CTL Model Checking

Abhik Roychoudhury
CS 5219
National University of Singapore

News
- Turing Award 2007 (announced Feb 08)
 - Clarke, Emerson, Sifakis
 - For their role in developing Model-Checking into a highly effective verification technology, widely adopted in the hardware and software industries.

http://awards.acm.org/homepage.cfm?art=at6&awd=148

Award in 1996 for temporal logics to Amir Pnueli

Model Checking
- Specification (e.g. Promela)
- Or Software
- Temporal Logic property (e.g. in CTL or LTL)
- Finite State Transition Sys
- MC
- YES
- No, counterexample evidence (e.g. trace for LTL)

CTL Model Checking
- Inputs:
 - Finite state Kripke Structure $M = (S, I, \rightarrow, L)$
 - S (set of states),
 - $I \subseteq S$ (set of initial states),
 - \rightarrow (transition relation),
 - L (function labeling atomic propositions to states)
 - CTL formula ϕ (with atomic propositions corresponding to those appearing in M)
- Output:
 - Whether for all s in I, we have $M, s \models \phi$

Example: A microwave oven
- Assignment of start, heat are shown
- AG (start ⇒ AF heat)

Example
- AG (start ⇒ AF heat)
 - For any reachable state, if start holds, then along all outgoing paths, heat eventually holds.
- Violated if:
 - \exists a reachable state s where start holds
 - \exists an acyclic path from s to s'' in which heat does not hold in any state
 - And there is a cycle containing s' such that heat does not hold in all states of the cycle.
- Can we find such a cycle in the given model?
Example: A microwave oven

![Diagram of microwave oven]

Assignment of start, heat are shown

CTL Model Checking

- A systematic way of doing the reasoning performed in our example for all CTL formulae.
- Recall set of all CTL formulae:
 - $\varphi = \text{Prop} \mid \neg \varphi \mid \varphi \land \varphi \mid \AX \varphi \mid \EX \varphi \mid \AF \varphi \mid \EF \varphi$
 - $\mid \EG \varphi \mid \AG \varphi \mid \E(\varphi \land \varphi) \mid \A(\varphi \land \varphi)\mid \E(\varphi R \varphi) \mid \A(\varphi R \varphi)\mid \E(\varphi R \varphi) \mid \A(\varphi R \varphi)$
- Among the temporal operators, only consider:
 - EX, EG, EU (along with \neg and \land)

CTL temporal operators

- $\AX \varphi = \neg \neg \AX \varphi = \neg \EX \neg \varphi$
- $\AG \varphi = \neg \neg \AG \varphi = \neg \EF \neg \varphi$
- $\EF \varphi = \E(\text{true} \lor \varphi)$
- $\AF \varphi = \neg \EG \neg \varphi$
- $\A(\varphi R \Psi) = \neg \neg \A(\varphi R \Psi) = \neg \E(\neg \varphi \lor \neg \Psi)$
- $\A(\varphi U \Psi) = \neg \E(\neg \varphi R \neg \Psi)$
- What about $\E(\varphi R \Psi)$??

Model Checking Algorithm

- Pre-processing: Rewrite the CTL formula to be verified to contain EX, EG, EU, \land, \neg
- For all sub-formulae x of the re-written formula φ, find the set of states satisfying x in the given model M.
- The above step finally computes the set of states in M which satisfy φ, call it S_{φ}.
- Check whether all initial states of M are contained in S_{φ}.

Word of caution

- The pre-processing of the formula is only being done to simplify the presentation of the MC algorithm.
- Reduce number of cases to consider.
- We can develop customized algorithms for each of the 10 CTL operators, and then apply them in a bottom-up recursive fashion as we will be doing now.

