
Secure Aggregation with Malicious Node Revocation
in Sensor Networks

Binbin Chen
Department of Computer Science
National University of Singapore

Email: chenbinb@comp.nus.edu.sg

Haifeng Yu
Department of Computer Science
National University of Singapore
Email: haifeng@comp.nus.edu.sg

Abstract—Sensor applications often leverage in-network
aggregation to extract aggregates, such as predicate count
and average, from the network. With in-network aggregation,
a malicious sensor can easily manipulate the intermediate
aggregation results and corrupt the final answer. Most
existing secure aggregation schemes aim to defend against
stealth attacks and can only raise an alarm when the final
answer is corrupted, without being able to pinpoint and
revoke the malicious sensors. While some recent protocols
can pinpoint and revoke malicious sensors, they need to rely
on expensive public key cryptography to be robust against
certain attacks.

Using only symmetric key cryptography, this paper aims
to strictly diminish the capability of adversaries whenever
they launch a successful attack, so that malicious sensors
can only ruin the aggregation result for a small number
of times before they are fully revoked. To this end, we
propose VMAT (verifiable minimum with audit trail), a novel
secure aggregation protocol with malicious sensor revocation
capability. VMAT relies on symmetric key cryptography only,
and provides provable guarantees that each execution can
either produce the correct aggregation result efficiently, or
revoke some key held by the adversary.

I. INTRODUCTION

Wireless sensor networks have seen numerous interest-
ing applications in recent years, ranging from battlefield
monitoring to emergency response. These sensor appli-
cations often leverage in-network aggregation to extract
aggregate information, such as predicate count and av-
erage, from the network. Instead of blindly forwarding
others’ packets, each individual sensor peeks into the
packets passing through it, and generates more compact
records by combining its own reading with other rele-
vant data, whenever possible [15]. Only forwarding such
aggregated record can significantly improve performance
and reduce sensors’ power consumption. Unfortunately,
naive in-network aggregation can easily be attacked in
a hostile environment, where sensors may potentially
be compromised due to physical tampering and become
malicious. These malicious sensors can easily modify the
intermediate aggregation results.

Previous results. Early efforts [2], [6], [12], [14], [16]
on secure aggregation often tackle the problem under

simplified settings that can either cope with only a single
malicious sensor or support only single-level aggregation.
These strong assumptions often do not hold in modern
sensor networks. Later research efforts, such as the secure
hierarchical in-network aggregation (SHIA) protocol [3]
and its enhanced variation [9], as well as the SECOA
secure aggregation protocol [19], have started to consider
multi-level in-network aggregation setting where more
than one sensor may be compromised. All these proto-
cols [3], [9], [19] aim to deal with stealth attacks, where
the adversary’s goal is to influence the aggregation result
without being detected. Consistent with such a goal, these
protocols can only raise an alarm when the aggregation
result is corrupted, without being able to pinpoint mali-
cious sensors and diminish their attacking capability. As a
result, even a single malicious sensor can keep failing the
final result verification without exposing itself.

More recently, SHIA has been extended [11], [24] to
allow pinpointing and revocation of malicious sensors.
These approaches will need to rely on public key cryptog-
raphy to be robust against choking attacks [5], [20], [25],
[29], where malicious sensors inject spurious messages to
“choke” the relaying capacity of other sensors and stall
the propagation of desirable messages. On the other hand,
given sensors’ limited battery power and computational
capacity, it is often desirable to avoid using public key
cryptography. If the sensors cannot support expensive
public key cryptography, then a single malicious sensor
can still keep corrupting the final result without being
revoked in these protocols. This can be rather serious,
since the entire sensor network is effectively brought down
by just a single malicious sensor.

To address this problem, Yu [29] proposes an alternative
approach that requires symmetric key cryptography only
and uses sampling (instead of in-network aggregation) to
answer aggregation queries. This sampling-based protocol
can tolerate malicious sensors in the sense that the mali-
cious sensors can never prevent the system from generat-
ing a correct answer. Since malicious sensors are already
tolerated, there is no need for pinpointing and revocation
any more. Unfortunately, this protocol requires Ω(log 𝑛)

sequential flooding rounds, where 𝑛 is the number of
sensors and a flooding round is the time required for
the base station to flood the entire sensor network. This
clearly incurs much larger delay than typical in-network
aggregation approaches that only need 𝑂(1) flooding
rounds.

Our results. This paper proposes a novel secure aggre-
gation protocol called VMAT (verifiable minimum with
audit trail), using only symmetric key cryptography. Each
execution of VMAT incurs only 𝑂(1) flooding rounds, and
either produces the correct aggregation result or records
proper (distributed) audit information. Based on the audit
information, VMAT can always pinpoint and revoke at
least one key held by the malicious sensors. Clearly, with
such pinpointing and revocation functionality, malicious
sensors can no longer stall the system forever. Compared
to [29], VMAT incurs only 𝑂(1) (instead of logarithmic)
flooding rounds to produce aggregation result or generate
proper audit trails.

While it may appear counter-intuitive, pinpointing and
revocation are non-trivial in sensor networks, especially
without public key cryptography. The lack of public key
cryptography enables the malicious sensors to easily in-
terfere with the pinpointing process (e.g., via choking
attacks). Clearly, the pinpointing process must tolerate
such malicious interference, instead of resorting to further
pinpointing. To the best of our knowledge, VMAT is the
first secure aggregation protocol that is able to pinpoint
and revoke malicious nodes, even under choking attacks,
without using any public key cryptography.

VMAT integrates several complementary techniques to
achieve its end goal:

∙ Perhaps counter-intuitively, sensors in VMAT use
timestamp instead of hop count to determine their
levels on the aggregation tree. This novel design
prevents malicious sensors from increasing the height
of the resulting tree by manipulating the hop count.

∙ Similar to some previous efforts [2], [19], VMAT
transforms COUNT query, SUM query, and AVERAGE

query to MIN query. By broadcasting the minimum
result from the MIN query back to the sensors, any
silent drop of the true minimum reading will always
trigger a veto from the sensor with that true minimum
reading. Different from [2], [19], VMAT further
maintains proper (distributed) audit information so
that a pinpointing protocol can later pinpoint the
culprit of the silent drop (if any).

∙ To further defend against choking attacks where
malicious sensors inject spurious veto to stall the
propagation of legitimate veto, we design a simple
and elegant Slotted One-time Flooding with Audit
Trail (SOF) protocol to propagate the veto. The pro-
tocol ensures that either a legitimate veto reaches the
base station or the system records proper (distributed)

audit information that can later be used to pinpoint
the source of the choking attack. Choking attacks are
also possible during the pinpointing process itself. We
adopt an existing keyed predicate test protocol [29]
to prevent choking attacks during pinpointing.

∙ Without public key cryptography, VMAT can only
pinpoint and revoke the symmetric keys held by the
malicious sensors that they use for communication
with their neighbors. Since each malicious sensor
may hold a large number (e.g., 250) of such keys,
sequential revocation can be prohibitively expensive.
VMAT instead will try to uniquely pinpoint a mali-
cious sensor after just revoking a small number of its
symmetric keys. We show that this can often reduce
the number of keys that need to be individually
revoked by over 90%.

II. RELATED WORK

Section I has already discussed some related aggrega-
tion protocols [2], [3], [6], [9], [11], [12], [14], [16], [19],
[24]. Among these protocols, the protocol of Haghani et
al. [11] and the protocol of Taban and Gligor [24] are
perhaps the most related to ours. Haghani et al. explicitly
use public key cryptography in order to avoid choking
attacks. Taban and Gligor’s protocol requires certain sen-
sors (partition leaders) to propagate (via multi-hop) the
partial aggregate results to the base station. Without public
key cryptography, malicious sensors can easily launch
choking attack here to stall the propagation of such partial
aggregate results. In addition to not relying on public
key cryptography, our VMAT protocol offers other nice
properties as compared to above protocols [11], [24]. For
example, [11] requires the base station to know the entire
sensor network topology while VMAT does not require
such global knowledge. [24] imposes non-trivial restriction
on the adversary and assumes that a malicious sensor
persistently misbehaves, while we allow malicious sensors
to behave arbitrarily and adaptively in a Byzantine way.

