
Introduction to Information Retrieval

CS3245

Information Retrieval

Lecture 3: Postings lists and
Choosing terms

3

CS3245 – Information Retrieval

Last Time: Basic IR system structure
 Basic inverted indexes:
 In memory dictionary and on disk postings

 Key characteristic: Sorted order for postings
 Boolean query processing
 Intersection by linear time “merging”

 Simple optimizations by expected size
 Overview of course topics

Information Retrieval 2

Ch. 1

CS3245 – Information Retrieval

Today: Zoom In on Postings Data
Structure and How to Define Terms

 Postings
 Faster merges: skip lists
 Positional postings and phrase queries

 Preprocessing to form the term vocabulary
 Documents
 Tokenization
 What terms do we put in the index?

Information Retrieval 3

CS3245 – Information Retrieval

FASTER POSTINGS MERGES:
SKIP POINTERS / SKIP LISTS

Information Retrieval 4

CS3245 – Information Retrieval

Recall basic merge
 Walk through the two postings simultaneously, in

time linear in the total number of postings entries

Information Retrieval 5

128

31

2 4 8 41 48 64

1 2 3 8 11 17 21

Brutus

Caesar
2 8

If the list lengths are m and n, the merge takes O(m+n)
operations.

Can we do better?
Yes (if index the isn’t changing too fast).

Sec. 2.3

Blanks on slides, you may want to fill in

CS3245 – Information Retrieval

Adding skip pointers to postings

 Done at indexing time.
 To skip postings that will not figure in the search

results.
 How to do it? And where do we place skip pointers?

Information Retrieval 6

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

41 128

Sec. 2.3

CS3245 – Information Retrieval

Query processing with skip pointers

Information Retrieval 7

1282 4 8 41 48 64

311 2 3 8 11 17 21
3111

41 128

Suppose we’ve stepped through the lists until we
process 8 on each list. We match it and advance.

We then have 41 and 11 on the lower. 11 is smaller.

But the skip successor of 11 on the lower list is 31, so
we can skip ahead past the intervening postings.

Sec. 2.3

CS3245 – Information Retrieval

Where do we place skips?
 Tradeoff:
 More skips → shorter skip spans ⇒ more likely to skip.

But lots of comparisons to skip pointers.
 Fewer skips → few pointer comparison, but then long skip

spans ⇒ few successful skips.

Information Retrieval 8

Sec. 2.3

CS3245 – Information Retrieval

Placing skips
 Simple heuristic: for postings of length L, use √L

evenly-spaced skip pointers.
 This ignores the distribution of query terms.
 Easy if the index is relatively static; harder if L keeps

changing because of updates.

 This definitely used to help; with modern hardware it
may not (Bahle et al. 2002) unless memory-based
 The I/O cost of loading a bigger postings list can outweigh

the gains from quicker in-memory merging!

Information Retrieval 9

Sec. 2.3

CS3245 – Information Retrieval

PHRASE QUERIES AND
POSITIONAL INDICES

Information Retrieval 10

CS3245 – Information Retrieval

Phrase queries
 Want to be able to answer queries such as “stanford

university” – as a phrase
 Thus the sentence “I went to university at Stanford”

is not a match.
 The concept of phrase queries has proven easily

understood by users; one of the few “advanced search”
ideas that works (for users; they “get it”)

 Many more queries are implicit phrase queries

 For this, it no longer suffices to store only
<term : docs> entries

Information Retrieval 11

Sec. 2.4

CS3245 – Information Retrieval

A first attempt: Biword indexes
 Index every consecutive pair of terms in the text as a

phrase: bigram model using words
 For example the text “Friends, Romans,

Countrymen” would generate the biwords
 friends romans
 romans countrymen

 Each of these biwords is now a dictionary term
 Two-word phrase query-processing is now

immediate.

Information Retrieval 12

Sec. 2.4.1

CS3245 – Information Retrieval

Longer phrase queries
 Longer phrases be processed as a Boolean query on

biwords:
stanford university palo alto
stanford university AND university palo AND palo alto

Without the docs, we cannot verify that the docs
matching the above Boolean query do contain the
phrase.

Information Retrieval 13

Can have false positives, why?

Sec. 2.4.1

CS3245 – Information Retrieval

Extended biwords
 Parse the indexed text and perform part-of-speech-tagging

(POST).
 Bucket the terms into (say) Nouns (N) and articles

/prepositions (X).
 Call any string of terms of the form NX*N an extended biword.
 Each extended biword is now a term in the dictionary.

