To evaluate the performance benefits of dynamically setting service consis-
tency levels, we have built and deployed across the Internet a prototype system
implementing the TACT consistency model. In this section, we describe our
architecture and design decisions before presenting our performance results in
Section 9. Our first decision involves the method for distributing writes among
replicas. Write propagation can take the form of gossip messages [Ladin et al.
1992], antientropy sessions [Golding 1992b; Petersen et al. 1997], group com-
munication [Birman 1993], broadcast, etc. We choose antientropy exchange as
our write propagation method because of its flexibility in operating under a
variety of network scenarios. Each write bears an accept stamp composed of
a logical clock time [Lamport 1978] and the identifier of the accepting replica.
Replicas deterministically order all writes based on this accept stamp. As in
Bayou [Petersen et al. 1997; Terry et al. 1995], updates are procedures that
check for conflicts with the underlying data store before being applied in a
tentative state.

Each TACT replica maintains a write log, and allows redo and undo on the
write log. It is also responsible for all antientropy sessions with remote repli-
cas. The system supports parallel antientropy sessions with multiple replicas,
which can improve performance significantly for antientropy across the wide
area. For increased efficiency, we also implement a one-round antientropy push.
With standard antientropy, before a replica pushes writes to another replica, it
first obtains the target replica’s logical time vector to determine which writes
to propagate. However, we found that this two-round protocol can add consid-
erable overhead across the wide area, especially at stronger consistency levels
(where the pushing replica has a fairly good notion of the writes seen by the
target replica). Thus, we allow replicas to push writes using their local view as
a hint, reducing two rounds of communication to one round at the cost of pos-
sibly propagating unnecessary writes. While the current implementation uses
this one-round protocol by default, dynamically switching between the variants
based on the consistency level would be ideal.

While TACT’s implementation of antientropy is not particularly novel, a
primary aspect of our work is determining when and with whom to perform
antientropy in order to guarantee a minimum level of consistency. Replicas may
propagate writes to other replicas at any time through voluntary antientropy.
However, we are more concerned with write propagation required for maintain-
ing a desired level of consistency, called compulsory antientropy. Compulsory
antientropy is necessary for the correctness of the system, while voluntary
antientropy only affects performance.

TACT replicas also implement a consistency manager responsible for bound-
ing numerical error, order error and staleness. In bounding numerical error, a
replica may need to push writes in its log to other replicas before the write can
return, for example, if a write has a weight that is larger than another replica’s
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absolute error bound. There are two possible approaches for addressing this
requirement. One approach is a one-round protocol where the local site applies
the write, propagates it to the necessary remote replicas, awaits acknowledg-
ments, and finally returns. This one-round protocol is appropriate for appli-
cations where writes are interchangeable, such as resource accounting/load
balancing. For other applications, such as the airline reservation example, a
reservation itself observes a consistency level (the probability it conflicts with
another reservation submitted elsewhere). In such a case, a stronger two-round
protocol is required where the replica first acquires remote data locks, pushes
the write to remote replicas, and then returns after receiving all acknowledg-
ments. Such a two-round protocol ensures the numerical error observed by a
write is within bounds at the time it is submitted. Our prototype implements
both protocols and allows the application to choose the proper approach based
on its requirements.

The current prototype of TACT is implemented in Java 1.2 using remote
method invocation (RMI) for communication (e.g., for accepting read/write re-
quests and for write propagation). TACT replicas are multithreaded. Thus, if
one write incurs compulsory write propagation, it will not block writes on other
conits. We implement a simple custom database for storing and retrieving data
values, though our design and implementation is compatible with a variety of
storage mechanisms.

9. PERFORMANCE EVALUATION

Given the description of our system architecture, we now discuss our experi-
ence in building the three applications described in Section 2 using the TACT
infrastructure. We define conits and weights in these applications according to
the analysis in Section 5.1. The experiments below focus on TACT’s ability to
bound numerical error and order error. While implemented in our prototype,
we do not present experiments addressing staleness for brevity and because
bounding staleness is well studied, for example, in the context of Web proxy
caching [Fielding et al. 1997].

9.1 Bulletin Board

For our evaluation of the bulletin board application, we deployed replicas
at three sites across the wide area: Duke University (733-Mhz Pentium
III/Solaris 2.8), University of Utah (350-Mhz Pentium II/FreeBSD 3.4) and Uni-
versity of California, Berkeley (167-Mhz Ultra I/Solaris 2.7). All data was col-
lected on otherwise unloaded systems. Each submitted message was assigned
a numerical weight of 1 (all messages were considered equally important).

