
Context-Sensitive Timing Analysis of Esterel Programs

Lei Ju Bach Khoa Huynh Samarjit Chakraborty Abhik Roychoudhury
Department of Computer Science, National University of Singapore

{julei, huynhbac, samarjit, abhik}@comp.nus.edu.sg

ABSTRACT
Traditionally, synchronous languages, such as Esterel, have been
compiled into hardware, where timing analysis is relatively easy.
When compiled into software – e.g., into sequential C code – very
conservative estimation techniques have been used, where the fo-
cus has only been on obtaining safe timing estimates and not on
the cost of the implementation. While this was acceptable in avion-
ics, efficient implementations and hence tight timing estimates are
needed in more cost-sensitive application domains. Lately, a num-
ber of advances in Worst-Case Execution Time (WCET) analysis
techniques, coupled with the growing use of software in domains
such as automotives, have led to a considerable interest in timing
analysis of code generated from Esterel specifications. In this paper
we propose techniques to obtain tight estimates on the processing
time of input events by sequential C code generated from Esterel
programs. Execution of an Esterel program – as in all other syn-
chronous languages – is logically made up of a sequence of clock
ticks. In reality, they take non-zero time which depends on the
generated C code as well as the underlying hardware platform on
which this code is executed. Apart from exploiting the specific
structure of this C code to obtain tight WCET estimates, we cap-
ture program-level contexts across ticks in order to obtain tight es-
timates on response times of events whose processing spans across
multiple clock ticks. Such tighter estimates immediately translate
into more cost-effective implementations. Our experimental results
with realistic case studies show 30% reduction in timing estimates
when program level context information is taken into account.

Categories and Subject Descriptors
C.3 [SPECIAL-PURPOSE AND APPLICATION-BASED SYS-
TEMS]: Real-time and embedded systems

General Terms
Design, Languages, Performance

Keywords
Esterel, Synchronous programming, Worst-case Execution Time
(WCET) analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DAC 2009, July 26 - 31, 2009, San Francisco, California, USA.
Copyright 2009 ACM ACM 978-1-60558-497-3 -6/08/0006 ...$10.00.

1. INTRODUCTION
Generating implementations from synchronous language specifi-

cations is widely practiced in safety-critical domains such as avion-
ics where certification of the generated implementation is essential.
Programs in synchronous languages are considered to execute as a
sequence of clock ticks. The processing of all events arriving within
a single tick are assumed to happen instantaneously or in zero time,
which is referred to as the perfect synchrony hypothesis. This logi-
cal view of program execution offers a clean semantics and greatly
simplifies the programming and verification of concurrent reactive
systems. An implementation generated from a synchronous lan-
guage specification is said to follow the synchrony hypothesis if all
events that are logically assumed to be processed instantaneously
are processed before the next set of events arrive. Hence, for the
synchrony hypothesis to hold, the estimated Worst-case Execution
Time (WCET) associated with the processing of events should be
less than the minimum separation time between the arrival of sets
of events (that are assumed to be processed instantaneously).

Verifying the synchrony hypothesis when a synchronous lan-
guage program is compiled into hardware is relatively straightfor-
ward. When such languages are compiled into software – e.g., into
a sequential C code – the associated WCET analysis is more com-
plicated and depends both on the generated code, as well as on the
micro-architecture of the platform executing this code. For an arbi-
trary C program running on a modern processor, determining its ex-
ecution time accurately is an intractable problem and also requires
a substantial amount of user intervention. As a result, when per-
forming timing analysis of software generated from synchronous
languages, it is difficult to produce very tight timing estimates. This
is acceptable in domains such as avionics where the only focus is
on safety and formal certification.