 Example: catcher in the rye
N X X N

 Query processing: parse it into N’s and X’s
 Segment query into enhanced biwords
 Look up in index: catcher rye

Information Retrieval 14

Sec. 2.4.1

CS3245 – Information Retrieval

Issues for biword indexes
 False positives, as noted before
 Index blowup due to bigger dictionary
 Infeasible for more than biwords, big even for them

 Biword indexes are not the standard solution (for all
biwords) but can be part of a compound strategy

Information Retrieval 15

Sec. 2.4.1

CS3245 – Information Retrieval

Solution 2: Positional indexes
 In the postings, store, for each term the position(s) in

which tokens of it appear:

<term, number of docs containing term;
doc1: position1, position2 … ;
doc2: position1, position2 … ;
etc.>

Information Retrieval 16

Sec. 2.4.2

CS3245 – Information Retrieval

Positional index example

 For phrase queries, we use a merge algorithm
recursively at the document level

 Now need to deal with more than just equality

Information Retrieval 17

<be: 993427;
1: 7, 18, 33, 72, 86, 231;
2: 3, 149;
4: 17, 191, 291, 430, 434;
5: 363, 367, …>

Quick check:
Which of docs 1,2,4,5
could contain “to be

or not to be”?

Sec. 2.4.2

CS3245 – Information Retrieval

Processing a phrase query
 Extract inverted index entries for each distinct term:

to, be, or, not.
 Merge their doc:position lists to enumerate all

positions with “to be or not to be”.
 to:

 2:1,17,74,222,551; 4:8,16,190,429,433; 7:13,23,191; ...

 be:

 1:17,19; 4:17,191,291,430,434; 5:14,19,101; ...

 Same general method for proximity searches

Information Retrieval 18

Sec. 2.4.2

CS3245 – Information Retrieval

Proximity queries
 LIMIT! /3 STATUTE /3 FEDERAL /2 TORT
 Again, here, /k means “within k words of”.

 Clearly, positional indexes can be used for such
queries; biword indexes cannot.

Information Retrieval 19

Sec. 2.4.2

CS3245 – Information Retrieval

Positional index size
 We can compress position values/offsets, later in

index compression
 Nevertheless, a positional index expands postings

storage substantially
 Nevertheless, a positional index is now standardly

used because of the power and usefulness of phrase
and proximity queries … whether used explicitly or
implicitly in a ranking retrieval system.

Information Retrieval 20

Sec. 2.4.2

CS3245 – Information Retrieval

Positional index size
 Need an entry for each occurrence, not just once per

document
 Index size depends on average document size
 Average web page has < 1000 terms
 SEC filings, books, even some epic poems … easily 100,000

terms

 Consider a term with frequency 0.1%

Information Retrieval 21

Why?

1001100,000

111000

Positional postingsPostingsDocument size

Sec. 2.4.2

CS3245 – Information Retrieval

Rules of thumb
 A positional index is 2–4x larger as a non-positional

index
 Positional index size is ~35–50% of the volume of

original text
 Caveat: all of this holds for “English-like” languages

Information Retrieval 22

Sec. 2.4.2

CS3245 – Information Retrieval

Combining biword and
positional indices
 These two approaches can be profitably combined
 For particular oft-queried phrases (“Michael Jackson”,

“Britney Spears”), it is inefficient to keep on merging
positional postings lists
 Even more so for phrases like “The Who”

 Williams et al. (2004) evaluate a more sophisticated
mixed indexing scheme
 Added a next word index, recording words that follow a

given word
 A typical web query mixture was executed in ¼ of the time

of using just a positional index
 Required 26% more space over just having a positional index

Information Retrieval 23

Sec. 2.4.3

CS3245 – Information Retrieval

TOKENS AND TERMS

Information Retrieval 24

CS3245 – Information Retrieval

TokenizerToken stream. Friends Romans Countrymen

Recap: Inverted index construction

Linguistic modules

Modified tokens. friend roman� countryman

Indexer

Inverted index.

friend

roman

countryman

2 4

2

13 16

1

Focus for
today

Documents to
be indexed.

Friends, Romans, countrymen.

Sec. 1.2

Information Retrieval 25

CS3245 – Information Retrieval

First step: extracting the text

 What format is it in?
 PDF / Word / Excel / HTML?

 What language is used?
 What character set is used?