We conducted a number of experiments to explore the behavior of the sys-
tem at different points in the consistency spectrum. Figure 8 plots the average
latency for a client at Duke to post 200 messages as a function of the numerical
error bound on the x-axis. For comparison, we also plot the average latency
for a conventional implementation using a read-one write-all protocol. For each
write, this protocol first acquires necessary remote data locks, then propagates
the update to all remote replicas. The figure shows how applications are able to
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Fig. 8. Average latency for posting messages to a replicated bulletin board as a function of consis-
tency guarantees.

continuously trade performance for consistency using TACT. As the numerical
error bound increases, average latency decreases. Increasing allowable order
error similarly produces a corresponding decrease in average latency. Relative
to the conventional implementation, allowing each replica to have up to 20 un-
seen messages and leaving order error unbounded reduces average latency by
a factor of 10.

A simple analysis on the number of synchronous RMIs per message can
help us to better understand the results. Suppose the numerical error bound is
boundNE. With three replicas, boundNE will be split evenly to two other repli-
cas, resulting in a local limit of boundNE/2. Once the local limit is exceeded,
two rounds of RMIs will be incurred by the protocol to propagate writes to
remote replicas. The first round of RMIs acquires remote data locks, which is
done sequentially to avoid deadlock. This will result in two synchronous RMIs.
In the second round, the replica pushes writes to all other replicas in paral-
lel. Thus, the number of synchronous RMIs per message is 3/(boundNE/2+ 1).
For order error, once the bound boundOE is violated on a replica, Golding’s
algorithm [Golding 1992a] will commit by pulling writes from all other repli-
cas in parallel to advance logical time vector and commit writes. Thus, the
number of synchronous RMIs per message is 1/(boundOE + 1). If we ignore
the possible overlap of the RMIs, the total number of RMIs per messages in
TACT is 3/(boundNE/2 + 1) + 1/(boundOE + 1). A similar analysis can show
that conventional implementation incurs three synchronous RMIs per message.
We plot these calculated values in Figure 9, which is qualitatively similar to
Figure 8.

One interesting aspect of Figure 8 is that TACT performs worse than
the standard read-one write-all protocol at the strong consistency end of the
spectrum. To investigate this overhead, Figure 10 summarizes the perfor-
mance overhead associated with message posts using TACT at four points
in the consistency spectrum (varying order error with numerical error set
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to zero) in comparison to the conventional read-one write-all protocol. All
five configurations incur approximately 130 ms to sequentially (required to
avoid deadlock) acquire data locks from two remote replicas and 80 ms to
push writes to these replicas in parallel. Since the cost of remote process-
ing is negligible, this overhead comes largely from wide-area latency. Com-
pared to the conventional implementation, TACT with zero numerical error
and zero order error (i.e., same consistency level) incurs about 83% more over-
head. This additional overhead stems from the additional 140 ms to bound
order error. This is an interesting side effect associated with our implemen-
tation. Our design decomposes consistency into two orthogonal components
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Fig. 11. Average latency for making a reservation as a function of consistency guarantees.

(numerical error and order error) that are bounded using two separate op-
erations, doubling the number of wide-area round trip times. When order
error and numerical error are both zero, TACT should combine the push
and pull of write operations into a single step as a performance optimiza-
tion, as is logically done by the conventional implementation. This idea
is especially applicable if we use the recently proposed quorum approach
[Holliday et al. 2000; Keleher 1999] to commit writes. A preliminary implemen-
tation of this optimization shows that TACT’s overhead (at strong consistency)
drops from 367 ms to 217 ms, within 8% of the conventional approach.

9.2 Airline Reservation System

We now evaluate our implementation of the simple airline reservation system
using TACT. Once again, we deployed three reservation replicas at Duke, Utah,
and Berkeley. We considered reservation requests for a single flight with 400
seats. Each client reservation request was for a randomly chosen seat on the
flight. If a tentative reservation conflicted with a request at another replica, a
merge procedure attempted to reserve a second seat on the same flight. If no
seats were available, the reservation was discarded. A conit was defined over
all seats on the flight, with an initial value of 400. Each reservation carried a
numerical weight of −1.

