Software Abstractions (II)

CS 5219
Abhik Roychoudhury
National University of Singapore

Model checking is a search based procedure applicable to only finite state systems.
- Extension to infinite state systems (arising out of infinite data domains) handled by abstraction of memory store.
- Requires human ingenuity in choice of the abstract predicates.

Abstraction Refinement
- Given a program P and a property f, very difficult to get the “right” abstraction which will be able to prove f (even if f is true).
- Instead start with a very coarse abstraction and model check the resultant abstract model.
- Counter-example generated may not correspond to any concrete trace of P.
 - Refine the abstract model.

Software Model Checking without Refinement

Program P

Finite state
Model M

Model Checker

Temporal
Property φ

Refinement

In practice, provides preds.

Real Counter-example, φ disproved

Impossible

\[
\begin{align*}
\text{if } (v<0) \text{ then } & s_1 \\
\text{if } (v>0) \text{ then } & s_2
\end{align*}
\]
An example program

- L0: x = 5
- L1: y = x
- L2
- Property $G (pc = L2 \Rightarrow y = 5)$
- Suppose we abstract with $(y = 5)$

Fragment of Concrete Transition System

Unreachable in actual executions

Abstract Transition System

$\neg p \equiv (y = 5)$

Abstract counter-example

- The following can be a counter-example trace returned by model checking
 - $<L0, p>, <L1, p>, <L2, \neg p>$
 - But this does not correspond to any execution of the concrete program.
 - This is a spurious counter-example
 - Need to input new predicates for abstraction.

Abstraction refinement

- Generate the new predicates by analyzing the counter-example trace.
- A more informative view of the program’s memory store is thus obtained.
- But how to establish a correspondence between the abstract counter-example and the concrete program?
An Example

- Initially \(x == 0 \)
- \(L0: \) while (1) {
 - \(L1: \) x++;
 - \(L2: \) while (\(x > 0 \)) x - - ;
- \(L3 \)

Property: \(AG(pc == L2 \implies x == 1) \)

A locational invariant

Initial Abstraction

W.r.t. Predicate \(p = (x == 1) \)

No need to traverse further, counter-example trace found.

Counter-example

Property \(AG(pc == L2 \implies p == true) \)

The predicate \(p \) denotes \((x == 1) \)

Counter-example verification

- The counter-example may be spurious because our abstraction was too coarse.
- The sequence of statements in the control-flow graph constitute an infeasible path in Control Flow Graph.
- Not part of any concrete execution trace in the program.
- How to check whether the produced counter-example trace is spurious?
 - Backwards or forwards exact reasoning on the counter-example trace.
 - Backwards reasoning shown now, forwards reasoning later in the lecture.

Exact reasoning

\((L2, x \neq 1) \leftarrow (L1, x \neq 0) \leftarrow (L0, x = 0) \leftarrow \) Initially \((x \neq 0 \land x = 0) \)

- the constraint to hold initially is unsatisfiable.

One step of exact reasoning

\(L2, x =1 \)

What is the weakest constraint on data states that should hold at \(L1 \), such that when control moves to \(L2 \) (by executing \(x++ \)), the data state at \(L2 \) is guaranteed to satisfy \(x = 1 \)?

-- Weakest pre-condition (WP) computation.
-- We repeat the WP computation until we reach the end of the trace OR the constraint accumulated becomes unsatisfiable.
-- Corresponds to Real counter-example OR spurious counter-example.
So, what do we know?

- We are verifying an invariant ϕ against an infinite state system M.
- We abstracted (the data states of) M w.r.t. p_1,\ldots,p_k to get M_1.
- For every trace c_1,c_2,\ldots,c_n (statement sequences) in M, there is a trace c_1,c_2,\ldots,c_n in M_1 (not vice-versa).
- Model check $M_1 \models \phi$ to:
 - Case 1: Success. We have proved $M \models \phi$.
 - Case 2: We get a counter-example trace σ_1.
 - Need to check whether σ_1 is "spurious".

What is "spurious"?

- Each trace in M (concrete system) has a corresponding trace with same statement sequence in M_1 (abstract system).
- A trace in M_1 may not have a corresponding trace with same statement sequence in M.
- Does the counter-example trace σ_1 in M_1 have a corresponding trace σ with same statement sequence in M?
 - If not, then σ_1 is a spurious counter-example.

What if spurious?

- So, we discussed how to check whether an obtained counter-example is spurious.
- If σ_1 is not spurious, then we have proved that M (concrete sys.) does not satisfy ϕ.
- If σ_1 is spurious, we need to refine the abstraction of M.
 - Original abs: Predicates p_1,\ldots,p_k.
 - New abs: Preds $p_1,\ldots,p_k, p_{(k+1)},\ldots,p_n$.

But how do we ...