 Beyond the scope of this course, but most of the
time are done heuristically, or assumed to be
non-issues with help from vendor libraries

Information Retrieval 26

Sec. 2.1

CS3245 – Information Retrieval

Complications: Format / Language
 Collection may have docs in different languages
 A single index may have to contain terms of several

languages.

 Even single documents may have multiple languages
/ formats
 French email with a

German PDF attachment
 Crazy lecturer’s

homework assignment

Information Retrieval 27

Sec. 2.1

Photo Credits: Wikipedia commons

CS3245 – Information Retrieval

Indexing Granularity
 What should the unit document be?
 A file?
 An email? (Perhaps one of many in a mailbox / thread)
 An email with 5 attachments?
 A group of files (PPT or LaTeX as HTML pages)

Collection? Set of documents? A document? Section of a
document? Paragraph? Sentence? Word?

 Too coarse grained and everything matches
and we still have to search within hits

 Too fine grained and then nothing matches
Need to decide based on projected use of the IR engine

Information Retrieval 28

Blanks on slides, you may want to fill in

To think about:
relationship with

precision and recall

CS3245 – Information Retrieval

Tokenization
 Input: “Friends, Romans and Countrymen”

 Output: Tokens
 Friends
 Romans
 Countrymen

 A token is an instance of a sequence of characters
grouped together as a useful semantic unit

 Each token is a candidate for an index entry, after
further processing

 But what are valid tokens to emit?
Information Retrieval 29

Sec. 2.2.1

CS3245 – Information Retrieval

(English) Tokenization: Issues in
Handling Apostrophe, Hyphens and Spaces

 Finland’s capital → Finland? Finlands? Finland’s?
 Aren’t → Aren and t? Are and n’t? Are and not?
 Hewlett-Packard → Hewlett and Packard?

 state-of-the-art: break up hyphenated sequence.
 co-education
 lowercase, lower-case, lower case: all acceptable forms

 San Francisco: one token or two?
 How did you decide it is one token?

 What about Los Angeles-San Francisco?

Information Retrieval 30

Sec. 2.2.1

CS3245 – Information Retrieval

Numbers, dates and
other dangerous things
 3/20/13 Mar. 12, 2013 20/3/13
 55 B.C.
 B-52
 My PGP key is 324a3df234cb23e
 (800) 234-2333
 Often have embedded spaces, punctuation
 Older IR systems may not index numbers

 But often very useful: think about things like looking up error
codes / product codes on the web

 IR systems often opt to index “meta-data” separately
 Creation date, format, etc.

Information Retrieval 31

Sec. 2.2.1

CS3245 – Information Retrieval

Tokenization: language issues
 French
 L'ensemble → one token or two?

 L ? L’ ? Le ?
 Want l’ensemble to match with un ensemble

 Until at least 2003, it didn’t on Google
 Internationalization!

 German noun compounds are not segmented
 Lebensversicherungsgesellschaftsangestellter

life insurance company employee

 German retrieval systems benefit greatly from a compound splitter
module, which can give a 15% performance boost

Information Retrieval 32

Sec. 2.2.1

CS3245 – Information Retrieval

Tokenization: language issues

 Chinese and Japanese have no spaces between
words:
 莎拉波娃现在居住在美国东南部的佛罗里达。

Shā lā bō wá xiànzài jūzhù zài měiguó dōngnán bù de fóluólǐdá

 Not always guaranteed a unique tokenization

 Japanese intermingles multiple writing systems
 Dates / amounts in multiple formats

 End-user often express queries entirely in Hiragana!
Information Retrieval 33

フォーチュン500社は情報不足のため時間あた$500K(約6,000万円)

Katakana Hiragana Kanji Romaji

Sec. 2.2.1

Fōchun gohyaku-sha wa jōhō fusoku no tame jikan ata gozyu man-doru (yaku rokusen
man-en)

CS3245 – Information Retrieval

Tokenization: language issues
 Arabic (or Hebrew) is written right to left, but certain

items (e.g., numbers) are written left to right
 Words are separated, but letter forms

within a word form complex ligatures

French occupation years 132 after 1962 independence Algeria achieved
“Algeria achieved its independence in 1962 after 132 years of French occupation”

← → ← → ← start

With Unicode, the surface presentation is complex (left to the
renderer to solve), but the stored form is in linear order