The latency and throughput measurements summarized in Figures 11 and 12
for airline reservations are similar to the bulletin board application described
above. The latency experiments were run on the same wide-area configuration
as the bulletin board. The plotted latency was the average observed by a single
Duke client making 400 reservations. As in the bulletin board example, the
latency comes largely from the blocking communication required to maintain
consistency. For throughput, we ran two client threads at each of the replica
sites, with each thread requesting 400/(2 × 3) = 67 (random) seats in a tight
loop. We also plot the application’s performance using the read-one write-all pro-
tocol, showing the same trends as the results for the bulletin board application.
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As consistency was gradually relaxed, TACT achieved better performance by
reducing the amount of required wide-area communication.

The improved performance does not, of course, come without cost. When con-
sistency is relaxed, there is large possibility that two reservations may conflict.
In Section 5.1, we derived a relationship between the reservation conflict rate R
and the relative error bound γ : Rmax = 1−1/(1+γ ) and Ravg = (1−1/(1+γ ))/2.
We conducted the following experiment to verify that an application can limit
the reservation conflict rate by simply bounding the relative numerical error.
Figure 13 plots the measured conflicting reservation rate R, the computed up-
per bound Rmax, and the computed average rate Ravg as functions of relative
numerical error. Order error and staleness are not bounded in these experi-
ments. The experiments were performed with two replicas on a LAN at Duke,
each attempting to make 250 (random) reservations with the results averaged
across four runs.
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The measured conflict rate roughly matches the computed average rate and
is always below the computed upper bound, demonstrating that numerical er-
ror can be used to bound conflicting accesses as shown by our analysis. Note
that, as the bound on relative error is relaxed, the discrepancy between the
measured rate and the computed average rate gradually increases because of
conservativeness inherent to the design of our inductive RE algorithm (i.e., at
relaxed consistency, our algorithm performed more write propagation than nec-
essary). As described in Section 3, this conservative behavior greatly improves
performance by allowing each replica to bound relative error using only local
information.

9.3 Quality of Service for Web Servers

For our final application, we demonstrate how TACT’s numerical error bound
can be used to enforce quality of service (QoS) guarantees among Web servers
distributed across the wide area. Recall that in this application a number of
front-end machines forward requests on behalf of both standard and preferred
clients to back-end servers. In our implementation, we use TACT to dynamically
trade communication overhead in exchange for accuracy in measuring total re-
sources consumed by standard clients. The front ends estimate the standard
client resource consumption as the total number of outstanding standard re-
quests on the back ends. If this resource consumption exceeds a predetermined
resource consumption limit, front ends will not forward new standard client
requests until resource consumption drops below this limit. For simplicity, all
our experiments were run on a local-area network at Duke on seven 733-Mhz
Pentium III’s running Solaris 2.8. Three front ends (each running on a separate
machine) generated requests in a round-robin fashion to three back end servers
running Apache 1.3.12.

For our experiments, the three front end machines generated an increasing
number of requests from standard clients. As a whole, the system desired to
bound the number of outstanding standard client requests to 150. A fourth ma-
chine, representing a preferred client, periodically polled a random back end
to determine system latency. Each of the three front ends started a new stan-
dard client every 2 s, which then continuously requested the same dynamically
generated Web page requiring 10 ms of computation time. If all front ends had
global knowledge of system state, each front end would start a total of 50 stan-
dard clients. However, depending on the bound placed on numerical error, front
ends may in fact start more than this number (up to 130 in the experiment
described below). For simplicity, no standard clients are torn down even if the
system learns that too many (i.e., more than 150) are present in aggregate.
Ideally, this aggregate number would oscillate around 150 with the amplitude
of the oscillation being determined by the relative numerical bound.

Figure 14 depicts latency observed by the preferred client as a function of
elapsed time (corresponding to the total number of standard clients making
requests). At time 260, each front end has tried to spawn up to 130 standard
clients. The curves show the average latency observed by the preferred client for
different bounds on numerical error. For comparison purposes, we also show the
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Table IV The Tradeoff Between TACT-Enforced
Numerical Error and Communication Overhead

