Recap on Model Checking
- Inputs:
 - A finite state transition system M
 - A “temporal” property φ
- Check $M \models \varphi$
- Output
 - True if $M \models \varphi$
 - Counter-example evidence, otherwise

More on the big picture
- Explaining counter-example
 - Counter-example points to an actual violation of property φ in program.
 - How to locate the bug from the counter-example — SW Engineering activity
 - It was introduced owing to the abstractions
 - Refine the abstraction and run model checking on the model derived by refined abstraction
 - Abstract \rightarrow Model Check \rightarrowRefine loop.

Model Checking for SW Verif.
- The steps:
 - Generate transition system-like models from code
 - Typically involves at least data abstractions
 - Exhaustive search through the model
 - For time/space efficiency, the model may not be explicitly represented and searched.
 - Explaining counter-examples

The approach (1)
- Reasoning techniques over finite-state models well-understood.
- Search based procedures (Model Checking)
- Need to generate models from code
 - Typically finitely many control locations
 - Infinitely many data states (memory store)
- How to abstract the memory store?
 - This can give a finite state model
The approach (2)

- Boolean abstraction used on memory store
 - State of memory captured by finitely many boolean variables which answer queries about its contents
- Check all possible behaviors of a program
 - Translate program to a finite state model and employ model checking (this lecture)
 - OR Modify the state space search algorithm in model checking to directly verify programs
 - e.g. Verisoft checker from Bell Labs (not covered in this course)

Model Generation Projects

- Source Language → Modeling Language
 - E.g. C → PROMELA (FeaVer tool)
 - C → Boolean Pgm (SLAM toolkit)
 - Various choices in Bandera toolkit
- In this lecture, we consider a
 - source language with sequential programs
 - Properties are locational invariants
 - Always (pc = 34) ⇒ (v = 0)

What kind of model?

- Modeling languages typically do not support
 - Dynamic heap allocation/ de-allocation
 - Call Stack of Procedure Activation Records
- Restriction relaxed in SLAM toolkit
 - Allows for models with procedures
 - Invariant checking of such models by adapting existing inter-procedural dataflow analysis algorithms [Sharir & Pnueli 1981]

Predicate Abstraction

Input
- Source Program P
- \(S_p \), Set of Predicates about variables in P

Output
- Abstracted program \(P_1 \)
- Data states in \(P_1 \) correspond to valuations of predicates in \(S_p \)

The Language of Predicates

- Boolean expressions containing program variables,
 - No function calls
 - Pointer referencing is allowed
 - \(P\rightarrow\text{val} > \text{Var} \)
 - Of course Bool. Exp contains
 - \(B = B \land B \lor B \neg B \) | A Relop A
 - \(A = A + A \land A - A \land A \ast A \land A / A \land \text{Var} \land \text{Int} \)
 - Relop = \(< \lor > \lor > \lor \neq \lor = \)
Simple Examples

- **Source Code**
 - `Var := 0`
 - `Var := Var1`

- **Abstracted Code**
 - `[Var = 0] := true`
 - `[Var = 1] := false`
 - `[Var = 0] := unknown` (no preds. about `Var1`)
 - `[Var = 0] := [Var1 = 0]`
 - `(Var1=0 is another pred)`

Control constructs

- Abstraction scheme will be developed for
 - Within a procedure
 - Assignments
 - Branches
 - All other constructs can be represented by these
 - Across procedures
 - Formal and actual parameters
 - Local variables
 - Return variables

Assignments to predicates

- We are converting a C program to a "boolean" program where the only type is boolean.
- The boolean program will not be executed.
- Assignment to our predicate variables can assign
 - true / false / unknown
 - If "unknown" is assigned, both possibilities should be explored during model checking

Assignments

- Predicate abstraction of pgm. P w.r.t. `{b1, ..., bk}`
- Effect of `X := e` on `b1, ..., bk`
- Variable `bi` denotes expression `ϕi`
- If `ϕi[X → e]` holds before `X := e` then set
 - `bi := true`
- If `¬ϕi[X → e]` holds before `X := e` then set
 - `bi := false`

Simple Ex. of Assignments

- `b1 = X > 2`
- `b2 = Y > 2`
- Assignment `X := Y`
- Transform it to
 - `b1 := b2`

- & `b1 := X > 2`
- `b2 = Y > 2`
- `b3 = X < 3`
- `b4 = Y < 3`
- Transform `X := Y` to the parallel assignment
 - `b1, b3 := b2, b4`

