
Timing Analysis of Concurrent Programs Running on Shared Cache Multi-Cores

Yan Li Vivy Suhendra Yun Liang Tulika Mitra Abhik Roychoudhury
School of Computing

National University of Singapore
{yanli,vivy,liangyun,tulika,abhik}@comp.nus.edu.sg

Abstract—Memory accesses form an important source of
timing unpredictability. Timing analysis of real-time embedded
software thus requires bounding the time for memory accesses.
Multiprocessing, a popular approach for performance enhance-
ment, opens up the opportunity for concurrent execution.
However due to contention for any shared memory by different
processing cores, memory access behavior becomes more un-
predictable, and hence harder to analyze. In this paper, we de-
velop a timing analysis method for concurrent software running
on multi-cores with a shared instruction cache. Communication
across tasks is by message passing where the message mailboxes
are accessed via interrupt service routines. We do not handle
data cache, shared memory synchronization and code sharing
across tasks. Our method progressively improves the lifetime
estimates of tasks that execute concurrently on multiple cores,
in order to estimate potential conflicts in the shared cache.
Possible conflicts arising from overlapping task lifetimes are
accounted for in the hit-miss classification of accesses to the
shared cache, to provide safe execution time bounds. We show
that our method produces lower worst-case response time
(WCRT) estimates than existing shared-cache analysis on a
real-world embedded application.

I. INTRODUCTION

Static analysis of programs to give guarantees about exe-
cution time is a difficult problem. For sequential programs,
it involves finding the longest feasible path in the program’s
control flow graph while considering the timing effects of
the underlying processing element. For concurrent programs,
we also need to consider the time spent due to interaction
and resource contention among the program threads.

What makes static timing analysis difficult? Clearly it is
the variation in the execution time of a program due to
different inputs, different interaction patterns (for concurrent
programs) and different micro-architectural states. These
variations manifest in different ways, one of the major
variations being the time for memory accesses. Due to the
presence of caches in processing elements, a certain memory
access may be cache hit or miss in different instances of its
execution. Moreover, if caches are shared across processing
elements (as in shared cache multi-cores), one program
thread may have constructive or destructive effect on another
in terms of cache hits/misses. This makes the timing analysis
of concurrent programs running on shared-cache multi-cores
a challenging problem. We address this problem in our work.

Our system model consists of a concurrent program vi-
sualized as a graph, each node of which is a Message

Health
MonitoringMain Tele-

command
Acqui-
sition

Hit Trigger
ISR

Core1 Core2 Core3 Core4

main1

main2
main3

hm
tc

aq3

main4
aq

hit

Figure 1. A simple MSC and a mapping of its processes to cores.

Sequence Chart or MSC [1]. MSC is a modeling notation
that emphasizes the inter-process interaction, allowing us to
exploit its structure in our timing analysis. The individual
processes in the MSC appear as vertical lines. Interactions
between the processes are shown as horizontal arrows across
vertical lines. The computation blocks within a process are
shown as “tasks” on the vertical lines. Figure 1 shows a
simple MSC with five processes (Main, Health Monitoring
etc.) executing the tasks main1, . . . ,main4, hm etc. Note
that an MSC denotes a labeled partial order of tasks.

Core 1

CPU CPU

Core n

……

L1 Cache L1 Cache

L2 Cache

Figure 2. A multi-core architecture with shared cache.

Our system architecture consists of a multi-core where the
individual processes in the program (the vertical lines of the
MSCs) are mapped to the different cores (see Figure 1). With
such a mapping, an MSC provides a natural specification of
interactions among the processes in a concurrent program
running on multi-cores. As multi-cores are increasingly
adopted in high-performance embedded systems, the on-chip
cache hierarchy becomes more complex. We consider an
architecture where each processor core has private first-level
(L1) cache. However, a second-level (L2) cache is shared
across the processor cores (see Figure 2).

Certainly, the analysis effort required for capturing the
timing effects in the presence of a shared cache is complex,
as memory contention across the multiple cores significantly
affects the shared cache behavior. In particular, accesses to
the L2 cache originating from different cores may conflict
with each other. Thus, isolated cache analysis of each task
that does not account for these conflicts will not safely bound
the execution time of the task.