However, with the growing use of software in domains such as
automotives – which are significantly more cost-sensitive – there
is an increasing need to develop timing analysis techniques that
return safe as well as tight timing estimates. Tighter timing esti-
mates clearly lead to more cost-effective, resource-saving designs.
There has also been a renewed interest in timing analysis of soft-
ware generated from synchronous languages, because of the re-
cent advances in WCET analysis techniques and the availability
of industry-strength tools (e.g., [1, 9]). Very recently, plans to in-
tegrate the synchronous language SCADE from Esterel Technolo-
gies with the aiT WCET analyzer from AbsInt GmbH [1], targeting
general-purpose processors, was reported in [7].

Our contributions: In this paper we propose techniques for tight
response time analysis of sequential C code generated from the
popular synchronous language Esterel [3]. Our techniques are fairly
general and would extend to other synchronous languages as well
(such as Lustre/SCADE) with minor modifications. Note that the

Loop

 emit A; foo(); //(s1==3)

 pause;

 await IN; emit B; //(s1==2)

 pause;

 emit C; emit C1; //(s1==1)

 pause;

 emit D; pause; //(s1==0)

 end loop

||

loop

 await C; emit E; //(s2==1)

 pause;

 emit OUT; //(s2==0)

 pause;

end loop

void Init() {s1 = 3; s2 = 1; }

void tick_func() {

 switch(s1) {

 case 0: D = 1; s1 = 3; break;

 case 1: C=1; C1= 1; s1 = 0;

 break;

 case 2: if (IN) {B = 1; s1 = 1;}

 break;

 case 3: A= 1; foo();

 s1 = 2; break;

 }

 switch(s2) {

 case 0: OUT = 1; s2 = 1;

 break;

 case 1: if (C) { E = 1; s2 = 0; }

 break;

 }

}

(a) Esterel program (b) Generated C tick function
(c) Tick transition

automata

ST0

s1 == 3;

s2 == 1;

ST1

s1 == 2;

s2 == 1;

ST2

s1 == 1;

s2 == 1;

ST3

s1 ==0;

s2 == 0;

s1 = 1

s1 = 0

s2 = 0

s1 = 3

s2 = 1

Figure 1: An Esterel program, compiled C tick function, and Tick
Transition Automata

central problem here is to verify whether the synchrony hypothesis
holds for a particular C code and underlying processor architecture.
Towards this, we systematically remove infeasible program paths in
the generated C code by exploiting the syntax and semantics of the
source Esterel program. Further, we capture program contexts at
the start of any clock tick in order to further refine our execution
time estimates. Program contexts might comprise values of certain
variables at the start of a clock tick, which might help in ruling out
certain execution paths in the code to be executed within this tick.
Capturing such program contexts lead to significantly improved re-
sponse time estimates of events whose processing spans multiple
clock ticks.
Related work: Analysis and debugging of timing properties of
synchronous language specifications (targeting general-purpose pro-
cessors) has been somewhat ignored until recently. High-level tim-
ing analysis of Esterel programs have been studied in [8, 15], where
the problem was to compute the number of transitions in the under-
lying automata (encoding an Esterel specification) in response to
different input events. In other words, the problem is that of com-
puting the number of Esterel clock ticks, rather than the execution
time of code within a tick. The timing analysis problem where the
states of the automata have been annotated with WCET estimates
has been discussed in [11].

Low level WCET analysis for a single Esterel tick is solved in
[2] for a special Esterel processor, where the instruction set and
micro-architecture are different from a general-purpose processor.
[14] has been addressed the problem of infeasible paths in the gen-
erated code is mentioned and timing analysis of the whole Esterel
program is studied. The methodology is restricted, since it requires
two separate codes to be generated from the synchronous program
— one on which the WCET analysis is performed, and one which
guides the analysis. Again, the issue of capturing context informa-
tion has not been addressed.

Finally, very recently, [10] and [7] report preliminary results
on integrating stand-alone WCET analyzers with synchronous lan-
guage compilers to provide real-time guarantees on the generated
C code. The framework we propose here follows a similar direc-
tion, and we believe that our techniques can be integrated with the
works in [10] and [7] to obtain even tighter timing estimates.