Information Retrieval 34

Sec. 2.2.1

Example of
a ligature
in modern
English

CS3245 – Information Retrieval

Unicode in XKCD

Information Retrieval 35

Collaborative editing can quickly become a textual
rap battle fought with increasingly convoluted
invocations of U+202a to U+202e. #geekout

http://xkcd.com/1137/

http://xkcd.com/1137/

CS3245 – Information Retrieval

Stop words

 With a stop list, we exclude the most common
words from the dictionary. Intuition:
 They have little semantic content: the, a, and, to, be

 But the trend is away from doing this:
 Good compression techniques means the space for including

stopwords in a system is very small
 Good query optimization techniques mean you pay little at query

time for including stop words.
 You need them for:

 Phrase queries: “King of Denmark”

 Various song titles, etc.: “Let it be”, “To be or not to be”

 “Relational” queries: “flights to London”

Information Retrieval 36

Sec. 2.2.2

CS3245 – Information Retrieval

Normalization to terms
 We need to “normalize” words in indexed text as

well as query words into the same form
 We want to match U.S.A. and USA

 Result is terms: a term is a (normalized) word type,
which is an entry in our IR system dictionary

 Often, we implicitly define equivalence classes of
terms by, e.g.,
 deleting periods to form a term

 U.S.A., USA ▶ USA

 deleting hyphens to form a term
 anti-discriminatory, antidiscriminatory ▶ antidiscriminatory

Information Retrieval 37

Sec. 2.2.3

CS3245 – Information Retrieval

Normalization: other languages
 Accents: e.g., French résumé vs. resume.
 Umlauts: e.g., German: Tuebingen vs. Tübingen
 Most important criterion:
 How are your users like to write their queries for these

words?

 Even in languages that have accents, users often may not
type them

 Thus, often best to normalize to a de-accented term
 Tuebingen, Tübingen, Tubingen ▶ Tubingen

Information Retrieval 38

Sec. 2.2.3

CS3245 – Information Retrieval

Normalization: other languages
 Normalization of things like date forms
 7月30日 vs. 7/30
 use of kana (alphabet) vs. Kanji (Chinese chars) in JP

 Tokenization and normalization often depends on the
language and so is intertwined with language
detection

 Crucial: Need to “normalize” indexed text as well as
query terms into the same form

Information Retrieval 39

Morgen will ich in MIT …
Is this the

German “mit”?

Sec. 2.2.3

CS3245 – Information Retrieval

Case folding
 Reduce all letters to lower case
 exception: upper case in mid-sentence?

 e.g., General Motors
 Fed vs. fed
 SAIL vs. sail

 Often best to lowercase everything, since
users’ queries most often written this way

 (old) Google example:
 Query C.A.T.
 #1 result is for “cat” (well, Lolcats) not

Caterpillar Inc.
 Still works for video

Information Retrieval 40

Sec. 2.2.3

CS3245 – Information Retrieval

Normalization to terms

 An alternative to equivalence classing is to do
asymmetric expansion

 An example of where this may be useful
 Enter: window Search: window, windows
 Enter: windows Search: Windows, windows, window
 Enter: Windows Search: Windows

 Potentially more powerful, but often less efficient

Information Retrieval 41

Sec. 2.2.3

CS3245 – Information Retrieval

Thesauri and soundex
 Do we handle synonyms and homonyms?
 E.g., by hand-constructed equivalence classes

 car = automobile color = colour
 We can rewrite to form equivalence class terms

 When the document contains automobile, index it under car-
automobile (and vice-versa)

 Or we can expand a query
 When the query contains automobile, look under car as well

 What about spelling mistakes?
 One approach is soundex (next week), which forms

equivalence classes of words based on phonetic heuristics

Information Retrieval 42

CS3245 – Information Retrieval

Lemmatization
 Reduce inflectional/variant forms to base form
 E.g.,
 am, are, is → be

 car, cars, car’s, cars’ → car

 the boy’s cars are different colors → the boy car be
different color

 Lemmatization implies doing “proper” reduction to
dictionary form

Information Retrieval 43

Sec. 2.2.4

CS3245 – Information Retrieval

Stemming
 Reduce terms to their “roots” before indexing
 “Stemming” suggest crude affix chopping
 language dependent
 e.g., automate(s), automatic, automation all reduced to

automat.