Contributions: In this paper, we develop a worst-case
response time (WCRT) analysis of concurrent programs,
where the concurrent execution of the tasks are analyzed to
bound the shared cache interferences. Our method advances
the state-of-the-art in shared cache multi-core timing anal-
ysis [23] in several ways. First of all, our iterative analysis
estimates which tasks (running on two different cores) can
have overlapping lifetimes. If two tasks cannot overlap, they
cannot affect each other in terms of conflict misses and thus
we can reduce the number of estimated conflict misses in
the shared cache. This leads to improved timing estimates.
Moreover, we consider set-associative caches in our analysis
as opposed to only direct mapped caches and this creates
additional opportunities for improving the timing estimation.
In summary, we develop a timing analysis method for shared
cache multi-cores that enhances the state-of-the-art.

Assumptions: Our analysis framework has the follow-
ing assumptions.
• Data Cache: We only handle the instruction memory

hierarchy in this work. We do not model the data cache.
We assume that the data memory references do not
interfere in any way with the L1 and L2 instruction
caches modeled by us.

• Cache Architecture: We consider Least Recently Used
(LRU) cache replacement policy for set-associative
caches. The L2 cache block size is assumed to be larger
than or equal to the L1 cache block size. Finally, we
are analyzing non-inclusive multi-level caches [7].

• Other architectural features: We only consider architec-
tures without timing anomalies caused by interactions
between caches and other architecture features.

• Shared code across tasks: We assume that the tasks do
not share any common code. In case two tasks share a
function f — we create two separate copies of function
f , one for each task. This is because we do not handle
constructive effects of shared cache in this work.

• Inter-task communication: In our framework, the tasks
communicate with each other through message passing
via mailboxes. The tasks deposit or receive messages
from the mailbox through interrupt service routines
(ISR). Exclusive access to the mailbox is ensured by
disabling interrupts within ISR. A task waiting on a
message is notified by the ISR once the message is
available in the mailbox. Finally, we assume that there
is no overflow in any mailbox, that is, mailboxes are
of unbounded length.

II. SYSTEM MODEL AND ARCHITECTURE

In this section, we give some background on Message
Sequence Charts (MSCs) and Message Sequence Graphs
(MSGs) — our system model for describing concurrent
programs. In doing so, we also introduce our case study with
which we have validated our approach. We conclude this
section by detailing our system architecture — the platform
on which the concurrent application is executed.

A. Message Sequence Charts

A Message Sequence Chart (MSC) [1] is a variant of an
UML sequence diagram with a formal semantics. Figure 1
shows a simple MSC with five processes (vertical lines). It
is in fact drawn from our DEBIE case study, which models
the controller for a space debris management system. The
five processes are mapped on to four cores. Each process
is mapped to a unique core, but several processes may
be mapped to the same core (e.g., Health-monitoring and
Telecommand processes are mapped to core 2 in Figure
1). Each process executes a sequence of “tasks” shown via
shaded rectangles (e.g., main1, hm, tc are tasks in Figure
1). Each task is an arbitrary (but terminating) sequential
program in our setting and we assume there is no code
sharing across the tasks.

Semantically, an MSC denotes a set of tasks and pre-
scribes a partial order over these tasks. This partial order is
the transitive closure of (a) the total order of the tasks in each
process (time flows from top to bottom in each process), and
(b) the ordering imposed by the send-receive of each mes-
sage (the send of a message must happen before its receive).
Thus in Figure 1, the tasks in the Main process execute
in the sequence main1, main2, main3, main4. Also, due
to message send-receive ordering, the task main1 happens
before the task hm. However, the partial ordering of the
MSC allows tasks hm and tc to execute concurrently.

We assume that our concurrent program is executed in
a static priority-driven non-preemptive fashion. Thus, each
process in an MSC is assigned a unique static priority. The
priority of a task is the priority of the process it belongs to.
If more than one processes are mapped to a processor core,
and there are several tasks contending for execution on the
core (such as the tasks hm and tc on core 2 in Figure 1),
we choose the higher priority task for execution. However,
once a task starts execution, it is allowed to complete without
preemption from higher priority tasks.