2. OVERVIEW OF ESTEREL
Figure 1(a) shows a toy Esterel program which will be used as

an illustrative example in this paper. It consists of two concur-
rently running processes. The input event IN is consumed by the
first process in the second logical tick, and the corresponding out-
put event OUT is emitted by the second process in the fourth tick.
Thus, it takes three logical ticks to produce the output. The first tick

in the first process performs some other operations (e.g., system ini-
tialization) that are irrelevant to the computation of IN . Details of
the syntax and semantics of Esterel may be found in [3, 6].

Compiling Esterel: In our problem setting, we assume an Esterel
program to be compiled into C code and executed on a single-core
general purpose processor. Various techniques exist for compiling
Esterel into C programs [13]. In this paper, we focus our discus-
sion on the control flow graph-based Esterel compilation, which
normally produce fast and small C code. Figure 1(b) shows (a sim-
plified version of) the generated C code from the example Esterel
program using the open source Columbia Esterel Compiler (CEC)
[5]. The compiled C code is in the form of a tick function, such that
the set of (feasible) execution paths of the tick function represent
all possible computations in an Esterel tick.

3. TICK TRANSITION AUTOMATA
Esterel language is finite state in nature, that is, a finite-state au-

tomata can capture the behavior of an Esterel program. The full au-
tomata corresponding to an Esterel program has many uses, such as
in compilation and/or program property verification. However, the
combinatorial explosion in the number of states of the full automata
is well-known. Instead, for our response-time calculation, we con-
struct a smaller automata called the Tick Transition Automata (TTA
for convenience, but not to be confused with Time triggered ar-
chitectures). The states of this automata capture only the global
control flow of an Esterel program — data variable values do not
appear in the states.

As already mentioned above, compiling an Esterel program gen-
erates a tick function which captures all possible Esterel executions
in a single tick. In other words, the Esterel program execution cor-
responds to repeated executions of this tick function. Naturally, the
tick function needs auxiliary variables to capture the progress in
control flow in each process (or thread) of the Esterel program. For
each process i, a state variable si is introduced. Different values
of a state variable si correspond to the different ticks that process i
could execute.

Control states: The states of the TTA correspond to valuations of
the si variables. A transition in TTA corresponds to assignment of
one or more si variables. In the example shown in Figure 1, two
state variables s1 and s2 are introduced to encode the tick tran-
sition information of the Esterel program. The states of the TTA
correspond to the valuations of s1, s2. We call a valuation of the si

variables as a global control state since it captures the progress in
control flow of all the threads of an Esterel program. The individual
si variables will be called as control state variables.

Formal definitions: Formally, a TTA identifies all paths in the
Esterel program that can be executed between an input event IN
and its output OUT. It can be defined as a 5-tuple 〈Q,Σ, δ, Q0, F 〉,
where
• Q is the set of all TTA states. A TTA state is a global control

state capturing the progress in control flow in all the program
threads.
• Σ is a finite set of symbols, where each symbol represents a

value assignment on one or more state variables.
• δ is the transition function, such that δ : Q× Σ→ Q. Each

transition in the automata represents an execution of a tick in
the Esterel program.
• Q0, F are the set of initial/final states of the TTA. An initial

state is a global control state of the Esterel program where
the input signal IN is ready to be consumed. A final state is
one where the output signal OUT is produced.

Program path

analysis

Micro-architectural

modeling

Tick

transition

automata

WCET analyzer

 ILPtf
ILP

Solver

WCET with

program level

context

Esterel

spec.

Esterel-C

compiler

C tick

function

Conflicting

pairs

Program

level context
 ILPtick

WCET with

program &

cache contexts

Figure 2: Framework to compute WCET for a single tick

Figure 1(c) shows the TTA between the input event IN and its out-
put OUT for the example Esterel program and generated C tick
function. In between the initial state ST1 and final state ST0,
there is only one possible execution path which consists of three
ticks.

4. WCET ESTIMATION
We first describe how to compute WCET of a single Esterel tick

in the compiled C program. Then we show how to incorporate pro-
gram contexts captured by TTA into the analysis to obtain tighter
WCET estimate. An overview of the analysis framework is shown
in Figure 2.