Other than these protocols, Roy et al. [23] and Garo-
falakis et al. [10] use verifiable FM synopses [8] for
secure aggregation. In these protocols, a sensor generates a
MAC [23] or a public key digital signatures [10] to vouch
for the bit that it sets in the FM synopses. Pinpointing
and revocation would be trivial with public key signatures.
If one only uses symmetric key cryptography as in [23],
however, the MACs will only be verifiable at the base
station and not at the intermediate sensors forwarding the
message. This makes the design vulnerable to choking
attacks [5], [20], [25], [29]. More specifically, since the
forwarding sensors do not have the needed information to
verify the MACs of these spurious messages, they have to
forward all of them to the base station. This in turn, can
stall the propagation of legitimate messages. The protocol
in [23] unfortunately does not provide mechanisms to
either prevent such choking attacks or pinpoint the source.

2

Some researchers have also proposed various secure
aggregation heuristics without end-to-end guarantees. For
example, the SDAP secure aggregation protocol [27] as-
sumes certain correlation among the readings of the sen-
sors and performs anomaly detection directly by compar-
ing multiple independent aggregation results. In compari-
son, our VMAT protocol does not require such assumption.

The pinpointing process in VMAT can be viewed as a
secure “traceroute” protocol for sensor networks. Similar
need for pinpointing also arises in secure sensor network
routing [4], [22], [26], but none of these efforts provide
full details on how to do so. Secure traceroute [21] has
also been studied in the Internet under a different set of
assumptions (e.g., direct point-to-point communication).
Finally, a preliminary version of this work appeared as a
Brief Announcement [28], which provides a sketch of the
VMAT design without details or proofs.

III. SYSTEM MODEL AND ATTACK MODEL

System Model. We consider a sensor network with 𝑛
wireless sensors. The sensor network is multi-hop in the
sense that not all sensors can directly communicate with
the base station. The base station is trusted. To unify
terminology, we sometimes call the base station as a sensor
as well. We assume that messages are reliable, after proper
retransmissions if necessary.∗ We assume that the sensors
and the base station have loosely synchronized clocks with
bounded clock errors, which is a common assumption for
in-network aggregation [2], [15], [18].

To avoid the (prohibitive) overhead of using public key
cryptography on sensors, VMAT will only use symmetric
key cryptography. In VMAT, each sensor shares a unique
symmetric key (called sensor key) with the base station.
For pair-wise authentication among sensors, we assume
that the sensors use the simple key pre-distribution scheme
by Eschenauer et al. [7], though VMAT also works with
other schemes [1]. In Eschenauer et al.’s approach, each
sensor is loaded with 𝑟 keys (called its key ring) drawn uni-
formly randomly from a global pool of 𝑢 symmetric keys.
The value of 𝑟 usually satisfies 𝑟 < 𝑛, since otherwise it
would be better for each sensor to hold a distinct key for
every other sensor. When 𝑟 reaches 𝑐

√
𝑢, by the Birthday

Paradox, any two sensors will have a common key with
probability at least 1− 𝑒−𝑐2 . We call such a common key
between two neighboring sensors as an edge key, since it
corresponds to an edge in the sensor network topology.
Every message in VMAT carries a MAC (called the edge
MAC) created using the corresponding edge key. When
forwarding a message to all its neighbors, a sensor will
need to send different edge MACs individually to different
neighbors. Edge MACs only provide limited authentication
since more than one sensor may have a given edge key. To

∗Since VMAT supports synopsis-diffusion style [18] multi-path ag-
gregation, we expect the effect of message losses to be minimum.

simplify discussion, we will not explicitly mention these
edge MACs in the remainder of this paper.

Attack model. The adversary can see all messages in the
network, and may further send messages to any sensor. We
assume that the adversary compromises up to 𝑓 sensors
in the network, and these sensors become malicious.
Adversary learns all the sensor keys of these malicious
sensors, as well as the keys in their key rings. If a sensor
is destroyed or radio-jammed by the adversary, we also
pessimistically consider it as being malicious. In addition
to modifying the partial results passing through them,
the malicious sensors may further launch DoS-related
attacks such as choking attacks [5], [20], [25], [29]. In a
choking attack, the malicious sensors inject many spurious
messages to “choke” the limited forwarding capacity of the
network and stall the propagation of legitimate messages.
Notice that without public key cryptography, the honest
sensors cannot easily authenticate the origin of these
messages and thus rate limiting will not help.

We assume that the malicious sensors do not partition
the sensor network. Notice that it is fundamentally im-
possible to incorporate the readings from those sensors
that are partitioned away. If the malicious sensors indeed
partition the sensor network, then VMAT will simply
compute an aggregate for those sensors that are in the
same connected component as the base station. We assume
that VMAT knows a rough upper bound on the depth
(denoted as 𝐿) of the sensor network (excluding all
malicious sensors). We define the depth of a sensor to
be the length of the shortest path from that sensor to the
base station. The depth of the sensor network is simply
the maximum depth of all individual sensors. Finally, we
define a flooding round as the amount of time required for
the base station to flood the entire sensor network.

Aggregation query and approximation answer. Similar
to most previous efforts [2], [3], [9], [10], [19], [23],
[29], we focus on simple aggregation queries such as
COUNT query (i.e., counting the number of sensors whose
reading satisfies a certain predicate), SUM query, and
AVERAGE query. VMAT produces approximate answers to
these queries, with provable approximation error. Notice
that since sensor readings inherently carry measurement
errors and sensor failures can be common, even state-of-
art aggregation algorithms [18] for trusted environments
do not aim for exact answers. We use the standard notion
of (𝜖, 𝛿)-approximation to quantify approximation error.
An (𝜖, 𝛿)-approximation answer is guaranteed to be within
(1 ± 𝜖) multiplicative factor of the correct answer with
probability at least 1 − 𝛿, where the probability is taken
over the random coin flips in our randomized protocol.
Same as the definition in most previous efforts [2], [3],
[9], [10], [19], [23], [29], an answer is considered correct
as long as the malicious sensors do not add additional
fabricated readings or drop/change the reported readings

3

1. form an aggregation tree;
2. wait for the minimum in aggregation phase;
3. if (no minimum received)

set minimum to be ∞;
4. if (get spurious minimum)

invoke junk-triggered pinpointing/revocation; return;
5. broadcast the minimum, wait for veto;
6. if (no veto)

return the minimum as correct result;
7. if (get spurious veto)

invoke junk-triggered pinpointing/revocation; return;
8. if (get legitimate veto)

invoke veto-triggered pinpointing/revocation; return;

Figure 1. VMAT protocol overview.

of honest sensors (i.e., they do not interfere with the
aggregation process). The secure aggregation problem
does not aim to prevent malicious sensors from reporting
arbitrary readings on their own behalves.

IV. VMAT: TREE FORMATION, AGGREGATION, AND

CONFIRMATION

To facilitate understanding, we will first describe the
VMAT protocol for answering a MIN query that simply
asks for the minimum reading among all sensors. Note
that MIN query itself is not a robust aggregate query, in the
sense that a single malicious sensor can change the final
result by just modifying its own reading. Section VIII later
will explain how more complex robust aggregate queries,
such as COUNT query and SUM query, can be converted to
MIN query while preserving their robustness. MIN query
has the nice property that the result of this query (i.e., the
minimum value) is generated by a single sensor, which can
easily create a MAC to vouch for it. It also allows each
sensor to independently check the correctness of the final
result by comparing the final result to its own reading.

Overview. Figure 1 gives an overview of VMAT. VMAT
first forms an aggregation tree, and then uses in-network
aggregation to find out the minimum value among all
sensors. The next confirmation phase serves to confirm that
the true minimum value was not silently dropped by the
malicious sensors during aggregation. To do so, the base
station broadcasts the minimum value received and waits
for potential vetoes. Audit trails are maintained in both the
aggregation and the confirmation phase. VMAT returns a
correct minimum value if and only if neither veto nor any
spurious message is received in the two phases. Otherwise,
VMAT invokes veto-triggered pinpointing/revocation or
junk-triggered pinpointing/revocation, which will be de-
scribed in Section VI.