B. Message Sequence Graph

A Message Sequence Graph (MSG) is a finite graph where
each node is described by an MSC. Multiple outgoing edges
from a node in the MSG represent a choice, so that exactly
one of the destination charts will be executed in succession.
While an MSC describes a single scenario in the system
execution, an MSG describes the control flow between these

Node 1: Boot

Node 2: Power-up Reset

Node 3: Warm Reset

Node 4: Record WD Failure Node 5: Record CS Failure

Node 6: Initializations Node 7: Standby

Node 8: Acquisition

1: Boot

2: Power-up

Reset

6: Initializations

power-up

boot

5: Record

WD Failure

watchdog

boot

4: Record

CS Failure

checksum

boot

3: Warm

Reset

soft/warm

boot

8: Acquisition

7: Standby

Main

Main

MainMain

Health

Monitoring

Class-

ification

Class-

ification

Main
Health

Monitoring

Health

Monitoring

Tele-

command

Tele-
command

Tele-

command

Acqui-

sition

Acqui-

sition

Hit Trigger

ISR

Hit Trigger

ISR

SU
Interface

SU

Interface

[Env]
Sensor Unit

[Env]

Sensor Unit
Telemetry

Message Sequence Graph

Main
Class-

ification

Figure 3. DEBIE Case Study. Different colors are used to show the
mapping of the processes to different processor cores.

scenarios, allowing us to form a complete specification of
the application.

To complete the description of MSG, we need to give
a meaning to MSC concatenation. That is, if M1, M2 are
nodes (denoting MSCs) in an MSG, what is the meaning of
the execution sequence M1, M2, M1, M2, . . .? We stipulate
that for a concatenation of two MSCs say M1 ◦ M2, all
tasks in M1 must happen before any task in M2. In other
words, it is as if the participating processes synchronize or
hand-shake at the end of an MSC. In MSC literature, it is
popularly known as synchronous concatenation [3].

C. DEBIE Case Study

Our case study consists of DEBIE-I DPU Software [6],
an in-situ space debris monitoring instrument developed by
Space Systems Finland Ltd. The DEBIE instrument utilizes
up to four sensor units to detect particle impacts on the

spacecraft. As the system starts up, it performs resets based
on the condition that precedes the boot. After initializations,
the system enters the Standby state, where health monitoring
functions and housekeeping checks are performed. It may
then go into the Acquisition mode, where each particle
impact will trigger a series of measurements, and the data
are classified and logged for further transmission to the
ground station. In this mode too, the Health Monitoring
process continues to periodically monitor the health of the
instrument and to run housekeeping checks.

The MSG for the DEBIE case study (with different colors
used to show the mapping of the processes to different
processor cores) is shown in Figure 3. This MSG is acyclic.
For MSGs with cycles, the number of times each cycle can
be executed needs to be bounded for worst-case response
time analysis.

D. System Architecture

The generic multi-core architecture we target here is quite
representative of the current generation multi-core systems
as shown in Figure 2. Each core on chip has its own
private L1 instruction cache and a shared L2 cache that
accommodates instructions from all the cores. In this work,
our focus is on instruction memory accesses and we do not
model the data cache. We assume that the data memory
references do not interfere in any way with the L1 and L2
instruction caches modeled by us (they could be serviced
from a separate data cache that we do not model).

Each cache can be either direct-mapped or set-associative.
In this paper, we consider Least Recently Used (LRU)
cache replacement policy for set-associative caches. Also,
we consider architectures without timing anomalies caused
by interactions between caches and other architecture fea-
tures. The L2 cache block size is assumed to be larger
than or equal to the L1 cache block size. Finally, we are
analyzing non-inclusive multi-level caches [7]. Even though
we consider two levels of caches here, our approach can
be easily extended to handle more levels of cache hierarchy
using the same propagation principle from L1 cache to L2
cache presented in this paper.

III. ANALYSIS FRAMEWORK

In this section, we present an overview of our timing
analysis framework for concurrent applications running on
a multi-core architecture with shared caches. For ease of
illustration, we will throughout use the example of a 2-
core architecture. However, our method is easily scalable to
any number of cores as will be shown in the experimental
evaluation. As we are analyzing a concurrent application, our
goal is to estimate the Worst Case Response Time (WCRT)
of the application.

Figure 4 shows the workflow of our timing analysis
framework. First, we perform the L1 cache hit/miss analysis
for each task mapped to each core independently. As we

assume a non-preemptive system, we can safely analyze
the cache effect of each task separately even if multiple
tasks are mapped to the same processor core. For preemptive
systems, we need to include cache-related preemption delay
analysis ([9], [22], [15], [18]) in our framework.

