(a) Are the two following Linear time Temporal Logic formula equivalent? If yes, give a proof. If not, construct example traces to show that they are not equivalent.

\[F(p \mathcal{U} q) \Leftrightarrow Fp \mathcal{U} Fq \]

You can assume that \(p \) and \(q \) are atomic propositions.

Answer: The two formulae are equivalent. Consider a trace \(\pi \) satisfying \(F(p \mathcal{U} q) \). Then by the definition of the \(F \), \(\mathcal{U} \) operators, there must exist a state in \(\pi \) which satisfies \(q \). Let the first position in \(\pi \) where \(q \) is true be \(k \). Then clearly \(\pi^k \models p \mathcal{U} q \), and hence \(\pi \models F(p \mathcal{U} q) \). Since \(\pi^k \models q \) We see that \(\pi \models Fq \); By definition of the until operator \(\pi \models \varphi \Rightarrow \pi \models \psi \mathcal{U} \varphi \) for any LTL properties \(\varphi, \psi \). Thus, \(\pi \models Fp\mathcal{U}Fq \).

Now, consider any trace \(\pi \) such that \(\pi \models Fp\mathcal{U}Fq \). Again it means that there exists \(k \geq 0 \) such that \(\pi^k \models Fq \) which means that there exists \(m \geq k \geq 0 \) such that \(\pi^m \models q \). Then \(\pi^m \models p\mathcal{U}q \) and hence \(\pi \models F(p\mathcal{U}q) \).

This concludes the proof of equivalence of the two formulae. In fact we see that any trace with at least one state in which \(q \) is true, satisfies both the formulae and vice-versa.
(b) In class, we discussed the nested depth-first search algorithm implemented inside the model checker SPIN. Among other things, this allows us to easily retrieve the counter-example trace from the stack. Suppose we implemented breadth-first search with queues instead for the purpose of model checking. Will the task of counter-example computation become any more difficult? Explain your answer.

Answer: In the nested depth-first search, the counter-example trace can be obtained by simply concatenating the two stacks. This will not be the case for the nested breadth-first search. In order to retrieve the counter-example trace in the nested breadth-first search we need to perform more book-keeping during the search. One possibility is to store a link at each state pointing to a predecessor state; this will allow the counter-example trace to be reconstructed when a violation is detected.
(c) Recall the definition of the Until operator \mathbf{U} in Linear-time temporal logic (LTL). Let us now define a new until operator \mathbf{U}_1 as follows:

$M, \pi \models \varphi \mathbf{U}_1 \psi \equiv \text{ if there exists a } k \geq 0 \text{ such that } M, \pi^k \models \psi \text{ then for all } 0 \leq j < k \text{ we have } M, \pi^j \models \varphi$

The notation π^k was discussed in class (and also appears in the textbook). Express $\varphi \mathbf{U}_1 \psi$ as a Linear-time temporal logic (LTL) formula and give explanation for your answer. You may assume that φ, ψ are arbitrary LTL properties.

Answer: The definition is

$\varphi \mathbf{U}_1 \psi = (\varphi \mathbf{U} \psi) \lor G \neg \psi$

The only difference between \mathbf{U} and \mathbf{U}_1 is that ψ is not required to hold eventually in the definition of \mathbf{U}_1. This accounts for the disjunction in the definition of \mathbf{U}_1.
(d) Assume \(p \) is an atomic proposition. Describe the following property in LTL: “along any path, a state satisfying \(p \) occurs at most once”. Explain your answer.

Answer:

\[
G \neg p \lor (\neg p U (p \land XG \neg p))
\]

\(G \neg p \) is true when \(p \) never occurs.

If \(p \) occurs exactly once then the path starting from the state in which \(p \) occurs must satisfy \(p \land XG \neg p \) (i.e. \(p \) occurs at the start and never occurs again). This explains the answer.