A. Tree Formation Phase

Naive tree formation and aggregation. To better under-
stand our design choices, we first briefly review traditional
approaches [15] for forming an aggregate tree and doing
in-network aggregation. The process begins with the base
station broadcasts a tree-formation message containing a

(a) Original
topology

A

G

E

F

B

C

R

H

(c) Excessively
long path

A

G

E

F

B

C

R

DD H

(b) Possible resulting
aggregation ̀ ` tree

A

G

E

F

B

C

R

D H

,,

Figure 2. Possible attack on tree formation. 𝑅 is the base station,
𝐶, 𝐷, and 𝐺 are malicious sensors, while the rest are honest.

hop count of 0. Any sensor 𝐴 receiving this message for
the first time increases the hop count in the message and
then forwards the message. Simultaneously, 𝐴 sets its own
level to be the hop count in the message that 𝐴 sends out,
and sets its parent as the sensor from which 𝐴 received
the message. Eventually, this tree-formation message will
flood the entire network, and every sensor will have a level
and a parent.

A sensor uses its level to determine when it should send
a partial aggregation result to its parent. Specifically, the
aggregation phase is divided into 𝐿 intervals. A sensor
at level 𝑖 waits for messages from its children until the
(𝐿− 𝑖)th interval, and then sends an aggregated message
to its own parent in the (𝐿− 𝑖+ 1)th interval.

Sensors determine the current interval number based
on their local clocks. Here accounting for bounded clock
errors is simple. Let Δ denote the maximum clock error
between any two honest sensors. When a sensor needs
to send a message in an interval, it will avoid sending
that message in the initial/final Δ time of the interval
(according to its own clock). This is sufficient to ensure
that the receiving sensor’s clock is in that interval. This
well-known technique applies in all our discussions later,
and thus we do not discuss clock error any more.

Attacks on tree formation. Malicious sensors can easily
interfere with the above traditional tree formation process.
A malicious sensor may select multiple sensors as parents,
or attract a large number of children. Thus the actual
topology formed may not be a tree or may not even be
connected (Figure 2(a) and 2(b)). However, if a malicious
sensor prevents the true minimum value from being prop-
agated to the base station, it can be properly pinpointed
as described later.

A more subtle attack is for malicious sensors to ma-
nipulate the hop count to prevent honest sensors from
getting a valid level in tree-formation. For example in
Figure 2(a), the depth of the original topology (without
the malicious sensors) is 𝐿 = 3. However, during tree
formation (Figure 2(c)), 𝐶 and 𝐷 establish a wormhole

4

link [13] and concatenate two legitimate paths together, so
that the concatenated path (with a length of 7) is longer
than 𝐿. As a sensor with level greater than 𝐿 cannot
determine a valid transmission interval, this attack can fail
the aggregation phase. Worse still, it is impossible to tell
which sensors caused the long path to form.

Tree formation in VMAT. To address this problem, our
design determines the level via timestamps instead of
via hop counts. First, prior to the tree formation phase,
the base station announces when the tree formation will
start, using existing authenticated broadcast protocols such
as [20]. This authenticated broadcast message serves to
prevent DoS attacks where the malicious sensors keep
initiating tree formation. At the specified starting time, the
base station broadcasts the tree-formation message. VMAT
divides the tree formation phase into 𝐿 intervals. Sensors
receiving the message in the first interval set their levels
to 1. Instead of forwarding this tree-formation message
immediately, they hold the message and forward it only
in the next (i.e. second) interval, so that their children set
their levels to 2. The process continues until all sensors set
their levels. As the network depth is 𝐿, honest sensors that
are not partitioned by malicious sensors are guaranteed to
receive the tree-formation message by the 𝐿th interval and
will set a valid level. Any tree-formation message received
after the 𝐿th interval is ignored.

B. Aggregation Phase

Prior to the actual aggregation, the base station first
uses authenticated broadcast to announce the query, the
aggregation starting time, and a fresh nonce. When
the aggregation starts, each sensor creates a message
⟨𝑖𝑑, 𝑣,MAC𝑖𝑑(𝑣∣∣𝑛𝑜𝑛𝑐𝑒)⟩, where 𝑖𝑑 is the sensor’s ID, 𝑣
is its reading, and the MAC𝑖𝑑 is generated using the sensor
key (notice this is not the edge MAC). An 𝑖th level sensor
waits until the (𝐿−𝑖)th interval to collect all the messages
from its children (if any). It then selects and forwards the
message with the smallest 𝑣 among all these messages
from its children and itself in the (𝐿 − 𝑖 + 1)th interval.
The sensor further stores this forwarded message in the
following tuple form:

⟨level, message, sensor key, in-edge key, out-edge key⟩
Here level is the level of the sensor, message is the for-
warded message, sensor key is the sensor key of the sensor,
and in/out-edge key is the edge key used to receive/forward
the message. Some information in this tuple does not
actually need to be explicitly recorded, but we include
that in the tuple to simplify our discussion later. All these
tuples stored at different sensors in the system comprise
the distributed audit trails.

Malicious sensors may inject spurious messages (i.e., a
minimum value without valid MAC𝑖𝑑) during this aggrega-
tion phase. For such attacks, the source of a spurious mes-

sage can be pinpointed as later explained in Section VI.
Malicious sensors can also launch dropping attacks to
silently drop the true minimum value during aggregation
phase. VMAT uses the confirmation phase as presented
next to detect such dropping attacks, and then pinpoints
the malicious sensor based on the audit trail recorded in
this aggregation phase (as later explained in Section VI).

C. Confirmation Phase

If the final message containing the minimum value
holds a valid MAC, the base station will use authenticated
broadcast to announce the minimum value received, the
confirmation phase starting time, and a fresh nonce. When
the confirmation phase starts, any sensor with its own
reading 𝑣 smaller than the broadcast value is a vetoer
with ⟨𝑖𝑑, 𝑣, 𝑙𝑒𝑣𝑒𝑙,MAC𝑖𝑑(𝑣∣∣𝑙𝑒𝑣𝑒𝑙∣∣𝑛𝑜𝑛𝑐𝑒)⟩ being the veto
message. Here 𝑖𝑑 is the sensor’s ID, and 𝑙𝑒𝑣𝑒𝑙 is the
sensor’s level during the aggregation phase.

SOF protocol. Vetoes are propagated back using a Slotted
One-time Flooding with Audit Trail (SOF) protocol. The
basic idea in SOF is to let each vetoer flood its veto back
toward the base station (recall that the honest sensors and
the base station form a connected component). However,
if the malicious sensors dropped many values during
the aggregation phase, there can be numerous vetoers.
Propagating all these vetoes back is neither feasible nor
necessary: One legitimate veto is already sufficient to show
that the minimum result may not be correct, and can
trigger pinpointing. Thus our flooding protocol is one-time
in the sense that a vetoer sends to all its neighbors the veto
message, while a non-vetoer forwards to all its neighbors
the first veto it receives and ignores all other messages.
The sensor from which a non-vetoer 𝐴 receives the first
message is called 𝐴’s parent in confirmation phase.

For similar reasons as in tree formation (Figure 2(c)),
with the disruption from malicious sensors, the number
of sensors that a veto traverses in the flooding protocol
can be much larger than 𝐿. This is undesirable since it
will result in excessively long audit trails, making later
pinpointing inefficient. To avoid this problem, VMAT uses
a slotted version of the flooding protocol. Specifically,
the confirmation phase is partitioned into 𝐿 intervals. All
vetoers send out their vetoes in the first interval. If the first
veto received by a non-vetoer 𝐴 is received during the 𝑖th
interval, then 𝐴 will forward this veto during the (𝑖+1)th
interval. (𝐴 still ignores all future vetoes received.) This
will elegantly ensure that the length of the audit trail is
at most 𝐿 + 1 (including the tuple at the base station),
without compromising any other desirable properties. We
will present proofs later.

In the SOF protocol, each sensor (vetoer or non-vetoer)
further records the veto message that it sends/forwards in
the following tuple form:

⟨interval, message, sensor key, in-edge key, out-edge key⟩

5

Here interval is the index of the interval when the message
is sent/forwarded. All other fields are similar to the fields
in the tuple recorded during the aggregation phase.