- ... compute the new preds $p_{(k+1)},\ldots,p_n$?
 - No satisfactory answer, active topic of research in the verification community.
 - All existing approaches are based on analysis of the spurious counter-example trace σ_1.
 - Concretize the abstract states of σ_1 to get constraints on concrete data states.
 - But several ways to glean the new predicates from these constraints:
 - We will just look at some possible heuristics.
Our example

```
Pc = L0, p = false
```

```
While(1){
    x++
    pc = L2, p = false
}
```

```
Pc = L1, p = false
```

```
Pc = L2, p = false
```

Clearly, such states should be unreachable in the concrete system.

New predicates

- Based on the spurious trace, we choose another predicate \(q = (x = 0) \)
- No clear answer why, different research papers give different heuristic 'justifications'.
- Again abstract the concrete program w.r.t. the predicates
 - \(p = (x = 1) \)
 - \(q = (x = 0) \)

New abstract transition system

```
While(1){
    x++
    pc = L1, not p, q
}
```

```
Pc = L2, p, not q
```

```
Pc = L3, not p, q
```

```
End of while loop
```

Final result

- Model checking the new abstract transition system w.r.t.
 - \(AG(pc == L2 \Rightarrow x == 1) \)
- ... yields no counter-example trace.
- Constitutes a proof of
 - \(M |\models AG(pc == L2 \Rightarrow x == 1) \)
- Where M is the transition system corresponding to original program.

Constructing Explanations

- Start from the end (or beginning of the trace)
- Strongest post condition (SP), [next slide]
- Or Weakest Pre condition (WP) [discussed]
- Perform exact reasoning at each step until you hit unsatisfiability
- Greedily remove one constraint at a time from the unsatisfiable constraint store until it becomes satisfiable
- Is that sufficient?

SP along a trace

- \(assume(b > 0) \)
- \(c := 2*b \)
- \(a := b \)
- \(a := a - 1 \)
- \(assume(a < b) \)
- \(assume(a = c) \)

- Conjunction shown with comma.
Choosing predicates

- \(b > 0, c = 2b, a = b - 1, a < b, a = c \)
 - Removing \(a = b - 1 \) makes the constraint satisfiable
 - Should we choose it?
 - Is it sufficient to choose predicates from the formula which is unsatisfiable?

Exercise: Try to work out the backwards traversal and investigate choices of predicates.

Choosing predicates

- \(a := b ; \quad a = b \)
- \(a := a - 1; \quad a = b - 1 \)
- \(\text{assume}(a \geq b) \quad a = b - 1, a \geq b \)
 - If we choose \(a = b - 1, a \geq b \) as new refinement it may not suffice.
 - The effect of \(a := b \) can only be accurately captured by the pred \((a = b) \)
 - So, we need all predicates whose transformation leads to one of the predicates causing unsatisfiability.

Exercise

Exercise:

- Try verifying absence of error in
 - \(a := b; a := a - 1; \text{if } (a \geq b) \{ \text{error} \} \)
- **Using the predicates**
 - \(\{a \geq b\} \)
 - \(\{a \geq b, a = b - 1\} \)
- Feel free to use forwards or backwards counter-example analysis ...

Additional: Dealing with pointers

```c
int *p, *q;
void main()
{
    if (*p == 3)
    {
        *q = 2;
        if (*p == 2)
        {
            *p = 3;
            if (*q == 2)
            {
                ERROR
            }
        }
    }
}
```

Is the ERROR state ever reachable?

Use pointer analysis

- Can \(p \) ever alias to \(q \)
 - Static analysis, flow insensitive.
 - If yes, then need to consider both the aliased and non-aliased cases
 - Corresponding to truth of \(p = q \) which is also maintained as a predicate.
 - Infeasible constraint store has disjunction
 - \((p = q \land \ldots) \lor (\neg(p = q) \land \ldots) \)

Other stuff

- Counter-example guided Abstraction refinement (additional reading)
 - http://www-2.cs.cmu.edu/~emc/papers.htm
 - One of the first papers to develop abstraction refinement. Try summarizing it if you are interested.
 - Regular reading appears in Lesson Plan.
Try it out – (1)

- Consider the program
 \[x = 0; x = x + 1; x = x + 1; \]
 \[\text{if} \ (x > 2) \ {\text{error}} \]

- Suppose we want to prove that the `error` location is never reached, that is, any trace reaching `error` is a counter-example. Show that the predicate abstraction \(x > 2 \) is insufficient to prove this property. You need to construct the abstract transition system for this purpose.

Try it out – (2)

- Refine your abstraction \(x > 2 \)
- By traversing the counter-example obtained.
- Show and explain all steps. Your refined abstraction should be sufficient to prove the unreachability of the `error` location – i.e. all spurious counter-examples should have been explained by the refined predicate abstraction.