The filter at each core ensures that only the memory
accesses that miss in the L1 cache are analyzed at the L2
cache level. Again, we first analyze the L2 cache behavior
for each task in each core independently assuming that there
is no conflict from the tasks in the other cores. Clearly, this
part of the analysis does not model any multi-core aspects
and we do not propose any new innovations here. Indeed,
we employ the multi-level non-inclusive instruction cache
modeling proposed recently [7] for intra-core analysis.

L1 cache
analysis

L1 cache
analysis

Filter Filter

L2 cache
analysis

L2 cache
analysis

L2 cache
Conflict
analysis

WCRT
analysis

Interference
changes?

yesno

Estimated
WCRT

Core 1 Core 2

Initial task
interference

Modified task
interference

Figure 4. Our Analysis Framework

The main challenge in safe and accurate execution time
analysis of a concurrent application is the detection of
conflicts for shared resources. In our target platform, we
are modeling one such shared resource: the L2 cache. A
first approach to model the conflicts for L2 cache blocks
among the cores is the following. Let T be the task running
on core 1 and T ′ be the task running on core 2. Also let
M1, . . . ,MX (M ′1, . . . ,M

′
Y) be the set of memory blocks

of thread T (T ′) mapped to a particular cache set C in
the shared L2 cache. Then we simply deduce that all the
accesses to memory blocks M1, . . . ,MX and M ′1, . . . ,M

′
Y

will be misses in L2 cache. Indeed, this is the approach
followed by the only shared L2 cache analysis proposed in
the literature [23].

A closer look reveals that there are multiple opportunities
to improve the conflict analysis. The first and foremost is
to estimate and exploit the lifetime information for each
task in the system, which will be discussed in detail in the
following. If the lifetimes of the tasks T and T ′ (mapped

to core 1 and core 2, respectively) are completely disjoint,
then they cannot replace each other’s memory blocks in the
shared cache. In other words, we can completely bypass
shared cache conflict analysis among such tasks.

The difficulty lies in identifying the tasks with disjoint
lifetimes. It is easy to recognize that the partial order
prescribed by our MSC model of the concurrent application
automatically implies disjoint lifetimes for some tasks. How-
ever, accurate timing analysis demands us to look beyond
this partial order and identify additional pairs of tasks that
can potentially execute concurrently according to the partial
order, but whose lifetimes do not overlap (see Section
III-A for an example). Towards this end, we estimate a
conservative lifetime for each task by exploiting the Best
Case Execution Time (BCET) and Worst Case Execution
Time (WCET) of each task along with the structure of the
MSC model. Still the problem is not solved as the task
lifetime (i.e., BCET and WCET estimation) depends on
the L2 cache access times of the memory references. To
overcome this cyclic dependency between the task lifetime
analysis and the conflict analysis for shared L2 cache, we
propose an iterative solution.

The first step of this iterative process is the conflict
analysis. This step estimates the additional cache misses
incurred in the L2 cache due to inter-core conflicts. In the
first iteration, conflict analysis assumes very preliminary
task interference information — all the tasks (except those
excluded by MSC partial order) that can potentially execute
concurrently will indeed execute concurrently. However,
from the second iteration onwards, it refines the conflicts
based on task lifetime estimation obtained as a by-product of
WCRT analysis component. Given the memory access times
from both L1 and L2 caches, WCRT analysis first computes
the execution time bounds of every task, represented as a
range. These values are used to compute the total response
time of all the tasks considering dependencies. The WCRT
analysis also infers the interference relations among tasks:
tasks with disjoint execution intervals are known to be non-
interfering, and it can be guaranteed that their memory
references will not conflict in the shared cache. If the task
interference has changed from the previous iteration, the
modified task interference information is presented to the
conflict analysis component for another round of analysis.
Otherwise, the iterative analysis terminates and returns the
WCRT estimate. Note the feedback loop in Figure 4 that
allows us to improve the lifetime bounds with each iteration
of the analysis.

A. Illustration

We illustrate our iterative analysis framework on the MSC
depicted in Figure 1. Initially, the only information available
are (1) the dependency specified in the model, and (2) the
mapping of tasks to cores. Two tasks t, t′ are known not to
interfere if either (1) t′ depends on t as per the MSC partial

(a) Initial interference graph deduced from model

main1

main2

main3

main4

hm

tc

aq

hit

main1

main2

main3

main4

hm

tc

aq

hit

main1

main2

main3

main4

hm

tc

aq

hit

ti
m

e

(c) Interference graph after first round of analysis(b) Task lifetimes determined in first round of analysis

Figure 5. The working of our shared-cache analysis technique on the example given in Figure 1

order, or (2) t and t′ are mapped to the same core (by virtue
of the non-preemptive execution).