Assignments – (2)

- But `ϕ[X → e]` may not be representable as a boolean formula over `b1, ..., bk`
- Examples:
 - Predicates: `X < 5`, `X = 2`
 - Assignment stmt: `X := X + 1`
 - `X < 5 [X → X+1]` equivalent to `X +1 < 5` equivalent to `X < 4`
 - `X = 2 [X → X+1]` equivalent to `X + 1 = 2` equivalent to `X = 1`
Assignments – (3)

Define predicate \(b_1 \) as \(X < 5 \)

\[b_2 \text{ as } X = 2 \]

What is the weakest formula over \(b_1 \) and \(b_2 \) which implies \(X < 4 \)?

If this formula is true, we can conclude

- \(X < 4 \) before \(X := X + 1 \) is executed
- \(X < 5 \) after \(X := X + 1 \) is executed
- \(b_1 \) = true after \(X := X + 1 \) is executed

Assignments - Summary

Predicates: \(\{b_1, \ldots, b_k\} \)

Predicate \(b_i \) represents expression \(\phi_i \)

\(X := e \) is an assignment statement in the pgm. being abstracted.

We can conclude \(b_i \) = true after \(X := e \) iff \(\phi_i[X \rightarrow e] \) before \(X := e \) is executed.

Assignments - Example

Predicates: \(b_1 \) is \(X < 5 \), \(b_2 \) is \(X = 2 \)

Assignment: \(X := X + 1 \)

Weakest pre-condition for \(b_1 \) to hold, denoted as \(\text{WP}(X := X + 1, b_1) \)

- \(X < 5 \)

Weakest formula over \(\{b_1, b_2\} \) to imply \(\text{WP}(X := X + 1, b_1) \), denoted as \(F(\text{WP}(X := X + 1, b_1)) \)

- \(X = 2 \), that is, the formula \(b_2 \)

Assignments Example

Predicates: \(b_1 \) is \(X < 5 \), \(b_2 \) is \(X = 2 \)

\(\text{WP}(X := X + 1, \neg b_1) \) equivalent to \(X + 1 \geq 5 \) equivalent to \(X \geq 4 \)

\(F(\text{WP}(X := X + 1, \neg b_1)) = F(X \geq 4) \) is

- \(X \geq 5 \), that is, the formula \(\neg b_1 \) itself

Computation of the \(F \) function is in general exponential, Why ??

Computation of \(F(\phi) \)

Consider all minterms of \(b_1, \ldots, b_k \)

- \(\neg b_1 \land \neg b_2 \)
- \(\neg b_1 \land b_2 \)
- \(b_1 \land \neg b_2 \)
- \(b_1 \land b_2 \)

Which of them imply \(\phi \) ?

Take the disjunction of all such minterms and simplify. Improvements to this algo. possible.
Exercise
- \(b1 \equiv X < 5 \), \(b2 \equiv X = 2 \)
- Assignment in the program
 - \(X := X + 1 \)
- What will it be substituted with in our “boolean” program?
 - Let us do it now

Aliasing via pointers
- To compute the effect of \(X := 3 \) on \(b1 \)
 - We compute \(F(WP(X := 3, b1)) \)
 - Suppose \(b1 \) is \(^*p > 5 \), \(p \) is a pointer
 - Effect of \(X := 3 \) depends on whether
 - \(X \) and \(p \) are aliases
 - Use a "points-to" analysis to determine this.
 - Typically flow insensitive
 - Aliasing analysis sharpens information about program states and hence the abstraction.

Effect of aliasing
- \(WP(X := 3, ^*p > 5) \) is
 - \((^x = p \land 3 > 5) \lor (^x \neq p \land ^*p > 5)\)
- Thus, \(WP(X := e, \varphi(Y)) \) is
 - \((^x = ^Y \land \varphi[Y \rightarrow e]) \lor (^x \neq ^Y \land \varphi(Y))\)
 - If \(X \) and \(Y \) are aliases replace \(Y \) by \(e \) in \(\varphi \)
 - Otherwise, the assignment has no effect
 - If \(\varphi \) refers to several locations, each of them may/may not alias to \(X \).

Another exponential blowup
- If \(\varphi \) refers to \(k \) locations
 - Each may/not alias to \(X \)
 - \(2^k \) possibilities
 - \(WP \) is a disjunction of \(2^k \) minterms
 - In practice, accurate static not-points-to analysis is feasible
 - Removes conjuncts corresponding to confirmed non-aliases (in any control loc.)