Properties of SOF. Obviously malicious sensors may
interfere with the SOF protocol by manipulating messages
that pass through them, as well as introducing new veto
messages themselves. One can easily show that if there is
at least one honest vetoer in the network, the SOF protocol
guarantees to forward at least one message (either a valid
veto or some spurious veto) to the base station:

Lemma 1: In the SOF protocol, if some honest sensor
generates a veto 𝑥, then the base station is guaranteed to
receive some veto 𝑦 by the end of the confirmation phase.
Notice that 𝑦 may or may not be the same as 𝑥.
Proof: To prove the lemma, it suffices to show that if
an honest sensor with depth of 𝑖 sends/forwards a veto
during or before the (𝐿− 𝑖+ 1)th interval, then the base
station is guaranteed to receive some veto by the end of
the confirmation phase. Note that an honest vetoer sends
a veto in the first interval, and this first interval must be
the same or before the (𝐿− 𝑖+1)th interval, where 𝑖 ≤ 𝐿
is the depth of this honest vetoer.

We use an induction on 𝑖. The induction base for 𝑖 = 1
clearly holds. Consider any given honest sensor 𝐴 with
depth of 𝑖+1. Let 𝐵 be the honest sensor on the shortest
path from 𝐴 to the base station and whose depth is 𝑖.
Clearly such 𝐵 exists. Since 𝐴 sends/forwards a veto
during or before the (𝐿 − (𝑖 + 1) + 1)th interval, 𝐵
must receive that veto during or before that interval. If 𝐵
has not previously sent/forwarded a veto, 𝐵 will forward
this veto during or before the (𝐿 − 𝑖 + 1)th interval.
Otherwise 𝐵 must have previously sent/forwarded a veto
before the (𝐿−𝑖+1)th interval. In either case, by inductive
hypothesis, the base station is guaranteed to receive some
veto by the end of the confirmation phase. □

This lemma implies that if the base station does not
receive any veto, the minimum value received in the
aggregation phase must be correct.

After receiving a veto. If the base station does receive
a veto and if the veto is spurious, this spurious veto
must have been injected by some malicious sensor. This
can happen for example, if the malicious sensors aim
to prevent the base station from receiving any legitimate
veto. They may do so by launching a choking attack and
injecting spurious vetoes (with valid edge MACs though)
to “beat” the legitimate veto. In such a case, VMAT will
invoke junk-triggered pinpointing/revocation based on the
audit trails in SOF.

If the base station receives a valid veto, this valid
veto can still originate from either an honest sensor or a
malicious sensor. A malicious sensor can generate a valid
veto if it purposely hid its value during the aggregation
phase. The audit trail recorded in such a case will still
be equivalent to the malicious sensor dropping that value.

Thus regardless of the origin of the valid veto, VMAT
will invoke veto-triggered pinpointing/revocation protocol.
Conceptually this protocol will find out during the aggre-
gation phase, between which neighboring sensors the value
contained in the veto was dropped without an even smaller
value being forwarded.

D. Supporting Multi-path Aggregation

So far our VMAT protocol uses tree-based single-path
aggregation as in TAG [15]. State-of-art aggregation ap-
proaches such as synopsis-diffusion [18] often use multi-
path ring-based aggregation. In multi-path aggregation for
the MIN query, a sensor may send its partial aggregation
result to multiple parents instead of a single one. This
helps to route around failed parent or in our case, mali-
cious parent.

Our VMAT protocol can be trivially adapted to such
multi-path ring-based aggregation. The only modification
needed is that when forming the tree (or more precisely,
the rings [18] in multi-path aggregation), a sensor at level
𝑖 may have multiple parents at level 𝑖−1. Later during the
aggregation phase, a sensor should store a tuple for each
of its parents, as the audit trail. The confirmation phase is
the same as before. Junk-triggered pinpointing/revocation
in multi-path aggregation will be the same as in single-path
aggregation. For veto-triggered pinpointing/revocation, the
protocol can start tracking from an arbitrary parent of the
vetoer. Our claims in the next section will apply to multi-
path aggregation as well.

V. PROPERTIES OF VMAT TREE FORMATION,
AGGREGATION, AND CONFIRMATION

We have discussed above how our design is robust
against certain specific attacks. However, there are unlim-
ited number of possible attack strategies that the (poten-
tially colluding) malicious sensors may adopt, making it
impossible to exhaustively enumerate. Thus to ultimately
show the security of our protocol, we will derive a proof
below to formalize its guarantee. Our proof will capture
all possible attacks under our attack model in Section III.

We first define the notion of a well-formed audit trail
for veto-triggered pinpointing/revocation (see Figure 3).
Note that while the veto message itself is collected during
the confirmation phase, the audit trail for veto-triggered
pinpointing/revocation was previously recorded during the
aggregation phase. Consider all the tuples stored and thus
owned by the honest sensors in the aggregation phase.
A well-formed audit trail for veto-triggered pinpoint-
ing/revocation is an ordered list of some stored tuples and
additional special ⊥-tuples, where:

∙ Each ⊥-tuple is in the form of ⟨level, message,
⊥, in-edge key, out-edge key⟩. We say that a ⊥-tuple
is owned by the (potentially colluding) malicious
sensors.

6

⟨8,𝑚, 𝑘1⟩, ⟨7,𝑚′, 𝑘2⟩, ⟨4,𝑚′,⊥⟩, ⟨3,𝑚′, 𝑘3⟩, ⟨2,𝑚′,⊥⟩

Figure 3. Example of a well-formed audit trail for veto-triggered
pinpointing/revocation. Here 𝑚 and 𝑚′ are individual stored
messages, where 𝑚′ contains an intermediate aggregation value
that is smaller than the value contained in 𝑚. 𝑘1, 𝑘2, and 𝑘3 are
sensor keys of some honest sensors. The in/out-edge keys in the
tuples are not show in this example.

∙ In the list, no two ⊥-tuples are adjacent and the last
tuple is a ⊥-tuple.

∙ The level of any tuple is within [0, 𝐿].
∙ The level of any normal tuple 𝑥 is one smaller than

the level of 𝑥’s predecessor tuple.
∙ The level of any ⊥-tuple 𝑥 is smaller than the level

of 𝑥’s predecessor tuple.
∙ The partial aggregation value contained in any tuple
𝑥 (or more specifically, contained in the message
of tuple 𝑥) is smaller than or equal to the partial
aggregation value contained in its predecessor tuple.

∙ For any two adjacent tuples 𝑥𝑦 in the list, 𝑥’s out-
edge key is the same as 𝑦’s in-edge key. Furthermore,
this key is held by both 𝑥’s owner and 𝑦’s owner.

A single ⊥-tuple in the above definition captures a con-
tinuous segment of malicious sensors on the audit trail and
thus there should be no two adjacent ⊥-tuples. By the re-
quirements on the levels of the tuples, a well-formed audit
trail can have at most 𝐿+1 sensors. When tracking down
the audit trail in veto-triggered pinpointing/revocation, we
may encounter decreasing partial aggregation values. Thus
we do not require the partial aggregation values in all
tuples to be the same.

We similarly define well-formed audit trail for junk-
triggered pinpointing/revocation in the aggregation phase.
This is the same as a well-formed audit trail for veto-
triggered pinpointing/revocation except that i) the level of
a tuple should be one larger (for normal tuple) or larger
(for ⊥-tuple) than its predecessor, and ii) the message
contained in all tuples are identical. Finally, a well-formed
audit trail for junk-triggered pinpointing/revocation in the
confirmation phase is similarly defined except that: i)
level is replaced by interval (from the SOF protocol)
in the definition, ii) the interval should be one smaller
(or smaller) than its predecessor, and iii) the message
contained in all tuples are identical.

Now we can prove the claims on the protocol so far:
Theorem 2: The VMAT tree formation, aggregation,

and confirmation protocol, as well as its multi-path ag-
gregation version, has the following properties:

∙ It always terminates within 𝑂(1) flooding rounds
in the sense that within 𝑂(1) flooding rounds, it
always i) returns a minimum result, or ii) invokes
veto-triggered pinpointing/revocation, or iii) invokes
junk-triggered pinpointing/revocation.

∙ If it does return a minimum result, then the result

returned is correct.
∙ If it invokes veto-triggered pinpointing/revocation,

then the system must have a well-formed audit trail
for veto-triggered pinpointing/revocation.