We can thus sketch the initial interference relations among
tasks in an interference graph as shown in Figure 5(a).
Each node of the graph represents a task, and an edge
between two nodes signifies potential conflict between the
tasks represented by the nodes. This is the input to the cache
conflict analysis component (Figure 4), which then accounts
for the perceived inter-task conflicts and accordingly adjusts
L2 cache access time of conflicting memory blocks.

In the next step, we compute BCET and WCET values
for each task. These values are used in the WCRT analysis
to determine task lifetimes. Figure 5(b) visualizes the task
lifetimes after the analysis for this particular example. Here,
time is depicted as progressing from top to bottom, and the
duration of task execution is shown as vertical bar stretching
from the time it starts to the time it completes. The overlap
between the lifetimes of two tasks signifies the potential
that they may execute concurrently and may conflict in the
shared cache. Conversely, the absence of overlap in these
inferred lifetimes tells us that some tasks are well separated
(e.g., aq and tc) so that it is impossible for them to conflict
in the shared cache. For instance, here tc starts later than
hm on the same core, and thus has to wait until hm finishes
execution. By that time, most of the other tasks have finished
their execution and will not conflict with tc. Based on
this information, our knowledge of task interaction can be
refined into the interference graph shown in Figure 5(c).
This information is fed back as input to the cache conflict
analysis, where some of the previously assumed evictions in
the shared cache can now be safely ruled out.

Our analysis proceeds in this manner iteratively. The ini-
tial conservative assumption of task interferences is refined
over the iterations. In the next section, we provide detailed
description of the analysis components and show that our
iterative analysis is guaranteed to terminate.

IV. ANALYSIS COMPONENTS

The first step of our analysis framework is the independent
cache analysis for each core (see Figure 4). As mentioned

before, we use the multi-level non-inclusive cache analysis
proposed by Hardy and Puaut [7] for this step. However,
some background on this intra-core analysis is required
to appreciate our shared cache conflict analysis technique.
Hence, in the next subsection, we provide a quick overview
of the intra-core cache analysis.

A. Intra-Core Cache Analysis

The intra-core cache analysis step employs abstract inter-
pretation method [21] at both L1 and L2 cache levels. The
additional step for multi-level caches is the filter function
(see Figure 4) that eliminates the L1 cache hits from
accessing the L2 cache. The L1 cache analysis computes the
three different abstract cache states (ACS) at every program
point within a task [21]. In this paper, we consider LRU
replacement policy, but the cache analysis can be extended
for other replacement polices as shown in [8].
• Must Analysis: It determines the set of all memory

blocks that are guaranteed to be present in the cache
at a given program point. This analysis uses abstract
cache states where the position of a memory block is
an upper bound of its age.

• May Analysis: It determines the set of all memory
blocks that may be present in the cache at a given
program point.

• Persistence Analysis: This analysis is used to improve
the classification of memory references. It collects the
set of all memory blocks that are never evicted from
the cache after the first reference.

The analysis results can be used to classify the memory
blocks in the following manner.
• Always Hit (AH): If a memory block is present in the

ACS corresponding to must analysis, its references will
always result in cache hits.

• Always Miss (AM): If a memory block is not present in
the ACS corresponding to may analysis, its references
are guaranteed to be cache misses.

• Persistent (PS): If a memory block is guaranteed never
to be evicted from the cache, it can be classified as

persistent where the second and all further executions
of the memory reference will always be cache hits.

• Not Classified (NC): The memory reference cannot be
classified as either AH, AM, or PS.

For a Persistent (PS) memory block, we further classify
it as Always Miss (AM) for its first reference and Always
Hit (AH) for the rest of the references. Once the memory
blocks have been classified at L1 cache level, we proceed to
analyze them at L2 cache level. But before that, we need to
apply the filter function that eliminates L1 cache hits from
further consideration [7]. The filter function is shown below.