Control constructs
- Abstraction scheme will be developed for
 - Within a procedure
 - Assignments
 - Branches
 - All other constructs can be represented by these
 - Across procedures
 - Formal and actual parameters
 - Local variables
 - Return variables

Control branches
- So far, considered straight-line code.
 - Consider the effect of conditional branch instructions as in if-then-else statements.
 - Loops are conditional branch instructions with one branch executing a goto.
 - Sufficient to consider
 - Abstract(If \(c \) \((S1) \) else \((S2) \))
Control Branches

- If \((c) \{ S_1 \} \) else \(\{ S_2 \} \)

- If \((*) \{ \text{assume} (c) \; \{ S_1 \} \} \) else
 \(\{ \text{assume} (\neg c) \; \{ S_2 \} \} \)

- \((*) \) denotes non-deterministic choice
- \text{assume}(\varphi) \) terminates exec. if \(\varphi \) is false
- Otherwise, the statement has no effect.

Abstracting Branches

- \text{Abstract}(\text{If} \ (c) \{ S_1 \} \text{else} \{ S_2 \}) \)

- If \((*) \) \{ \text{assume} \ G(\ c) ; \text{Abstract}(S_1) \} \) else
 \{ \text{assume} \ G(\neg\ c) ; \text{Abstract}(S_2) \} \)

- Predicates: \(b_1,\ldots,b_k \)

- \(G(\ c) \) is the strongest formula over \(b_1,\ldots,b_k \) which is implied by \(c \)
- Formal definition in next slide.

Abstracting Branches

- \(G(c) = \neg F(\neg c) \)

- Dual of the F operator studied earlier

- CAUTION: \(G \) and \(F \) operators of this lecture different from temporal ops.

- Exercise: Why choose the \(G \) operator for abstracting branches, why not \(F \) ?

Questions

- \text{Abstract(}\text{if} \ (c) \{ S_1 \} \text{else} \{ S_2 \} \)

- If \((*) \) \{ \text{assume} \ G(\ c) ; \text{Abstract}(S_1) \} \) else
 \{ \text{Abstract}(S_2) \}

- Was the assume statement necessary

- Does the assume statement introduce new paths?

Abstracting Branches - Example

- If \((*p \leq x) \{ *p := x \} \) else \{ *p := *p + x \}

- Predicates
 - \(b_1 \) is \(*p \leq 0 \)
 - \(b_2 \) is \(*p = 0 \)

- \(G(*p \leq x) = \neg F(*p > x) \)

- To compute \(F(*p > x) \) consider all minterms of \(b_1 \) and \(b_2 \)

Abstracting Branches - Example

- Minterms of \(b_1, b_2 \)
 - \(\neg b_1 \land \neg b_2 \) is \(*p > 0 \land x \neq 0 \)
 - \(b_1 \lor \neg b_2 \) is \(*p \leq 0 \lor x \neq 0 \)
 - \(\neg b_1 \lor b_2 \) is \(*p \geq 0 \lor x = 0 \)
 - \(b_1 \lor b_2 \) is \(*p \leq 0 \lor x = 0 \)

- \(F(*p > x) = \neg b_1 \lor b_2 \)

- &x and \(p \) are considered to be non-aliases
Abstracting Branches-

Example

- \(G(*p \leq x) = \neg F(*p > x) = \neg (b2 /\neg b1) = \neg b2 \lor b1 = b2 \Rightarrow b1 = (x = 0) \Rightarrow (*p \leq 0) \)
- Similarly compute \(G((\neg (*p \leq x)) \)

Abstracted template

- If (*) { assume \((x = 0 \Rightarrow (*p \leq 0)) \); …
 }
- else { assume \((x=0 \Rightarrow (\neg (*p \leq 0)))\); … }

Control constructs

- Abstraction scheme will be developed for
 - Within a procedure
 - Assignments
 - Branches
 - All other constructs can be represented by these
 - Across procedures
 - Formal parameter, Local variables, Return variables
 - Procedure calls and returns

Inter-procedural Abstraction

- One-to-one mapping of procedure
 - Each proc. to an abstract one
 - No inlining introduced by abstraction.
- Given predicates: \(b1, \ldots, bk \)
 - Each pred. is marked global (refers to global vars.) or local to a specific procedure.
 - Does not allow capturing relationships of variables across procedures. Will Revisit this!

Abstracted procedures?