4.1 WCET of a Single Tick
Since the time required to produce a designated output OUT in

response to a given input IN may involve several ticks, the first step
is to tightly bound the Worst-case Execution Time (WCET) of a
single tick.

The WCET of any single Esterel tick can be calculated using
a static analysis based WCET estimation on the generated C tick
function. The generated C code normally contains huge number
of infeasible paths that do not correspond to any concrete program
execution traces. In order to obtain a tighter estimate, specifically
designed infeasible path analysis can be used to effectively exclude
infeasible paths from being considered as the WCET path. Read-
ers are referred to [10] for a detailed description of the single tick
WCET analysis. Note that such an analysis is context-insensitive,
due to the lack of consideration of program states before execution
of a particular Esterel tick. In this following discussion, let us refer
to this estimate as WCETtf .

5. HANDLING PROGRAM CONTEXTS
So far, we have elaborated on the WCET estimation of any given

tick. Our goal now is to study whether our estimation method is
context-aware. In other words, we want to estimate the WCET of
a tick STi → STj (where STi and STj are states of the TTA)
by considering the program states in which the tick is executed.
The program-level context with which STi → STj is executed
is captured by STi. We describe how such context information is
integrated into our WCET estimation for a single tick.

As mentioned in the previous section, we assume that each tick
between input IN and output OUT takes time WCETtf (obtained
by solving ILPtf , see Figure 2). However, this clearly leads to
a gross over-estimation. To accurately estimate the worst-case re-
sponse time between IN and OUT, our first step is to accurately esti-
mate the WCET of each individual tick between IN and OUT. Thus,
we accurately estimate the WCET of each transition in the TTA.
This is achieved by generating additional constraints for each spe-

cific transition, and integrating them with the tick function’s WCET
constraints ILPtf to build a new ILP formulation. This yields an
ILP formulation ILPtick for each tick in the TTA (see Figure 2).
Solving ILPtick will produce the accurate WCET estimate of the
specific tick in question.

We now explain how the additional ILP constraints for a specific
tick transition STi → STj are generated. The key difficulty here
is that the ILP constraints refer to occurrences of code fragments in
the generated C code – they do not refer to occurrences of specific
ticks at the Esterel program level. Hence, constraints resulting from
the occurrence of a specific tick STi → STj need to be expressed
in terms of occurrences of nodes in the Sequential Control flow
graph (SCFG) of the code generated from Esterel.

Recall that STi and STj correspond to valuations of control state
variables s1, . . . , sn where n is the number of threads in the Es-
terel program. Now, let the value of a state variable sk in STi be
v, and suppose it is assigned to a new value v′ in the tick tran-
sition STi → STj . For each edge B → B′ from node B to
B′ in the sequential Control Flow Graph (SCFG) of the gener-
ated C code, if B contains a test on sk and the edge can be taken
only when "sk! = v", the following ILP constraint is generated:
{EB→B′ = 0}. Here,EB→B′ is the number of times control flows
through the SCFG edge B → B′. These path constraints ensure
that the tick execution that corresponds to STi → STj takes only
the SCFG path where "sk == v" whenever state variable sk is
tested, for each state variable sk in the TTA state STi.

Moreover, there can be multiple outgoing tick transitions from a
TTA state STi. Suppose the control state variable sk is assigned to
a new value v′ ("v! = v′") in the tick transition STi → STj . To
calculate the WCET for a particular tick from STi → STj , we sim-
ply add ILP constraints to ensure that state variable sk is assigned
to v′ during the tick execution. Let B be the set of SCFG nodes
that contain the assignment "sk = v′". We set {

∑
B∈BNB > 0}

where NB is the execution count of a node B ∈ B.

6. WCRT ESTIMATION
Our TTA captures all execution paths between the consumption

of a given input IN and the production of an output OUT. Given a
TTA and tight WCET values for tick transitions in it, we now need
to compute the worst case response time (WCRT) between an input
signal IN and output signal OUT.