∙ If it invokes junk-triggered pinpointing/revocation
during the aggregation or confirmation phase, then
the system must have a well-formed audit trail for
junk-triggered pinpointing/revocation in the aggrega-
tion or confirmation phase, respectively.

Proof sketch: All steps below refer to steps in Figure 1.

∙ The termination property is trivial since there is a
timeout in all steps where the base station needs to
wait for an incoming message (i.e., Step 2 and 5).

∙ Prove by contradiction and assume that the protocol
returns an incorrect minimum result 𝑤. Let 𝑥 be the
true minimum value among the readings of all the
honest sensors, and 𝑦 (𝑦 ≤ 𝑥) be the true minimum
value among the readings of all the sensors. 𝑤 being
incorrect means that 𝑤 > 𝑥 or 𝑤 < 𝑦. If 𝑤 > 𝑥,
then the honest sensor with reading 𝑥 would have
generated a veto during the confirmation phase. By
Lemma 1, the base station must have received some
veto and thus not output a minimum result. For the
case of 𝑤 < 𝑦, notice that the minimum result must
have passed the verification at Step 4, and carries a
valid MAC. This contradicts to the fact that no sensor
can generate such a valid MAC since 𝑤 < 𝑦.

∙ The protocol may invoke veto-triggered pinpoint-
ing/revocation at Step 8. Notice that this legitimate
veto may either originate from an honest sensor or a
malicious sensor. Let that sensor be 𝐴. Consider any
honest sensor 𝐵 that receives (potentially indirectly)
𝐴’s value during the aggregation phase. 𝐵 will either
forward 𝐴’s value or forward another value that is
smaller than 𝐴’s value. This means that there is
always another tuple in the audit trail after a tuple
owned by an honest sensor 𝐵. Further because the
length of the audit trail is finite (i.e., bounded by
𝐿+ 1), the audit trail must end with a ⊥-tuple. The
remaining properties needed for the audit trail to be
well-formed are trivial to show and thus we omit the
proof details.

∙ The protocol may invoke junk-triggered pinpoint-
ing/revocation at Step 4 and 7. In either case, if any
honest sensor forwards a junk message, it must have
previously received that message from some other
sensor. Thus same as above, the audit trail must end
with a ⊥-tuple. The remaining properties needed for
the audit trail to be well-formed are trivial to show
and thus we omit the proof details. □

VI. VMAT: PINPOINTING AND REVOCATION

We first describe the veto-triggered pinpoint-
ing/revocation protocol, and then briefly discuss the

7

junk-triggered pinpointing/revocation protocol, which is
similar. The guarantees of these protocols will later be
proved in Section VII. Since only edge keys (instead of
sensor keys) are used for sender authentication during
message forwarding, tracking the audit trail only allows
the base station to revoke some edge key. Instead of
revoking all compromised edge keys one by one, VMAT
pinpoints a malicious sensor after a small number of its
edge keys are exposed, so that VMAT can straightaway
revoke the rest of its edge keys even before it uses
them to launch attacks. The last part of this section will
elaborate on this design.

A. Veto-triggered Pinpointing/Revocation

Overview. Figure 4 presents the pseudo-code for veto-
triggered pinpointing/revocation. Initially, the base station
knows the ID of the sensor (𝐴) that generated the veto.
VMAT first finds out the edge key 𝐾𝑒 between 𝐴 and
𝐴’s parent in the aggregation phase. Next VMAT tries
to find a sensor 𝐵 holding 𝐾𝑒 that is willing to admit
having received the minimum value from 𝐴 at the given
level during the aggregation phase†. If we do find 𝐵, we
will repeat the above process from 𝐵. If such 𝐵 cannot
be found, then either 𝐴 or 𝐴’s parent is malicious and
we can revoke 𝐾𝑒. To revoke an edge key 𝐾𝑒, the base
station uses authenticated broadcast to announce the index
of that key to all sensors, so that they will ignore messages
authenticated using that key.

In a naive solution, for the base station to find out 𝐾𝑒,
𝐴 would directly send back the index of 𝐾𝑒, together with
a MAC generated using 𝐴’s sensor key. (Remember that
we intentionally avoid public key cryptography.) But since
other sensors cannot verify this MAC, choking attacks can
occur. We cannot simply record audit information to later
pinpoint such choking attacks – otherwise we will fall into
endless recursive pinpointing. To overcome this problem,
we use an existing keyed predicate test protocol [29] to
enable 𝐴 to send back 𝐾𝑒 resiliently despite malicious
interference.

Keyed predicate test. The keyed predicate test protocol
is not the contribution of this work. However for com-
pleteness, the following provides a concise review of the
protocol. This protocol tests whether there is at least one
sensor that i) holds a particular symmetric key 𝐾, and ii)
satisfies a certain predicate. Any such sensor will send a
“yes” reply in the form of a MAC generated using key
𝐾. Clearly, sensors not holding 𝐾 cannot generate such
MAC. The protocol further ensures that such a reply can
be propagated from the sensors to the base station in a
way that is resilient against choking attacks. To achieve
this, it leverages existing solutions [20] to tolerate choking

†𝐵 may or may not be the real parent of 𝐴, and can be a malicious
sensor that lies. But this will not cause any problem.

1. let 𝐾𝑠 and 𝑙𝑒𝑣𝑒𝑙 be the vetoer’s sensor key and level;
2. repeat
3. invoke the protocol in Figure 5 to find 𝐾𝑒;
4. invoke the protocol in Figure 6 to find the 𝐾′

𝑠 (the
sensor key of the parent sensor);

5. 𝐾𝑠 = 𝐾′
𝑠; 𝑙𝑒𝑣𝑒𝑙 = 𝑙𝑒𝑣𝑒𝑙 − 1;

Figure 4. Veto-triggered pinpointing/revocation protocol.

attacks for authenticated broadcast from the base station.
The protocol uses such authenticated broadcast to first
disseminate a one-way hash of the potential “yes” reply
(i.e., one-way hash of the MAC), using a publicly-known
one-way hash function H(). This one-way hash enables all
the sensors to test whether a message received is a valid
reply, without the need of public key cryptography or the
need of knowing 𝐾.

Specifically in the protocol, the base station first uses
authenticated broadcast to send the following to all sen-
sors:

⟨index of 𝐾, the predicate, nonce 𝑁 , H(MAC𝐾 (𝑁))⟩
If a sensor holds 𝐾 and satisfies the predicate, it will
generate MAC𝐾 (𝑁) as a “yes” reply and broadcast it
locally. The hash H(MAC𝐾(𝑁)) enables all sensors in the
system to verify whether a message is a valid “yes” reply.
If a sensor receives a valid “yes” reply for the first time,
it will relay it by locally rebroadcasting the message. It
ignores the message otherwise. Notice that since the only
message that can propagate in the network is the valid
reply, choking attacks are no longer possible.

The predicate test succeeds if the base station receives
the valid “yes” reply MAC𝐾 (𝑁), within two flooding
rounds. The following theorem from [29] summarizes the
guarantees of the protocol:

Theorem 3: [29] If at least one honest sensor holding
𝐾 satisfies the predicate, then the keyed predicate test is
guaranteed to succeed. On the other hand, if no honest
sensor holding 𝐾 satisfies the predicate and if no ma-
licious sensor holds 𝐾, then the keyed predicate test is
guaranteed not to succeed.

Pinpointing/revocation details. Now to retrieve the index
of the edge key 𝐾𝑒 that 𝐴 shares with its parent, the base
station uses 𝑂(log 𝑟) (or 𝑂(log 𝑛) since 𝑟 < 𝑛) keyed
predicate tests to do a simple binary search on the 𝑟 edge
keys held by 𝐴. See Figure 5 for the pseudo-code. Con-
ceptually, if 𝐴 is honest, after asking 𝑂(log 𝑟) “yes/no”
questions or keyed predicate tests, the base station can
uniquely pinpoint 𝐾𝑒 in the sequence of the 𝑟 edge keys.
Otherwise, 𝐴 is a malicious sensor, and the base station
revokes 𝐴 (i.e., revokes all edge keys held by 𝐴) at Step
7. Remember that the edge keys of a sensor are uniformly
randomly selected from the global key pool. To revoke all
of 𝐴’s edge keys, the base station only needs to announce
the associated random seed used for the selection.

