Theorem proving

- Both specification and implementation can be formalized in a suitable logic.
- Proof rules for proving statements in the logic as theorems.
- Application of proof rules user-guided.
- Allows us to even verify designs which are under-specified & not executable.
 - Very different from model checking.
- We will study the PVS theorem prover.

Hoare style verification

- We had fixed the programming language for describing the implementation.
- Semantics of the programming language can be mathematically formalized.
- Proof rules for reasoning about individual language constructs.
 - Proof construction again user-guided.
- Theorem provers can support this style of deduction.
- But TP is a generic deduction tool for logical reasoning --- not restricted to software verification.

PVS

- Prototype Verification System
 - Language for specification
 - Parser
 - Powerful type-checker
 - Reasons about termination also ...
 - Decision procedures
 - Including a symbolic model checker
 - Proof Checker / Prover
 - We will primarily look at this one

What if ...

- ... my program is written in a diff. lang. from PVS spec. language ?
 - Embedding languages into theorem provers
 - A rich topic of study even to this date
 - Deep and shallow embedding
 - Formalize only semantics of the lang. (shallow)
 - Formalize both syntax and semantics of the specification/ programming lang. (deep)
 - To concentrate on proof rules & strategies, we will consider the default specification language of PVS.

More on embeddings

- Shallow embedding
 - Commands interpreted in the theorem prover’s logic
 - A command is a function state → state
- Deep embedding
 - Need to also formalize syntax (abstract syntax trees could be formalized)
 - Map abstract syntax trees to "commands" which effect state changes
 - Syntree → (state → state)
Using PVS
- Provides expressive language based on higher-order logic.
- A design to be verified is described by means of “theories”.
- Parameterized theories are possible, allowing modularity and re-use.
- Given a user-provided theory, PVS will
 - Parse
 - Type-check
 - Prove the theorems in the theory

An example theory
- sum: THEORY
 - BEGIN
 - n: VAR nat
 - sum(n): RECURSIVE nat =
 (IF n = 0 THEN 0 ELSE n + sum(n-1)
 ENDIF)
 - MEASURE id
 - closed_form: THEOREM
 sum(n) = (n*(n+1))/2
 - END SUM

Declarations
- Our example theory has three declarations
 - A declaration for variable n
 - A declaration for the function sum
 - A declaration for the theorem closed_form
 This defines a closed form representation for the output of the function sum.
 - The theory has no parameters.
 - The function sum is associated with a MEASURE function ...

Our tasks
- Parse the theory declarations.
- Type-check
 - This will try to prove termination of sum as well (MEASURE function used here)
 - Generate proof obligations which need to dispensed for type-checking
 - PVS type-checking is undecidable.
 - Prove theorem closed_form by inducting on n
 - We need to input proof rules for guiding the proof.

Interactive session
- At this stage in the lecture:
 - Launch PVS and load the sum THEORY
 - Show the proof obligations for Type-checking
 - Prove the theorem closed_form
 - (Explain the purpose of each proof rule as and when it is employed in the proof).

Lessons learnt from proof
- PVS type-checking
 - Proves type consistency and termination of functions by showing reduction in user-provided measure function for recursive function calls
- PVS Prover
 - Proves sequents of the form
 \[\{ \text{Antecedents} \} \rightarrow \{ \text{Consequents} \} \]
Lessons Learnt

- PVS Prover constructs a proof tree of closed_form.
- Nodes of the proof tree are sequents.
- Leaves are trivially true.
- Parent → Child node by applying a proof rule.
- An application of a proof rule can create several children (of course!)
- Mistakes made during proof (in choice of rules) can be undone (extremely useful!!)
- Other control commands to help navigate the proof tree while constructing it.

Sequent

- Each node of the PVS proof tree is a goal.
 - (1) A1
 - (2) A2
 - |---------------
 - [1] B1
- Stands for the proof obligation
 - A1 & A2 ⇒ B1 ∨ B2

Sequent

- Of the form
 - (A1 & ... & An) ⇒ (B1 ∨ ... ∨ Bm)
 - ¬(A1 & ... & An) ∨ (B1 ∨ ... ∨ Bm)
 - (¬A1 ∨ ... ∨ ¬An) ∨ (B1 ∨ ... ∨ Bm)
- The clausal form for a sequent.
- Antecedents are negated (negative literals)
- So, many proof rules manipulate antecedents and consequences in a dual fashion
 - Skolem, instantiate ...