- Given
 - A concrete procedure \(R \)
 - A set \(E_R \) of predicates \(b1, \ldots, bj \) specific to \(R \)
 - \(E_R \) can refer to parameters of \(R \)
- Need to define an abstract procedure \(R1 \)
 - Formal Parameters of \(R1 \)
 - Return Vars. of \(R1 \)

Example

```
int procedure(int* q, int y)
{
    int l1, l2;
    …..
    return l1;
}
```

Predicates:

- \(b1 \) is \(y \geq 0 \)
- \(b2 \) is \(*q \leq y \)
- \(b3 \) is \(y = l1 \)
- \(b4 \) is \(y > l2 \)

Parameters, Local Vars

- Formal parameters of \(R1 \)
 - All predicates in \(E_R \) which do not refer to local variables of \(R \)
 - All other preds. in \(E_R \) are local vars. of \(R1 \).
- Natural notion of \textit{input context} for \(R1 \).
- Example:
 - Concrete Parameters: \(q, y \)
 - Abstract Parameters: \(y \geq 0, *q \leq y \)
Return Variables

- Natural notion of **output context** for R1. Pass info. to callers about
 - Return value of R
 - Global Vars
 - Call-by-reference parameters ...
 - Info. about return value captured by those preds in \(E_R \) which refer to return var. of R, but no other local variable (return var. can be a local var.)

Info about global var/reference parameters
- Preds. in \(E_R \) which were computed to be formal parameters of R1, AND
- Refer to global variables, dereferences

\[E_R = \{ y \geq 0, \,*q \leq y, \, y = l_1, \, y > l_2 \} \]
- Concrete ret. Var. : \(l_1 \)
- Concrete Parameters: \(q, y \)
- Abst. Ret. Vars: \(y = l_1, \,*q \leq y \)

Control constructs

- Abstraction scheme will be developed for
 - Within a procedure
 - Assignments
 - Branches
 - All other constructs can be represented by these
 - Across procedures
 - Formal parameter, Local variables, Return variables
 - Procedure calls and returns

Procedure Calls

- So far, abstraction of a single procedure
 - Assignments (with aliasing)
 - Branches (if-then-else, loops)
 - Formal Parameters
 - Local and global variables
 - Return variables
 - Use input/output contexts in procedure call/return in inter-procedural abstraction.

Passing Parameters

- Take any formal parameter predicate \(b \) of R1

```c
void main()
{
    int procedure(int *q, int y);
    int l1, l2;
    ...  \( r = \text{procedure}(p, x); \)
    ...  \text{return} l1;
    }
}
```

All predicates of "procedure":
- \(y \geq 0 \)
- \(*q \leq y \)
- \(y = l_1 \)
- \(y > l_2 \)

- Formal parameter preds. of procedure
- \(y \geq 0 \)
- \(*q = y \)

- Replace formals by actuals in \(b \).
 - \(y \geq 0 \) is a formal parameter pred.
 - After replacement, it becomes \(x \geq 0 \)
- If \(F(b[\text{formals} \rightarrow \text{actuals}) \) holds during procedure invocation of the boolean pgm, then pass **true** to the parameter \(b \)
- If \(F(\neg b[\text{formals} \rightarrow \text{actuals}]) \) holds, then pass **false** to parameter \(b \)
- Otherwise, pass **unknown**.
Exercise

- Work out the **boolean expressions** passed to the two parameters of **procedure** in our example shown before.
- Use the definition of the F operator given earlier and the abst. predicates given.

Procedure Returns

- If procedure S calls procedure R, and
 - S1/R1 are abstractions of S/R
 - b1,...,bj are abstract ret. Vars of R1
- Then S1 has j corresponding local boolean vars which will be updated by call to R1.
- Do the local preds. in S need to be updated? **YES**

Procedure returns

- These local preds. of S can refer to
 - Concrete return var. for R
 - Global vars (along with other local vars)
- For each such pred b, again compute F(b) and F(¬b) to decide the value of b.
- The function F is computed w.r.t.
 - Set of abstraction preds (under the carpet 😊)

Reading(s)

- **Automatic Predicate Abstraction of C Programs**
 - Ball, Majumdar, Millstein, Rajamani
- Also useful: **Polymorphic Predicate Abstraction**
 - MSR Tech Rep. by same set of authors.

Reading Exercise

- Currently, the predicates used for abstraction can only contain program variables. Is this a restriction?
- What about values returned by procedures and/or passed by parameters?
- Can we track such values by introducing new names? We can have preds like
 - Ret_value_of_v = Passed_value_of_v + 1