8

1. let 𝑧1 < 𝑧2 < ... < 𝑧𝑟 be the index of the 𝑟 edge keys held by sensor 𝐴 (with sensor key 𝐾𝑠);
2. let 𝑥 = 1, 𝑦 = 𝑟;
3. repeat
4. if (𝑥 = 𝑦) { return the edge key 𝐾𝑒 corresponding to index 𝑧𝑥; }
5. 𝑖 = (𝑥+ 𝑦)/2;
6. if keyed predicate test on 𝐾𝑠 with predicate ⟨𝑧𝑥, 𝑧𝑦, 𝑣𝑣𝑒𝑡𝑜, 𝑙𝑒𝑣𝑒𝑙⟩ succeeds { 𝑦 = 𝑖; } else { 𝑥 = 𝑖+ 1; }

(A sensor satisfies this predicate if i) it holds 𝐾𝑠, and ii) it received a message with value no greater than 𝑣𝑣𝑒𝑡𝑜 from a child
at the given 𝑙𝑒𝑣𝑒𝑙 during the aggregation phase, and iii) the index of the edge key for communication with its parent is
between 𝑧𝑥 and 𝑧𝑦 .)

7. if (𝑥 > 𝑦) { revoke all edge keys held by the sensor with sensor key 𝐾𝑠 and exit; }

Figure 5. Find the edge key to blame.

1. let 𝑖𝑑1 < 𝑖𝑑2 < ... < 𝑖𝑑𝑡 be the IDs of the 𝑡 sensors holding 𝐾𝑒; let 𝑥 = 1 and 𝑦 = 𝑡;
2. if keyed predicate test on 𝐾𝑒 with predicate ⟨𝑖𝑑𝑥, 𝑖𝑑𝑦, 𝑣𝑣𝑒𝑡𝑜, 𝑙𝑒𝑣𝑒𝑙⟩ fails { revoke 𝐾𝑒 and exit; }
3. repeat
4. if (𝑥 = 𝑦) {
5. let 𝐾′

𝑠 be the sensor key of sensor with the ID 𝑖𝑑𝑥;
6. if keyed predicate test on 𝐾′

𝑠 with predicate ⟨𝑖𝑑𝑥, 𝑖𝑑𝑥, 𝑣𝑣𝑒𝑡𝑜, 𝑙𝑒𝑣𝑒𝑙⟩ succeeds { return 𝐾′
𝑠; }

7. else { revoke 𝐾𝑒 and exit; }
8. }
9. 𝑖 = (𝑥+ 𝑦)/2;
10. if keyed predicate test on 𝐾𝑒 with predicate ⟨𝑖𝑑𝑥, 𝑖𝑑𝑖, 𝑣𝑣𝑒𝑡𝑜, 𝑙𝑒𝑣𝑒𝑙⟩ succeeds { 𝑦 = 𝑖; }
11. else if keyed predicate test on 𝐾𝑒 with predicate ⟨𝑖𝑑𝑖+1, 𝑖𝑑𝑦, 𝑣𝑣𝑒𝑡𝑜, 𝑙𝑒𝑣𝑒𝑙⟩ succeeds { 𝑥 = 𝑖+ 1; }
12. else { revoke 𝐾𝑒 and exit; }

Figure 6. Find the sensor key of the parent sensor.

Next to find out the ID of 𝐴’s parent 𝐵, we use keyed
predicate test on the set of all sensors holding the edge
key 𝐾𝑒. The base station knows the exact set of the 𝑡
sensors holding 𝐾𝑒. Let their IDs be 𝑖𝑑1, 𝑖𝑑2, . . . , 𝑖𝑑𝑡 in
increasing order. For the same reason as earlier, we cannot
have 𝐵 directly send back its ID. Rather, we use keyed
predicate tests to do a binary search on the sequence of
the 𝑡 IDs (Figure 6). At each step, the base station encodes
the predicate as ⟨𝑖𝑑𝑥, 𝑖𝑑𝑦, 𝑣𝑣𝑒𝑡𝑜, 𝑙𝑒𝑣𝑒𝑙⟩. Here [𝑥, 𝑦] is the
window that the binary search is examining, and 𝑣𝑣𝑒𝑡𝑜
is the value from the vetoer, while 𝑙𝑒𝑣𝑒𝑙 is initialized to
vetoer’s level and decreases with every sensor tracked.
The predicate asks “whether any sensor holding 𝐾𝑒 with
𝑖𝑑 ∈ [𝑖𝑑𝑥, 𝑖𝑑𝑦] received a report with value no greater than
𝑣𝑣𝑒𝑡𝑜 from a child at the given 𝑙𝑒𝑣𝑒𝑙 during the aggregation
phase”. Here we ask for “no greater than” instead of
“equal” to allow the vetoer’s value to be replaced by a
smaller value. Also note that there may be multiple honest
sensors satisfying the predicate test (in the presence of
malicious interference), and the protocol only aims to find
one of them.

Several steps in Figure 6 are worth highlighting. At Step
2, the keyed predicate test fails if no sensor is willing to
admit having received 𝐴’s value. This means that either 𝐴
or 𝐴’s parent is malicious, and we can safely revoke 𝐾𝑒.
Next, it is possible for a malicious sensor holding 𝐾𝑒 to
behave inconsistently during the binary search. This may
cause the keyed predicate test at both Step 10 and 11 to
fail. But if this does happen, we know that 𝐾𝑒 is held by

some malicious sensor and Step 12 will revoke 𝐾𝑒. This
also explains why it is important to use keyed predicate
test on 𝐾𝑒 and restrict ourselves to sensors holding 𝐾𝑒.
Finally, a malicious sensor may frame an honest sensor
with a different ID. Step 6 thus re-confirms using a keyed
predicate test on the sensor key of the ID found.

B. Junk-triggered Pinpointing/Revocation

Junk-triggered pinpointing/revocation is invoked to pin-
point malicious sensors that injected spurious messages
in either the aggregation phase or confirmation phase.
The pinpointing is triggered immediately when a spurious
message is received at the base station. Different from
veto-triggered pinpointing/revocation, which tracks the
audit trail from the vetoer (source) toward the base station,
in junk-triggered pinpointing/revocation the base station
tracks the audit trail toward the initially unknown source.
The process begins with the edge key 𝐾𝑒 that is used by
the base station to receive the spurious message. Similar
to Figure 6, VMAT then uses keyed predicate test on
𝐾𝑒 to find the sensor 𝐴 that is willing to admit having
forwarded the message to the base station. If no such
sensor is identified, 𝐾𝑒 will be revoked. Otherwise, VMAT
retrieves the edge key 𝐾 ′

𝑒 that is used by 𝐴 to receive the
message, similar to Figure 5. The process then continues
after decreasing interval (for spurious veto) or increasing
level (for spurious aggregation result). Since this is almost
identical to veto-triggered pinpointing/revocation, we omit
the details for clarity.

9

C. Effectiveness of Edge-key Revocation

Revoking a single edge key will not fully disable a
malicious sensor, since it has 𝑟 (e.g., 250) edge keys in its
key ring. Thus it may appear that revoking edge keys is
rather inefficient to counter attacks. However, notice that
it is unlikely for an honest sensor to share too many edge
keys with the malicious sensors. Thus we can immediately
revoke a malicious sensor (i.e., revoke all keys in its key
ring) whenever a given threshold 𝜃 of its keys have been
revoked. Doing so enables us to revoke the malicious
sensor’s other edge keys even before they are used to
launch attacks.

There is an obvious tradeoff in choosing 𝜃. A smaller
𝜃 allows faster revocation, at the cost of potentially mis-
revoking honest sensors that happen to share more than
𝜃 edge keys with the malicious sensors. In particular,
notice that the adversary can use the edge keys held
by different malicious sensors to frame honest sensors.
A larger threshold is thus needed when the number of
malicious sensors is large, to keep the mis-revocation
probability low. Our numerical results later show that, even
with 20 malicious sensors, a 𝜃 of 27 is already sufficient
to ensure almost zero probability of mis-revocation. Such
𝜃 is only about 10% of the 250 edge keys held by a sensor.