L1 Classification L2 Access
Always Hit (AH) Never (N)

Always Miss (AM) Always (A)
Not Classified (NC) Uncertain (U)

A reference classified as always hit will never access L2
cache (“Never”) whereas a reference classified as always
miss will always access L2 cache (“Always”). The more
complicated scenario is with the non-classified references.
[7] has shown that it is unsafe to assume that a non-classified
reference will always access L2 cache. Instead, its status is
set to “Uncertain” and we consider both the scenarios (L2
access and no L2 access) in our analysis for such references.

The intra-core L2 cache analysis is identical to L1 cache
analysis except that (a) a reference with “Never” tag is
ignored, i.e., it does not update abstract cache states, and (b)
a reference r with “Uncertain” tag creates two abstract cache
states (one updated with r and the other one not updated with
r) that are “joined” together.

B. L2 Cache Conflict Analysis

Shared L2 cache conflict analysis is the central component
of our framework. It takes in two inputs, namely the task
interference graph (see Figure 5) generated by the WCRT
analysis step and the abstract cache states plus the classifi-
cation corresponding to L2 cache analysis for each task in
each core. The goal of this step is to identify all potential
conflicts among the memory blocks from the different cores
due to sharing of the L2 cache.

Let T be a task executing on core 1 that can potentially
conflict with the set of tasks T ′ executing on core 2 accord-
ing to the task interference graph. Now let us investigate
the impact of the L2 memory accesses of T ′ on the L2
cache hit/miss status of the memory blocks of T . First, we
notice that if a memory reference of T ′ is always hit in the
L1 cache, it does not touch the L2 cache. Such memory
references will not have any impact on task T . So we are
only concerned with the memory references of T ′ that are
guaranteed to access the L2 cache (“Always”) or may access
the L2 cache (“Uncertain”). For each cache set C in the L2
cache, we collect the set of unique memory blocks M(C)
of T ′ that map to cache set C and can potentially access
the L2 cache (i.e., tagged with “Always” or “Uncertain”).

If a memory block m of task T has been classified
as “Always Miss” or “Non-Classified” for L2 cache, the
impact of interfering task set T ′ cannot downgrade this
classification. Hence, we only need to consider the memory
blocks of task T that have been classified as “Always Hit”
for L2 cache. Let m be one such memory block and it maps
to cache set C. If M(C) 6= ∅, then the memory accesses
from interfering tasks can potentially evict m from the L2
cache. So we change the classification of m from “Always
Hit” to “Non-Classified”. Note that actual task interaction at
runtime will determine whether the eviction indeed occurs.
Thus the access is regarded as “Non-Classified” rather than
“Always Miss”.

Task T Task T

m0
m1

Age: 1

2

Non-Classified m0
m1

Age: 1

2

Always hit

Always hitNon-Classified

m23

4

Non-Classified 3

4

m2 Non-Classified

Without optimization With optimization

Total number of conflicting memory blocks from other tasks |M(C)| = 2.g y | ()|

Figure 6. An example of 4-way set associative L2 cache. The abstract
cache state of task T for cache set C at a program point during must
analysis is shown. Memory blocks are converted to either “Always Hit”
or “Non-Classified” according to their ages and the number of conflicting
memory blocks from interfering tasks.

Optimization for Set-Associativity: In the discussion
so far, we blindly converted each “Always Hit” reference to
“Non-Classified” if there are potential memory accesses to
the same cache set from the other interfering tasks. However,
for set-associative caches, we can perform more accurate
conflict analysis. Again, let m be a memory reference of
task T at program point p that has been classified as “Always
Hit” in the L2 cache and it maps to cache set C. Clearly, m
is present in the abstract cache state (ACS) at program point
p corresponding to must analysis. Let age(m) be the age of
reference m in the ACS of must analysis. The definition
of ACS implies that m should stay in the cache for at least
(N−age(m)) unique memory block references to cache set
C where N is the associativity of the cache [21]. Thus, if
|M(C)| ≤ N−age(m), memory block m cannot be evicted
from the L2 cache by interfering tasks. In this case, we
should keep the classification of m as “Always Hit”. Figure
6 shows an example. Memory blocks m0 and m1 are kept
as “Always Hit” because the number of conflicting memory
blocks from interfering tasks (M(C) = 2) are not enough
to evict them. However, memory block m2 is converted to
“Non-Classified” due to its old age.

C. WCRT Analysis

In this step, we take the results of the cache analysis at
all levels to determine the BCET and WCET of all tasks.