Example

- $M = \text{the model of microwave oven given earlier}$
- $\varphi = \AF \text{(start } \Rightarrow \text{AF heat)}$
- $\neg \EF \neg(\neg \text{start } \lor \AF \text{ heat)}$
- $\neg \EF (\text{start } \land \neg \AF \text{ heat)}$
- $\neg \EF (\text{start } \land \EG \neg \text{ heat)}$
- $\neg \E(\text{true } \lor (\text{start } \land \EG \neg \text{ heat}))$
- Now, how to compute the set of states in M satisfying this transformed formula?
Example

Essentially by bottom-up traversal of the formula

Example

Steps in the traversal - Base case

Example

Steps in the formula traversal

Example

Steps in the formula traversal
Example

Steps in the formula traversal

- $S_5 = S - S_4$
- $S_4 = ???$
- $S_1 = S$
- $S_2 \land S_4$
- $S_2 = ???$
- $S_3 = S - S_3$

Check whether S_6 contains all initial states of M

Bottom-up formula traversal

Base case: Atomic propositions

- p

Boolean operators: \land, \neg

- $S - S_1$
- $S_1 \land S_2$
- S_1

Questions Remaining

Temporal operators: EX, EU, EG

- EX
 - $s \triangleright s_1$, $s_1 \in S_1$

- EU
 - $??$

- EG
 - $??$

EU

- Inputs:
 - Kripke Structure $M = (S, I, \rightarrow, L)$.
 - CTL formulae ϕ and Ψ.
 - S_ϕ, set of states satisfying ϕ in M.
 - S_Ψ, set of states satisfying Ψ in M.

- Output:
 - Set of states satisfying $E(\phi U \Psi)$ in M.

- Technique:
 - *Traversing the states (and transitions) of M.*

E(\phi U \Psi): Intuition

- Result := S_Ψ;
- Temp := S_Ψ;
- while Temp \neq empty do
 - pick s \in Temp; Temp := Temp $-$ {s};
 - Backstep := {s_1 | $s_1 \rightarrow s$, and $s_1 \in S_\phi$};
 - Temp := Temp \cup Backstep;
 - Result := Result \cup Backstep;
- endwhile;
- return Result;

E(\phi U \Psi): Algorithm

- Result := S_Ψ;
- Temp := S_Ψ;
- while Temp \neq empty do
 - pick s \in Temp; Temp := Temp $-$ {s};
 - Backstep := {s_1 | $s_1 \rightarrow s$, and $s_1 \in S_\phi$};
 - Temp := Temp \cup Backstep;
 - Result := Result \cup Backstep;
- endwhile;
- return Result;
EG

- **Inputs:**
 - Kripke Structure $M = (S, I, \rightarrow, L)$.
 - CTL formulae ϕ.
 - St_ϕ, set of states satisfying ϕ in M.
- **Output:**
 - Set of states satisfying $EG \phi$ in M.
- **Technique:**
 - *Traversing the states (and transitions) of M.*

EG ϕ: Intuition

![Diagram of Kripke Structure](image)

EG ϕ: Algorithm

- **Result** := St_ϕ;
- **repeat**
 - $Temp := \{ s | s \in Result$, and $\forall s1. s \rightarrow s1 \Rightarrow s1 \notin Result \};$
 - $Result := Result - Temp;$
- **until** $Temp = empty;$
- **return** Result;

How to make it more efficient

- We initialize $St_{EG\phi} = St_\phi$.
- For each state in St_ϕ, we check the out-edges. Many of the destination states are not in St_ϕ, so cannot satisfy $EG\phi$.
- It suffices to consider a reduced Kripke Structure M' constructed from M such that
 - All states of M which satisfy ϕ are retained.
 - All other states and transitions are deleted.
- For any s, we have $M,s \models EG\phi$ if and only if
 - s is a state in M'
 - s reaches a state s' in M' where s' loops back to itself.

Efficient computation

- **Input:** $M = (S, I, \rightarrow, L)$, St_ϕ
- **Output:** $St_{EG\phi}$
- **Technique:**
 - Compute $M'=(S', I', \rightarrow', L')$ from M by keeping only nodes in St_ϕ.
 - Take all nodes in nontrivial SCCs of M'.
 - While $Temp = empty$ do
 - Pick $s \in Temp$;
 - $Temp := Temp \setminus \{s\}$;
 - $St_{EG\phi} := St_{EG\phi} \cup \{ t | t \rightarrow s \land t \notin St_{EG\phi} \}$;
 - $Temp := Temp \cup \{ t | t \rightarrow s \land t \notin St_{EG\phi} \}$;
 - end

Summary, Exercises

- We have only presented model checking as a decision procedure.
- Other issues such as counter-example computation not shown.
- Direct iterative algorithms given only for EU, EG
- What about EF, AF, AG etc.?
- Algorithmic complexity of the iterative algorithms discussed in today’s lecture.