Configuration Number of Messages
Relative Error = 0 300
Relative Error = 0.3 46
Relative Error = 0.5 30
Relative Error = 1 16
No QoS Guarantee 0

latency (1745 ms) of a preferred client when there are exactly 150 outstanding
standard client requests. In the first curve, labeled “Relative Error=0,” the sys-
tem maintains strong consistency. Therefore, the front ends are able to enforce
the resource limit strictly. The curve corresponding to a relative error of 0 flat-
tens at 100 s (when three front ends have created a total of 150 standard clients)
with latency very close to the ideal of 1745 ms. As the bound on relative error is
relaxed to 0.3, 0.5, and 1, the resource consumption limit for standard clients is
more loosely enforced. The curve “No QoS” plots the latency where no resource
policy is enforced. Similar to the airline reservation application, the discrep-
ancy between the relative error upper bound of 1 and the “No Qos” curve stems
from the conservativeness of the inductive RE algorithm.

Table IV quantifies the tradeoff between numerical error and communica-
tion overhead. Clearly, front ends can maintain near-perfect information about
the load generated from other replicas at the cost of sending one message to
all peers for each event that takes place. This is the case when zero numerical
error is enforced by TACT: each replica sends 50 messages to each of two re-
mote replicas (for a total of 300) corresponding to the number of logical events
that take place during the experiment. Once each front end starts 50 standard
clients, strong consistency ensures that no further messages are necessary. Of
course, such accuracy is typically not required by this application. Table IV
shows that communication overhead drops rapidly in exchange for some loss of
accuracy. Note that this dropoff will be more dramatic as the number of replicas
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is increased as a result of the all-to-all communication required to maintain
strong consistency.

10. RELATED WORK

The tradeoff between consistency and performance/availability is well under-
stood [Coan et al. 1986; Davidson et al. 1985]. Many systems have been built
at the two extremes of the consistency spectrum. Traditional replicated trans-
actional databases use strong consistency (one-copy serializability [Bernstein
and Goodman 1984]) as a correctness criterion. At the other end of the spec-
trum are optimistic systems such as Bayou [Petersen et al. 1997; Terry et al.
1995], Ficus [Guy et al. 1990], Rumor [Guy et al. 1998], and Coda [Kistler and
Satyanarayanan 1992]. In these systems, higher availability/performance is
explicitly favored over strong consistency. Besides Bayou, none of the above
systems provide support for different consistency levels. Bayou provides ses-
sion guarantees [Edwards et al. 1997; Terry et al. 1994] to ensure that clients
switching from one replica to another view a self-consistent version of the un-
derlying database. However, session guarantees do not provide any guarantees
regarding the consistency level of a particular replica. In some sense, session
guarantees provide guarantees regarding the consistency trend across accesses,
while our model provides guarantees for the consistency of a single access. Us-
ing the techniques in Bayou [Terry et al. 1994], session guarantees can be
orthogonally incorporated into TACT.

Most of the previous relaxed consistency models under the traditional
database context were not designed for the dual goals of generality and prac-
ticality. Agrawal et al. [1993] proposed semantics-based consistency criteria
using guarded actions, which are primitive reads/writes associated with arbi-
trary consistency assertions. Wong and Agrawal [1992] applied similar ideas to
abstract data types. In their model, a history is consistent if the assertions are
satisfied when the system executes the associated read/write. In the similarity
model [Kou and Mok 1992, 1993], applications define certain database states
to be indistinguishable for concurrency control purposes. These three mod-
els can capture a broad range of application semantics. However, they place
a significant burden on the application to match the model to their require-
ments. Further, they do not provide any practical, efficient protocols to enforce
the requested consistency level in the general case. On the other hand, quasi-
copy caching [Alonso et al. 1990; Gallersdorfer and Nicola 1995], N -ignorant
systems [Krishnakumar and Bernstein 1994], delta consistency [Singla et al.
1997], timed consistency [Torres-Rojas et al. 1999], cluster consistency [Pitoura
and Bhargava 1995], and models based on a conflict matrix for abstract data
types [Badrinath and Ramamritham 1992; DiPippo and Wolfe 1993; Weihl
1988] have developed efficient application-independent protocols to enforce
the relaxed consistency model. However, because they use a uniform consis-
tency model for all applications, generality is sacrificed in favor of the con-
sistency requirements of a specific class of applications. In Section 5.2, we
showed that all these models can be expressed using our conit-based consistency
model.
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Pu and Leff [1991] proposed the concept of epsilon-serializability (ESR) to
relax serializability and algorithms [Drew and Pu 1995; Pu et al. 1993; Wu
et al. 1992] have been developed to enforce ESR. Relative to ESR, our conit-
based model allows a broader range of application semantics to be expressed
through flexible conit definitions. Another fundamental difference is that while
we focus on trading consistency for reduced wide-area communication among
replicas, ESR aims to increase the concurrency at a single site. The lifetime-
based mutual consistency detection mechanism [Kordale and Ahamad 1996]
can provide several discrete mutual consistency levels for different objects.
Their mechanism is targeted to a different problem from ours, that is, to de-
termine mutual consistency of objects in a system where client caches may
retrieve individual objects from servers. Mutual consistency among data items
is ensured because replicas directly propagate writes in TACT. Garcia-Molina
and Wiederhold [1982] discussed consistency and currency requirements for
query transactions. The consistency requirements roughly correspond to con-
currency control (Section 6), while currency requirements are for replica con-
trol. The authors concentrated on partial replication with limited discussion on
the currency requirement. On the other hand, we assume full replication and
focus on quantifying application-specific consistency for both query and update
transactions. One of our three metrics, staleness, can capture the currency re-
quirement.