Since the execution count of each tick transition is an integer, we
employ an Integer Linear Programming (ILP) approach to compute
the WCRT. We solve the following ILP optimization problem. This
problem uses the WCET values of the individual ticks as constants.

maximize
∑

STi→STj∈T

Cnti,j × wcet′i,j

where Cnti,j and wcet′i,j are the execution count and WCET of
tick transition STi → STj in TTA T .

The linear constraints on Cnti,j are developed from the TTA’s
control flow. Since we are calculating the WCRT between an input
signal and its output, only one of the initial transitions is allowed to
take place. This is captured by the constraints∑

STi→STj∈T ∧STi∈Q0

Cnti,j = 1

where Q0 is the set of initial states of TTA T . Furthermore, for
each state STi in the TTA, the aggregate execution counts of all
incoming tick transitions should be equal to that of the outgoing

transitions. Thus,∑
STj→STi∈T

Cntj,i −
∑

STi→STk∈T

Cnti,k = 0

Over and above the constraints given in the preceding, we need
to bound the number of iterations of every cycle in the TTA. This
is a difficult task. The Esterel program may contain loops in one or
more processes in the computation between the input signal IN and
output OUT. Even if we know the loop bounds of these Esterel level
loops, we cannot directly use them to bound the cycles of the TTA.
While constructing the TTA from the Esterel program, an Esterel
level loop is often partially unrolled, or fused with other loops.

We bound the number of executions of each TTA cycle as fol-
lows. Recall that each state in the TTA is a valuation of control state
variables s1, . . . , sn – each variable si corresponds to a thread or
process in the Esterel program. Now, for each loop L in the Esterel
program, we first find the control state variable sk that captures the
control flow of the process p containing L. Since the loop defines
repeated execution of certain local control states of the process p,
and the variable sk simply encodes the progress in control flow of
p – we can always find a value v of sk that appears exactly once in
each iteration of the loopL. Such a value v corresponds to a control
state of p lying inside the loop L. We now generate the following
ILP constraints to incorporate the loop bound BL for each loop L
in the Esterel program ∑

STi→STj∈T ∧(sk==v)∈STi

Cnti,j <= BL

where sk is the control state variable for the process containing
loop L, v is a value of sk that holds once in each iteration of L.

7. CASE STUDY
In this section, we first discuss some implementation details of

our response time estimation framework (as shown in Figure 2).
In our experiments, an Esterel program is compiled into C by the

Columbia Esterel Compiler (CEC). Instrumentation code is added
into CEC to build a mapping between Esterel statements, interme-
diate representation’s (e.g., abstract syntax tree, SCFG) node ID,
and the generated C code. Chronos [9] – a static analysis based
popular WCET estimation tool – is used to generate the WCET ob-
jective function, micro-architectural models and control flow con-
straints of the compiled C tick function (ILPtf in Figure 2). In
this paper, we use the default architecture configuration of Chronos,
which assumes a direct mapped L1 instruction cache, dynamic 2-
level branch predictor, 5-staged pipeline, and an instruction dis-
patch queue size of 4. We consider an L1 instruction cache with
256 cache blocks, where each block’s size is 8 bytes. In order to
compute a tight WCET of each single tick in the TTA, constraints
due to program level contexts are added into ILPtf to restrict the
path can be taken in the tick function, which forms the ILP problem
ILPtick). ILPtick is solved by ILOG CPLEX to produce WCET
value of each individual tick.

To illustrate our response time estimation technique, we used the
TURBOchannel Interface (TcInt) benchmark from the Estbench
Esterel Benchmark Suite [4]. It contains 684 lines of Esterel code
and 2192 lines of compiled C code. TURBOchannel is an I/O in-
terconnect that allows several I/O options to connect to one system
[12]. In our case study, we consider the “ReadROM” operation
which takes 9 ticks between the input event and the final output.