Table I presents how we deduce the latency of a reference
r in the best and worst case given its classification at L1
and L2. Here, hitL denotes the latency of a hit at cache
level L, which consists of (1) the total delay for cache tag
comparison at all levels l : 1 . . . L, and (2) the latency to
bring the content from level L cache to the processing core.
missL2, the L2 miss latency, consists of (1) the total delay
for cache tag comparison at L1 and L2 caches, and (2) the
latency to access the reference from the main memory and
bring it to the processing core.

Table I
ACCESS LATENCY OF A REFERENCE IN BEST CASE AND WORST CASE

GIVEN ITS CLASSIFICATIONS

L1 cache L2 cache Access latency
Best-case Worst-case

AH – hitL1 hitL1

AM AH hitL2 hitL2

AM AM missL2 missL2

AM NC hitL2 missL2

NC AH hitL1 hitL2

NC AM hitL1 missL2

NC NC hitL1 missL2

Note that an NC reference is interpreted as hits in the
best case, and as misses in the worst case. We assume an
architecture free from timing anomaly so that we can assign
miss latency to an NC reference in the worst case. Having
determined the latency of each reference, we can compute
the best-case and worst-case latency of each basic block by
summing up all incurred latencies. A shortest (longest) path
search is then applied to obtain the BCET (WCET) of the
whole task [19].

In order to compute the WCRT of MSG, we need to
know the time interval of each task. The task ordering
within a node (denoting an MSC) of the MSG model
is given by the partial order of the corresponding MSC.
The task ordering across nodes of the MSG model are
captured by the directed edges in the MSG. Given a task t,
we use four variables EarliestReady[t], LatestReady[t],
EarliestF inish[t], and LatestF inish[t] to represent its
execution time information. Given a task t, its execution in-
terval is from EarliestReady[t] to LatestF inish[t]. These
notations are explained below:
• EarliestReady[t]/LatestReady[t]: earliest/latest time

when all of t’s predecessors have completed execution.
• EarliestF inish[t]/LatestF inish[t]: earliest/latest

time when task t finishes its execution.
• separated(t, u): If tasks t and u do not have any depen-

dencies and their execution interval do not overlap or if
tasks t and u have dependencies, then separated(t, u)
is assigned true; otherwise it is assigned false.

In a non-preemptive system, EarliestF inish[t] =
EarliestReady[t] + BCET [t]. Also, task t is ready only
after all its predecessors have completed execution, that is,

EarliestReady[t] = maxu∈P (EarliestF inish[u]), where
P is the set of predecessors of task t. For a task t without
any predecessor EarliestReady[t] = 0.

However, latest finish time of a task is not only affected
by its predecessors but also its peers (non-separated tasks
on the same core). For task t, we define

St
peers = {t′|¬separated[t′, t]∧ t′, t are on the same core}

In other words, St
peers is the set of tasks whose execution

interfere with task t on the same core. Let P be the set of
predecessors of task t. Then we have

LatestReady[t] = maxu∈P (LatestF inish[u])
LatestF inish[t] = LatestReady[t] + WCET [t]

+
∑

t′∈St
peers

WCET [t′]

However, the change of latest times of tasks may
lead to different interference scenario (i.e., separated[., .]
may change), which might change the latest finish times.
Thus, latest finish times are estimated iteratively until the
separated[., .] do not change. separated[t, u] is initialized
to false if tasks t and u do not have any dependency and true
otherwise. When iterative process terminates, we are able to
derive the final application WCRT as

WCRT = maxt LatestF inish(t)
− mint′ EarliestReady(t′)

that is, the duration from the earliest start time of any task
until the latest completion time of any task. Note that this
iterative process within WCRT analysis is different from the
iterative process shown in Figure 4.

A by-product of WCRT analysis is the set of tasks that
can potentially conflict in L2 cache, that is, tasks whose
execution intervals (from EarliestReady to LatestF inish)
overlap. This information, if different from the previous
iteration, will be fed back to the cache conflict analysis to
refine the classification for L2 accesses.

D. Termination Guarantee

Now we proceed to prove that the iterative L2 cache
conflict analysis framework shown in Figure 4 terminates.

Theorem IV.1. For any task t, its BCET and Ear-
liestReady[t] do not change across different iterations of L2
cache conflict and WCRT analysis.