In fluid replication [Noble et al. 1999], clients dynamically create service
replicas to improve performance. Their study on when and where to create a
service replica is complementary to our study on tunable consistency issues
among replicas. Similar to Ladin’s system [Ladin et al. 1992], fluid replication
supports three consistency levels: last-writer, optimistic, and pessimistic. Our
work focuses on capturing the spectrum between optimistic and pessimistic
consistency models. Varying the frequency of reconciliation in fluid replication
allows applications to adjust the “strength” of the last-writer and optimistic
models. Bounding staleness in TACT has similar effects. However, as motivated
earlier, staleness alone does not fully capture application-specific consistency
requirements.

Fox and Brewer [1999] argued that strong consistency and one-copy avail-
ability cannot be achieved simultaneously in the presence of network parti-
tions. In the context of the Inktomi search engine, they showed how to trade
harvest for yield. Harvest measures the fraction of the data reflected in the
response, while yield is the probability of completing a request. In TACT, we
concentrate on consistency among service replicas, but a similar “harvest” con-
cept can also be defined using our consistency metrics. For example, bound-
ing numerical error has similar effects to guaranteeing a particular harvest.
Olston and Widom [2000] addressed tunable performance/precision tradeoffs
in the context of aggregation queries over numerical database records. Fi-
nally, HOPE [Cowan et al. 1995] is a generic optimistic programming tool that
uses speculative execution to exploit concurrency. However, HOPE provides
no way to bound the probability that a speculative execution can be commit-
ted, while in TACT the amount of inconsistency can be clearly declared and
enforced.
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11. CONCLUSIONS AND FUTURE WORK

Traditionally, designers of replicated systems have been forced to choose be-
tween strong consistency, with its associated performance overhead, and opti-
mistic consistency, with no guarantees regarding the probability of conflicting
writes or stale reads. In this paper, we have explored the space in between
these two extremes. We have presentd a continuous consistency model where
application designers can bound the maximum distance between the local data
image and some final consistent state. This space is parameterized by three
metrics, numerical error, order error, and staleness. We showed how TACT, a
middleware layer that enforces consistency bounds among replicas, allows ap-
plications to dynamically trade consistency for performance based on current
service, network, and request characteristics. We argued for the generality of
our approach by describing how a variety of services can express their con-
sistency requirements using TACT and by showing how a number of existing
consistency models can be expressed within the TACT framework. A perfor-
mance evaluation of three replicated applications, an airline reservation sys-
tem, a bulletin board, and a QoS Web service, implemented using TACT demon-
strated significant semantic and performance benefits relative to traditional
approaches.

Several topics remain unexplored in this paper. TACT quantifies consistency
and makes it tunable, leaving the actual tuning policy unspecified. Can we
build an adaptation layer on top of TACT that can tune application consistency
levels in response to changing wide-area network characteristics to achieve
application-specified targets for performance or availability? Are experiences
from other adaptive systems applicable here? Further theoretical work on conits
can also be interesting. Though simple, the conit concept provides much flexi-
bility to the consistency model. In this paper, we have used numerous examples
to explain the model’s generality. However, we were not able to formally argue
about it. Can we distill a set of computational/data access properties that are
necessary to use the model? How stringent are these properties? Can we fur-
ther use these properties to rigorously discuss the relative generality of various
consistency models?
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