VII. PROPERTIES OF VMAT PINPOINTING AND

REVOCATION

Lemma 4, 5, and Theorem 6 below prove the correct-
ness and performance guarantees of veto-triggered pin-
pointing/revocation. The guarantees from junk-triggered
pinpointing/revocation are exactly the same and thus are
omitted for clarity.

Lemma 4: Assume that the system has a well-formed
audit trail for veto-triggered pinpointing/revocation. Con-
sider the protocol in Figure 5.

∙ If sensor 𝐴 is honest, then the protocol will always
return some edge key 𝐾𝑒 held by 𝐴, and 𝐴 will never
be revoked in the protocol.

∙ If sensor 𝐴 is malicious, then the protocol will either
return some edge key 𝐾𝑒 held by 𝐴, or revoke 𝐴.

Proof: Regardless of whether 𝐴 is honest or malicious,
obviously the protocol always either returns some edge key
𝐾𝑒 held by 𝐴, or revokes 𝐴. Next for an honest sensor 𝐴,
its tuple will never be the last one in a well-formed audit
trail. This means that the binary search must succeed and
the condition of 𝑥 > 𝑦 at Step 7 can never be satisfied,
which in turn means that 𝐴 will never be revoked. □

Lemma 5: Assume that the system has a well-formed
audit trail for veto-triggered pinpointing/revocation. Con-
sider the protocol in Figure 6.

∙ If no malicious sensor holds edge key 𝐾𝑒, then 𝐾𝑒

will never be revoked in the protocol.
∙ If the protocol returns a sensor key 𝐾 ′

𝑠, then either
𝐾 ′

𝑠 is held by some malicious sensor or 𝐾 ′
𝑠 is held

by some honest sensor that received a message with
value no greater than 𝑣𝑣𝑒𝑡𝑜 during the aggregation
phase.

Proof:
∙ The protocol may potentially revoke 𝐾𝑒 at Step 2, 7

or 12. Since no malicious sensor holds 𝐾𝑒 and since
𝐴 holds 𝐾𝑒 (by Lemma 4), 𝐴 must be honest. Thus
its tuple is not the last one in the well-formed audit
trail, and 𝐴 must have a parent 𝐵, which owns the
successor tuple in the audit trail.
We next prove that Step 2 will not revoke 𝐾𝑒.
Assume instead that Step 2 revokes 𝐾𝑒, implying that
the keyed predicate test at Step 2 fails and no sensor is
willing to admit that it received the message from 𝐴
at the given level during the aggregation phase. This
can never happen if both 𝐴 and 𝐵 are honest. Since
𝐴 is honest, 𝐵 must be malicious. Thus 𝐾𝑒 is held
by some malicious sensor (i.e., 𝐵). Contradiction.
Finally, the proof for Step 7 and 12 is trivial, since
the condition for reaching Step 7 and 12 will never
be satisfied if all sensors holding 𝐾𝑒 are honest.

∙ Obvious from the condition at Step 6. □

We define communication complexity as the total num-
ber of bits sent and received by a sensor (including
those bits forwarded for other sensors during multi-hop
forwarding). The following theorem proves the correctness
and performance guarantees of veto-triggered pinpoint-
ing/revocation.

Theorem 6: Suppose that the base station receives a
legitimate veto during the confirmation phase. Then the
pinpointing/revocation protocol in Figure 4:

∙ Will always revoke at least one edge key, and any key
revoked must be held by some malicious sensor.

∙ Incurs communication complexity of 𝑂(𝐿𝑑 log 𝑛) for
each sensor, where 𝑑 is the corresponding sensor’s
degree.

∙ Incurs time complexity of 𝑂(𝐿 log 𝑛) flooding rounds.

Proof: Since the base station receives a legitimate
veto, Theorem 2 already proved that the system has
a well-formed audit trail for veto-triggered pinpoint-
ing/revocation. Lemma 4 and 5 above proved that any
key revoked must belong to some malicious sensor. The
length of a well-formed audit trail is at most 𝐿 + 1.
Thus the number of steps that the protocol will track
before revoking some key is 𝑂(𝐿). Each step incurs at
most 𝑂(log 𝑛 + log 𝑟) = 𝑂(log 𝑛) flooding rounds, and
𝑂(𝑑 log 𝑛) communication complexity for a sensor with
degree 𝑑. □

Putting it all together. Combining the properties we have
proved so far for VMAT tree formation, aggregation, con-
firmation, pinpointing, and revocation in Theorem 2 and
6 yields the following main theorem, which summarizes
the overall guarantee of VMAT.

10

Theorem 7: The VMAT protocol (including tree for-
mation, aggregation, confirmation, pinpointing, and re-
vocation) will either return a correct result within 𝑂(1)
flooding rounds, or revoke at least one edge key held by
some malicious sensor within 𝑂(𝐿 log 𝑛) flooding rounds.

VIII. GENERALIZING TO COUNT AND SUM

Converting COUNT query or SUM query to MIN query
is a well-known technique to facilitate secure aggrega-
tion [2], [19]. There are several ways to do so, and VMAT
uses the following recent scheme [17] with strong error
guarantees. Without loss of generality, we assume that
sensor readings are integers within a certain domain. To
compute sum (and predicate count as a special case),
a sensor 𝑥 with a reading 𝑣 > 0 generates 𝑚 inde-
pendent random numbers (synopses) 𝑎1,𝑥, 𝑎2,𝑥 . . . , 𝑎𝑚,𝑥

according to an exponential distribution with mean 1
𝑣 .

Let 𝑎𝑚𝑖𝑛
𝑖 be the minimum 𝑎𝑖,𝑥’s across all sensors (i.e.,

𝑎𝑚𝑖𝑛
𝑖 = min𝑥 𝑎𝑖,𝑥). Let 𝑎𝑚𝑖𝑛 =

∑𝑚
𝑖=1 𝑎

𝑚𝑖𝑛
𝑖 /𝑚. The sum

is estimated to be 1/𝑎𝑚𝑖𝑛. It is proved [17] that when
𝑚 = Θ(1

𝜖2 log
1
𝛿) this estimator is an (𝜖, 𝛿)-approximation

of the real sum. In practice we will use Θ(1
𝜖2 log

1
𝛿)

parallel instances. Finally, average can be computed from
predicate count and sum.

To support robust COUNT query and SUM query with
the non-robust MIN query, as in [2], [19], we require
that synopses be generated using a (deterministic) pseudo-
random number generator seeded by the concatenation
of some nonce specified by the base station and the
sensor’s ID. With this design, a (valid) synopsis produced
by a malicious sensor must correspond to some possible
sensor reading. This prevents the malicious sensors from
reporting spurious synopses (e.g., always reporting 0). On
the other hand, a malicious sensor can still enumerate
all possible readings and pick an adversarial reading to
generate an adversarial synopsis. However, this will have
precisely the same effect as the malicious sensor reporting
a fake reading for itself. The same applies when multi-
ple malicious sensors coordinate and collectively choose
adversarial readings. Since this well-known technique for
securely converting predicate count and sum to minimum
is not our contribution, we refer interested readers to [2],
[19] for more details.

IX. NUMERICAL EXAMPLES

We have proved VMAT’s correctness and performance
guarantees. In this section, we provide some numerical
examples to further illustrate VMAT’s properties in terms
of revocation efficiency and approximation quality.

Effectiveness of edge-key revocation. We first aim to
better understand how many edge keys we need to revoke
before being able to revoke a malicious sensor entirely. As
explained in Section VI-C, a malicious sensor can often be
uniquely identified by a small number 𝜃 of its edge keys.

We use simulation to quantify how many exposed edge
keys are sufficient to uniquely identify a malicious sensor,
while ensuring near-zero probability of mis-revocation of
honest sensors. As in [7], we consider a sensor network
with each sensor holding 250 keys randomly selected from
a global key pool of size 100, 000. Under this setting,
any two sensors can find at least one common edge key
with probability around 0.5. We consider two network
sizes with 1, 000 and 10, 000 sensors respectively. For each
network size, we vary the number 𝑓 of malicious sensors.
Figure 7 plots the average number of mis-revoked honest
sensors (out of 100 trials) for different 𝜃 thresholds.