Information Retrieval 44

for example compressed
and compression are both
accepted as equivalent to
compress.

for exampl compress and
compress ar both accept
as equival to compress

Sec. 2.2.4

CS3245 – Information Retrieval

Porter’s algorithm
 Most common algorithm for stemming English
 Experiments suggest it’s at least as good as other

stemming options

 Conventions + 5 phases of reductions
 phases applied sequentially
 each phase consists of a set of commands
 sample convention: Of the rules in a compound command,

select the one that applies to the longest suffix.

Information Retrieval 45

Sec. 2.2.4

CS3245 – Information Retrieval

Typical rules in Porter
 sses → ss
 ies → i
 ational → ate
 tional → tion

Late phase rules in Porter check the length of the
resulting word:

 (m>1) EMENT → “”
 replacement → replac
 cement → cement

Information Retrieval 46

Sec. 2.2.4

CS3245 – Information Retrieval

Other stemmers
 Other stemmers exist, e.g., Lovins stemmer

http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

Single-pass, longest suffix removal (about 250 rules)

 Lemmatizer – Full morphological analysis to return
(dictionary) base form of word
At most modest benefits for retrieval

 Do stemming and other normalizations help?
English: very mixed results. Helps recall for some queries but
harms precision on others

 E.g., operating system ⇒ oper sys
Definitely useful for Spanish, German, Finnish, …

 30% performance gains for Finnish!
Information Retrieval 47

Sec. 2.2.4

http://www.comp.lancs.ac.uk/computing/research/stemming/general/lovins.htm

CS3245 – Information Retrieval

Language-specificity
 Many of the above features embody transformations

that are
 Language-specific, and often
 Application-specific

 These are “plug-in” addenda to the indexing process
 Both open source and commercial plug-ins are

available for handling them

 Shows the intertwining of NLP with IR
Plug: take our NLP course next sem!

Information Retrieval 48

Sec. 2.2.4

CS3245 – Information Retrieval

Summary
3. What is a term?
 Normalization
 Stemming
 Lemmatization

 Language specific issues

Zoomed in on three issues:
1. Postings: Skip lists

2. Phrase and Proximity
Handling
 Biword Indices
 Positional Indices

Information Retrieval 49

CS3245 – Information Retrieval

Resources for today’s lecture
 IIR 2
 MG 3.6, 4.3; MIR 7.2

 Skip Lists theory: Pugh (1990)
 Multilevel skip lists give same O(log n) efficiency as trees

 H.E. Williams, J. Zobel, and D. Bahle. 2004. “Fast Phrase
Querying with Combined Indexes”, ACM Transactions on
Information Systems.
 http://www.seg.rmit.edu.au/research/research.php?author=4

 D. Bahle, H. Williams, and J. Zobel. 2002. Efficient phrase
querying with an auxiliary index. SIGIR, pp. 215-221.

 Porter’s stemmer:
http://www.tartarus.org/~martin/PorterStemmer/

 Stemming and Lemmatization in NLTK
Information Retrieval 50

http://www.seg.rmit.edu.au/research/research.php?author=4
http://www.tartarus.org/%7Emartin/PorterStemmer/

	Slide Number 1
	Last Time: Basic IR system structure
	Today: 	Zoom In on Postings Data �			Structure and How to Define Terms
	FASTER POSTINGS MERGES:�SKIP POINTERS / SKIP LISTS
	Recall basic merge
	Adding skip pointers to postings
	Query processing with skip pointers
	Where do we place skips?
	Placing skips
	PHRASE QUERIES AND �POSITIONAL INDICES
	Phrase queries
	A first attempt: Biword indexes
	Longer phrase queries
	Extended biwords
	Issues for biword indexes
	Solution 2: Positional indexes
	Positional index example
	Processing a phrase query
	Proximity queries
	Positional index size
	Positional index size
	Rules of thumb
	Combining biword and �positional indices
	Tokens and Terms
	Recap: Inverted index construction
	First step: extracting the text
	Complications: Format / Language
	Indexing Granularity
	Tokenization
	(English) Tokenization: Issues in �Handling Apostrophe, Hyphens and Spaces
	Numbers, dates and �other dangerous things
	Tokenization: language issues
	Tokenization: language issues
	Tokenization: language issues
	Unicode in XKCD
	Stop words
	Normalization to terms
	Normalization: other languages
	Normalization: other languages
	Case folding
	Normalization to terms
	Thesauri and soundex
	Lemmatization
	Stemming
	Porter’s algorithm
	Typical rules in Porter
	Other stemmers
	Language-specificity
	Summary
	Resources for today’s lecture