The WCET of the generated tick function is 10, 949 cycles with-
out considering any tick path information from TTA. Since the op-
eration takes a maximum of 9 ticks to finish, a pessimistic estima-
tion of the response time is 9 × 10, 949 = 98, 541 clock cycles.

0

2000

4000

6000

8000

10000

12000

0 1 2 3 4 5 6 7 8

cycles

ticks

WCET(tick function) WCET(program level context)

Figure 3: Tick WCET results from different calculation approaches

One the other hand, by utilizing program path contexts, the calcu-
lated response time is 68, 103 clock cycles, which gives a 30.9%
reduction over the previous result.

Finally, Figure 3 compares the WCET values calculated for the
individual ticks which appear in the longest path of the TTA – ticks
responsible for the worst-case response time of a ReadROM oper-
ation. For each tick, (i) the left bar shows the WCET value without
any context information, (ii) the right bar shows the WCET value
considering program level contexts. In our experiment, the ILP
solving time for WCET of each individual tick takes 2-3 seconds,
while ILP solving time to compute WCRT of multiple ticks takes
less than 0.1 second.

8. CONCLUDING REMARKS
In this paper, we have proposed a context-sensitive timing anal-

ysis for Esterel programs, which is useful for obtaining tight esti-
mates on the response times of input events being processed by the
program. Towards this goal, we captured control flow contexts at
the beginning of each Esterel clock tick.

In future, we will also consider micro-architectural context (e.g.,
cache states) to obtain even tighter WCET estimates. Note that we
have assumed a single-core processor architecture in this paper. It
would be interesting to investigate possible extensions of this work
to multi-cores.

9. REFERENCES
[1] AbsInT GmbH, http://www.absint.com/.
[2] M. Boldt, C. Traulsen, and R. von Hanxleden. Worst Case Reaction Time

Analysis of Concurrent Reactive Programs. Electronic Notes in Theoretical
Computer Science (ENTCS), 203(4):65–79, 2008.

[3] F. Boussinot and R. de Simone. The Esterel language. Proceedings of the IEEE,
9(79):1270–1282, 1991.

[4] S.A. Edwards. The Estbench Esterel Benchmark Suite.
http://www1.cs.columbia.edu/ sedwards/software.html, 2003.

[5] S.A. Edwards and J. Zeng. Code Generation in the Columbia Esterel Compiler.
EURASIP Journal on Embedded Systems, 2007.

[6] A. Benveniste et al. The synchronous languages 12 years later. Proceedings of
the IEEE, 91(1):64–83, 2003.

[7] R. Heckmann et al. Combining a high-level design tool for safety-critical
systems with a tool for WCET analysis on executables. In 4th European
Congress on Embedded and Real Time Software (ERTS), 2008.

[8] V. Bertin et al. TAXYS = Esterel + Kronos. A tool for verifying real-time
properties of embedded systems. 2001.

[9] X. Li et al. Chronos: A timing analyzer for embedded software. Science of
Computer Programming, 69(1-3), 2007.
http://www.comp.nus.edu.sg/~rpembed/chronos.

[10] L. Ju, B.K. Huynh, A. Roychoudhury, and S. Chakraborty. Performance
debugging of Esterel specifications. In International Conference on Hardware
Software Codesign and System Synthesis (CODES-ISSS), 2008.

[11] G. Logothetis, K. Schneider, and C. Metzler. Generating formal models for
real-time verification by exact low-level runtime analysis of synchronous
programs. In RTSS, 2003.

[12] M.J.K. Nielsen. TURBOchannel. In 36th IEEE Computer Society International
Conference, COMPCON, 1991.

[13] D. Potop-Butucaru, S.A. Edwards, and G. Berry. Compiling ESTEREL.
Springer, 2007.

[14] T. Ringler. Static worst-case execution time analysis of synchronous programs.
In 5th Ada-Europe International Conference, LNCS 1845, 2000.

[15] R. K. Shyamasundar and J. V. Aghav. Realizing real-time systems from
synchronous language specifications. In RTSS Work-in-Progress Session, 2000.

