Theorem proving

- Both specification and implementation can be formalized in a suitable logic.
- Proof rules for proving statements in the logic as theorems.
- Application of proof rules user-guided.
- Allows us to even verify designs which are under-specified & not executable.
 - Very different from model checking.
- We will study the PVS theorem prover.

PVS

- Prototype Verification System
 - Language for specification
 - Parser
 - Powerful type-checker
 - Reasons about termination also ...
 - Decision procedures
 - Including a symbolic model checker
 - Proof Checker / Prover
 - We will primarily look at this one

What if ...

- ... my program is written in a diff. lang. from PVS spec. language?
 - Embedding languages into theorem provers
 - A rich topic of study even to this date
 - Deep and shallow embedding
 - Formalize only semantics of the lang. (shallow)
 - Formalize both syntax and semantics of the specification/programming lang. (deep)
 - To concentrate on proof rules & strategies, we will consider the default specification language of PVS.

Using PVS

- Provides expressive language based on higher-order logic.
- A design to be verified is described by means of "theories".
 - Parameterized theories are possible, allowing modularity and re-use.
- Given a user-provided theory, PVS will
 - Parse
 - Type-check
 - Prove the theorems in the theory

An example theory

```
sum: THEORY
BEGIN
  n: VAR nat
  sum(n): RECURSIVE nat =
    ( IF n = 0 THEN 0 ELSE n + sum(n-1) )
ENDIF
MEASURE id
closed_form: THEOREM
  sum(n) = (n*(n+1))/2
END SUM
```
Declarations

- Our example theory has three declarations
 - A declaration for variable n
 - A declaration for the function sum
 - A declaration for the theorem closed_form
- This defines a closed form representation for the output of the function sum.
- The theory has no parameters.
- The function sum is associated with a MEASURE function ...

Our tasks

- Parse the theory declarations.
- Type-check
 - This will try to prove termination of sum as well (MEASURE function used here)
 - Generate proof obligations which need to be dispensed for type-checking
 - PVS type-checking is undecidable.
- Prove theorem closed_form by inducting on n
 - We need to input proof rules for guiding the proof.

Interactive session

- At this stage in the lecture:
 - Launch PVS and load the sum THEORY
 - Show the proof obligations for Type-checking
 - Prove the theorem closed_form
 - (Explain the purpose of each proof rule as and when it is employed in the proof).

Lessons learnt from proof

- PVS type-checking
 - Proves type consistency and termination of functions by showing reduction in user-provided measure function for recursive function calls
- PVS Prover
 - Proves sequents of the form
 - \{-1\} ... \{1\} ... \[\text{Antecedents}\]
 - \[\text{Consequents}\]

Lessons Learnt

- PVS Prover constructs a proof tree of closed_form
 - Nodes of the proof tree are sequents
 - Leaves are trivially true.
 - Parent → Child node by applying a proof rule
 - An application of a proof rule can create several children (of course !)
 - Mistakes made during proof (in choice of rules) can be undone (extremely useful !!)
 - Other control commands to help navigate the proof tree while constructing it.

Sequent

- Each node of the PVS proof tree is a goal
 - \{-1\} A1
 - \{-2\} A2
 - \[\text{----------}\]
 - \{1\} B1
 - \{2\} B2
 - Stands for the proof obligation
 - A1 \land A2 \Rightarrow B1 \lor B2
Sequent
- Of the form
 - \((A_1 \land \ldots \land A_n) \Rightarrow (B_1 \lor \ldots \lor B_m)\)
 - \((-A_1 \lor \ldots \lor -A_n) \Rightarrow (B_1 \lor \ldots \lor B_m)\)
 - The clausal form for a sequent.
 - Antecedents are negated (negative literals)
 - So, many proof rules manipulate antecedents and consequents in a dual fashion
 - skolem, instantiate ...

Proof rules
- PVS uses a sequent calculus.
- Proof rules are of the form
 - \(\Gamma \vdash \Delta_1, \ldots, \Gamma \vdash \Delta_k\)
 - \(\Delta \vdash \Gamma\)
- Initial sequent is \(\vdash A\) (the theorem to be proved)

Proof tree construction
- \(\Gamma \vdash -A_1, \ldots, \Gamma \vdash -A_k\)
 - \(\vdash \Gamma\)
 - An application of the proof rule

Top-down and bottom-up
- **Top-down proof construction** (described here)
 - Start with theorem to be proved
 - “Simplify” it using proof rules of the prover
 - Iterate until all introduced obligations have been proved.
- **Bottom-up proof construction** (Inefficient !)
 - Deduce all that you can starting from facts (axioms) and applying proof rules repeatedly
 - Check whether desired theorem proved

Our experience so far ...
- What are the rules we saw in the proof of “closed_form” in Sum theory ?
 - **induct** (Automatically employ in. Scheme)
 - **expand** (inlining function definition)
 - **skolem** (Removing Universal Quantification)
 - **flatten** (Disjunctive simplification)
 - Other simple rewrites and decision procedures (captured by the `grind` command)
Some Proof rules in PVS

- Structural Rules
 - Re-arrange formulae in a sequent
- Propositional rules
 - Simplification in propositional logic
 - Removing disjunctions and conjunctions by creating new sequents in the children node of the proof tree
 - Typical rules: flatten, split, prop

Another Interactive Proof

- Let us use the proof rules we learnt
- We will prove
 \[\forall x : (P(x) \land Q(x)) \Rightarrow (\forall x : P(x) \land \forall x : Q(x)) \]

In addition ...

- The control rules are useful for the user to "control" proof tree construction
 - fail: propagate failure to parent (failed proof path, will trigger new proof attempts)
 - quit, trace: obvious !!
 - undo: Correct past mistakes in choosing proof rules!
 - Postpone: Useful for managing branches in a proof step.

“Postpone”
Some useful information

- Your theory files can import other theories (e.g., certain mathematical functions etc.)
- Do not need specify everything from scratch.
- Proof strategies
 - Users can write scripts to instruct the prover to apply its rules in a certain order.
 - Strategies may not be just sequence of rules
 - Backtracking is allowed since it is difficult to predict a good strategy for a given obligation.

Proof strategies

- (try step1 step2 step3)
 - Apply step1
 - If step1 fails then apply step2
 - If step2 also fails, then apply step3
- (if condition step1 step2)
 - Conditional selection
- Many other variations can be programmed
 - Then (sequencing), repeat (iteration)
 - Much of these not needed for simple low-level proofs

A final example

- stacks [t : TYPE] : THEORY
- BEGIN
 - stack : TYPE
 - push : [t, stack -> stack]
 - pop : [stack -> stack]
 - x, y : VAR t
 - s : VAR stack
 - pop_push : AXIOM pop(push(x, s)) = s
 - thm: THEOREM pop(pop(push(x, push(y, s)))) = s
- END stacks

Not definitional

- Note that the stack operations have not been defined at all.
 - The stack theory is also parameterized.
- Instead certain properties of the operations are defined
 - These properties are enough to prove thm
- No executable model of stacks was needed (as in model checking)
 - Of course theorem provers can work if the exec. description of stacks is provided as well.

Wrapping up

Reading:
- The Manuals have lot of info., check
 - System Guide
 - Prover Guide
 - Language Reference
 - In the above order of preference.
 - The Language reference is not so important, one can learn as you work along.

Additional (Optional) Reading

- PVS is only one prover
 - Several others
 - HOL, Isabelle - Higher order Logic
 - Nqthm, ACL2 - First order logic
 - ...
- Comparison of HOL/PVS -- Mike Gordon
 - http://www.cl.cam.ac.uk/users/mjcg/PVS.html