(1) Are the two following Linear time Temporal Logic formula equivalent? If yes, give a proof. If not, construct example traces to show that they are not equivalent.

\[F(p \mathbf{U} q) \Leftrightarrow Fp \mathbf{U} Fq \]

You can assume that \(p \) and \(q \) are atomic propositions.

(2) In class, we discussed the nested depth-first search algorithm implemented inside the model checker SPIN. Among other things, this allows us to easily retrieve the counter-example trace from the stack. Suppose we implemented breadth-first search with queues instead for the purpose of model checking. Will the task of counter-example computation become any more difficult? Explain your answer.

(3) Recall the definition of the Until operator \(\mathbf{U} \) in Linear-time temporal logic (LTL). Let us now define a new until operator \(\mathbf{U}_1 \) as follows:

\[M, \pi \models \varphi \mathbf{U}_1 \psi \Leftrightarrow \text{if there exists a } k \geq 0 \text{ such that } M, \pi^k \models \psi \text{ then for all } 0 \leq j < k \text{ we have } M, \pi^j \models \varphi \]

The notation \(\pi^k \) was discussed in class (and also appears in the textbook). Express \(\varphi \mathbf{U}_1 \psi \) as a Linear-time temporal logic (LTL) formula and give explanation for your answer. You may assume that \(\varphi, \psi \) are arbitrary LTL properties.

(4) Assume \(p \) is an atomic proposition. Describe the following property in LTL: “along any path, a state satisfying \(p \) occurs at most once”. Explain your answer.