Sequent

- (A1 & ... & An) ⇒ (B1 ∨ ... ∨ Bm)
 - A1, ..., An are negatively numbered
 - B1, ..., Bm are positively numbered
 - If Ai is marked {-i} or Bi is marked {i}
 - Ai, Bi are unchanged from parent sequent in the proof.
 - If Ai is marked [-i] or Bi is marked [i]
 - Ai, Bi are changed from parent sequent in the proof.

Proof rules

- PVS uses a sequent calculus.
- Proof rules are of the form
 - Γ |- A1, ..., Γk |- Ak
 - ----------------------------------
 - Γ |- ∆
- Initial sequent is |- A.
 - No antecedent, consequent is A (the theorem to be proved)

Proof tree construction

- Γ |- A1, ..., Γk |- Ak
 - ----------------------------------
 - Γ |- A
 - An application of the proof rule
 - Γ |- A1
 - ...
 - Γk |- Ak
Top-down and bottom-up

- **Top-down proof construction** (described here)
 - Start with theorem to be proved
 - "Simplify" it using proof rules of the prover
 - Iterate until all introduced obligations have been proved.
- **Bottom-up proof construction** (Inefficient !)
 - Deduce all that you can starting from facts (axioms) and applying proof rules repeatedly
 - Check whether desired theorem proved

Our experience so far ...

- What are the rules we saw in the proof of "closed_form" in Sum theory ?
 - `induct` (Automatically employ ind. Scheme)
 - `expand` (inlining function definition)
 - `skolem` (Removing Universal Quantification)
 - `flatten` (Disjunctive simplification)
 - Other simple rewrites and decision procedures (captured by the `grind` command)

Some Proof rules in PVS

- **Structural Rules**
 - Re-arrange formulae in a sequent
- **Propositional rules**
 - Simplification in propositional logic
 - Removing disjunctions and conjunctions by creating new sequents in the children node of the proof tree
 - Typical rules: `flatten`, `split`, `prop`

Some Proof Rules in PVS

- **Quantifier rules**
 - Introduction and elimination of universal / existential quantification.
 - Follow from deduction rules of predicate logic.
 - Widely used rules
 - `generalize` (introduces universal quantification).
 - `skolem` (removes universal quantification).
 - `instantiate` (removes existential quantification).

In addition ...

- The control rules are useful for the user to "control" proof tree construction
 - `fail`: propagate failure to parent (failed proof path, will trigger new proof attempts)
 - `quit`, `trace`: obvious !!
 - `undo`: Correct past mistakes in choosing proof rules !
 - `Postpone`: Useful for managing branches in a proof step.
“Postpone”

Γ |- A
Γ |- A1
Postpone this proof
Γ2 |- A2

Editor now displays this sequent

Some useful information
- Your theory files can import other theories (e.g. certain mathematical functions etc.)
- Do not need specify everything from scratch.
- Proof strategies
 - Users can write scripts to instruct the prover to apply its rules in a certain order.
 - Strategies may not be just sequence of rules
 - backtracking is allowed since it is difficult to predict a good strategy for a given obligation

Proof strategies
- (try step1 step2 step3)
 - Apply step1
 - If step1 fails then apply step2
 - If step2 also fails, then apply step3
- (if condition step1 step2)
 - Conditional selection
- Many other variations can be programmed
 - then (sequencing), repeat (iteration)
- Much of these not needed for simple low-level proofs

A final example
- stacks [t : TYPE] : THEORY
- BEGIN
- stack : TYPE
- push : [t, stack -> stack]
- pop : [stack -> stack]
- x, y : VAR t
- s : VAR stack
- pop_push : AXIOM pop(push(x, s)) = s
- thm: THEOREM pop(pop(push(x, push(y, s)))) = s
- END stacks

Not definitional
- Note that the stack operations have not been defined at all.
 - The stack theory is also parameterized.
- Instead certain properties of the operations are defined
 - These properties are enough to prove thm
- No executable model of stacks was needed
 - (as in model checking)
 - Of course theorem provers can work if the exec. description of stacks is provided as well.

Wrapping up
- Reading:
- The Manuals have lot of info., check
 - System Guide
 - Prover Guide
 - Language Reference
- In the above order of preference.
- The Language reference is not so important, one can learn as you work along.
Additional (Optional) Reading

- PVS is only one prover
 - Several others
 - HOL, Isabelle – Higher order Logic
 - Nqthm, ACL2 – First order logic
 - ...
- Comparison of HOL/PVS -- Mike Gordon
 - http://www.cl.cam.ac.uk/users/mjcg/PVS.html