The figure shows that under both network sizes, with
a single malicious sensor, we can identify that malicious
sensor after it exposes roughly 7 edge keys, while incur-
ring close-to-zero probability of mis-revoking any honest
sensor. As explained in Section VI-C, with more malicious
sensors, a larger 𝜃 is needed to achieve the same mis-
revocation probability. As shown in the figure, to keep
the average number of mis-revoked honest sensors below
1, 𝜃 needs to be 27 for 20 malicious sensors. On the
other hand, even this 𝜃 value is still roughly an order of
magnitude smaller than the total number of edge keys held
by a malicious sensor. Finally, for scenarios with much
larger number of malicious sensors, the cost of revocation
can become too high to be practical. However, in such
cases, the adversary will likely have already acquired a
large fraction of edge keys from the global key pool.
Revoking all these edge keys, even if possible, will likely
result in a disconnected network. Thus in such scenarios,
directly tolerating the malicious sensors (e.g., as in [29])
will perhaps be more meaningful.

Approximation quality. We next use simulation to bet-
ter understand the approximation quality by converting
COUNT query to MIN query. Figure 8 presents the ap-
proximation error achieved by 100 synopses, for different
predicate count values, each over 200 trials. The “average”
is taken over all trials for a given predicate count value.
The “𝑥 percentile” value means that 𝑥% of all trials have
an error below that value. The figure shows that using
only 100 synopses can give us an average relative error of
below 10%. Even if we pessimistically assume that each
synopsis takes 24 bytes (including all the MACs), 100
synopses will only take 2.4KB. Sending and receiving
these synopses are quite affordable in today’s common
sensor platforms (e.g., ZigBee sensors can communicate
at 250Kbps). In comparison, without the VMAT secure
in-network aggregation protocol, a naive approach would
need to transmit all individual readings back to the base
station. Here each reading still needs to carry MACs to
prevent the attacker from injecting additional fabricated
readings. Assuming each MAC is 8 bytes, this naive
approach would incur a communication complexity of at
least 80KB for a network with 10, 000 sensors, which is

11

 0

 5

 10

 15

 20

 0 10 20 30 40 50

of

 s
en

so
rs

 m
is

-r
ev

ok
ed

Threshold θ

f=20
f=10
f=5
f=1

 0

 5

 10

 15

 20

 0 10 20 30 40 50

of

 s
en

so
rs

 m
is

-r
ev

ok
ed

Threshold θ

f=20
f=10

f=5
f=1

(a) 1,000 sensors (b) 10,000 sensors

Figure 7. Avg # of honest sensors mis-revoked under various threshold 𝜃.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2000 4000 6000 8000 10000

R
el

at
iv

e
er

ro
r

Actual predicate count value

98 percentile
95 percentile

average

Figure 8. Relative estimation error for dif-
ferent predicate count values.

one to two orders of magnitude larger than VMAT.

X. CONCLUSION

This paper proposes VMAT, a secure in-network ag-
gregation algorithm that strictly diminishes the capability
of adversaries whenever they launch a successful attack,
by properly pinpointing and revoking keys held by the
adversary. To achieve such functionality using only sym-
metric key cryptography, VMAT integrates several com-
plementary techniques, including the timestamp-based tree
formation, SOF, edge-key-based revocation, and audit trail
information retrieval with keyed predicate test. We have
proved VMAT’s correctness and performance guarantees.

ACKNOWLEDGE

This work is partly supported by National University of
Singapore Young Investigator Award R-252-000-334-101.

REFERENCES

[1] S. Camtepe and B. Yener. Key Distribution Mechanisms
for Wireless Sensor Networks: A Survey. Technical report,
Rensselaer Polytechnic Institute, 2005.

[2] H. Chan, A. Perrig, B. Przydatek, and D. Song. SIA: Secure
Information Aggregation in Sensor Networks. Journal of
Computer Security, 15(1), 2007.

[3] H. Chan, A. Perrig, and D. Song. Secure Hierarchical In-
network Aggregation for Sensor Networks. In CCS, 2006.

[4] J. Deng, R. Han, and S. Mishra. INSENS: Intrusion-
Tolerant Routing For Wireless Sensor Networks. Elsevier
Journal on Computer Communications, 29(2), 2005.

[5] J. Deng, R. Han, and S. Mishra. Limiting DoS Attacks Dur-
ing Multihop Data Delivery In Wireless Sensor Networks.
International Journal of Security and Networks, 2006.

[6] W. Du, J. Deng, Y. Han, and P. K. Varshney. A Witness-
based Approach for Data Fusion Assurance in Wireless
Sensor Networks. In GLOBECOM, 2003.

[7] L. Eschenauer and V. Gligor. A Key-Management Scheme
for Distributed Sensor Networks. In CCS, 2002.

[8] P. Flajolet and G.N. Martin. Probabilistic Counting Algo-
rithms for Database Applications. Journal of Computer and
System Sciences, 1985.

[9] K. Frikken and J. Dougherty. An Efficient Integrity-
preserving Scheme for Hierarchical Sensor Aggregation. In
WiSec, 2008.

[10] M. Garofalakis, J. Hellerstein, and P. Maniatis. Proof
Sketches: Verifiable In-Network Aggregation. In ICDE,
2007.

[11] P. Haghani, P. Papadimitratos, M. Poturalski, K. Aberer,
and J. Hubaux. Efficient and robust secure aggregation for
sensor networks. In NPSec, 2007.

[12] L. Hu and D. Evans. Secure Aggregation for Wireless
Networks. In WSAAN, 2003.

[13] Y. Hu, A. Perrig, and D. Johnson. Wormhole attacks in
wireless networks. Journal on Selected Areas in Commu-
nications, 24(2):370–380, 2006.

[14] P. Jadia and A. Mathuria. Efficient Secure Aggregation in
Sensor Networks. In HiPC, 2004.

[15] S. Madden, M. Franklin, J. Hellerstein, and W. Hong. TAG:
A Tiny AGgregation Service for Ad-Hoc Sensor Networks.
In OSDI, 2002.

[16] A. Mahimkar and T. Rappaport. SecureDAV: A Secure Data
Aggregation and Verification Protocol for Sensor Networks.
In GLOBECOM, 2004.

[17] D. Mosk-Aoyama and D. Shah. Computing Separable
Functions via Gossip. In PODC, 2006.

[18] S. Nath, P. B. Gibbons, S. Seshan, and Z. Anderson. Synop-
sis Diffusion for Robust Aggregation in Sensor Networks.
In SenSys, 2004.

[19] S. Nath, H. Yu, and H. Chan. Secure Outsourced Aggre-
gation via One-way Chains. In ACM SIGMOD, 2009.

[20] P. Ning, A. Liu, and W. Du. Mitigating DoS Attacks against
Broadcast Authentication in Wireless Sensor Networks.
ACM Transactions on Sensor Networks, 2008.

[21] V. Padmanabhan and D. Simon. Secure Traceroute to
Detect Faulty or Malicious Routing. SIGCOMM Computer
Communication Review, 33(1), 2003.

[22] B. Parno, M. Luk, E. Gaustad, and A. Perrig. Secure Sensor
Network Routing: A Clean-Slate Approach. In CoNEXT,
2006.

[23] S. Roy, S. Setia, and S. Jajodia. Attack-resilient Hierarchi-
cal Data Aggregation in Sensor Networks. In SASN, 2006.

[24] G. Taban and V. Gligor. Efficient handling of adversary
attacks in aggregation applications. In ESORICS, 2008.

[25] R. Wang, W. Du, and P. Ning. Containing Denial-of-Service
Attacks in Broadcast Authentication in Sensor Networks. In
MobiHoc, 2007.

[26] A. Wood, L. Fang, J. Stankovic, and T. He. SIGF: A Family
of Configurable, Secure Routing Protocols for Wireless
Sensor Networks. In SASN, 2006.

[27] Y. Yang, X. Wang, S. Zhu, and G. Cao. SDAP: A
Secure Hop-by-Hop Data Aggregation Protocol for Sensor
Networks. In MobiHoc, 2006.

[28] H. Yu. Brief Announcement: DoS-Resilient Secure Aggre-
gation Queries in Sensor Networks. In PODC, 2007.

[29] H. Yu. Secure and highly-available aggregation queries
in large-scale sensor networks via set sampling. In IPSN,
2009.

12

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