Proof: Our level 2 cache conflict analysis only consid-
ers the memory blocks classified as “Always Hit” for L2
cache. Some of these memory blocks might be changed to
“Non-Classified” due to interference from conflicting tasks
while others remain as “Always Hit”. An “Always Hit”
memory block in L2 cache should have “Always Miss” or
“Non-Classified” status in L1 cache. According to Table I, a
memory block classified as L1 “Always Miss” is considered
as L2 cache hit in the best case irrespective of whether
is it AH or NC in L2 cache. Similarly, a “Non-classified”

memory block in L1 is considered as L1 cache hit in the best
case irrespective of its classification in the L2 cache. Hence,
L2 cache conflict analysis cannot reduce the best case access
time of a memory reference and hence a task’s BCET does
not change across different iterations of our analysis.

We prove that EarlistReady[t] does not change
through contradiction. Let us assume that for a task t,
its EarlistReady[t] changes. This must be due to a
change in its predecessors’s EarliestReady[t] because a
task’s BCET remains unchanged. Proceeding backwards,
EarliestReady[src] must have changed where src is
a task without any predecessor, contradicting the fact
that EarliestReady[src] = 0. Hence, for a task t its
EarliestReady[t] does not change.

Theorem IV.2. Task interferences monotonically decrease
(strictly decrease or remain the same) across different iter-
ations of our analysis framework.

Proof: We prove by induction on number of iterations.
Base Case: In the first iteration, tasks are assumed to
conflict with all the tasks on other cores (except those
excluded by partial order). This is the worst case task
interference scenario. Thus, the task interferences of the
second iteration definitely monotonically decrease compared
to the first iteration.
Induction Step: We need to show that the task interferences
monotonically decrease from iteration n to iteration n + 1
assuming that the task interferences monotonically decrease
from iteration n−1 to n. We prove by contradiction. Assume
two tasks i and j do not interfere at iteration n, but interfere
at iteration n + 1. There are two cases.
• EarliestReady[j] ≥ LatestF inish[i] at iteration n,

but EarliestReady[j] < LatestF inish[i] at iteration
n + 1. This implies that LatestF inish[i] at iteration
n + 1 increases because EarliestReady[j] remains
unchanged across iterations according to Theorem IV.1.
LatesteF inish[i] at iteration n+1 can increase due to
three reasons: (a) at iteration n + 1, the WCET of task
i itself increases; (b) the WCET of some tasks which
task i depends on directly or indirectly increases; and
(c) the WCET of some tasks increases as a result of
which either the number of peers of task i (|Si

peers|)
increases or the WCET of a peer of task i increases. In
summary, at least one task’s WCET is increased. The
WCET increase at iteration n+1 of some task implies
that more memory blocks are changed from “Always
Hit” to “Non-Classified” due to the task interference
increase at iteration n. However, this contradicts with
the assumption that task interferences monotonically
decrease at iteration n.

• EarliestReady[i] ≥ LatestF inish[j] at iteration n,
but EarliestReady[i] < LatestF inish[j] at iteration
n + 1. The proof is symmetric to the first case.

As task interferences decrease monotonically across iter-
ations, the analysis must terminate.

V. RELATED WORK

There have been a lot of research efforts in modeling
cache behavior for WCET estimation in single-core systems.
A widely adopted technique is the abstract interpretation
([2], [21]) which also forms the foundation to the framework
presented in this paper. Mueller [14] extends the technique
for multi-level cache analysis; Hardy and Puaut [7] further
adjust the method with a crucial observation to produce safe
estimates for set-associative caches. Other proposed methods
that attempt exact classification of memory accesses for
private caches include data-flow analysis [14], integer linear
programming [12] and symbolic execution [13].

Cache analysis for multi-tasking systems mostly re-
volves around a metric called cache-related preempted delay
(CRPD), which quantifies the impact of cache sharing on
the execution time of tasks in a preemptive environment.
CRPD analysis typically computes cache access footprint of
both the preempted and preempting tasks ([9], [22], [15]).
The intersection then determines cache misses incurred by
the preempted task upon resuming execution due to conflict
in the cache. Multiple process activations and preemption
scenarios can be taken into account, as in [18]. A different
perspective in [20] considers WCRT analysis for customized
cache, specifically the prioritized cache, which reduces inter-
task cache interference.

In multiprocessing systems, tasks in different cores may
execute in parallel while sharing memory space in the
cache hierarchy. Due to the complexity involved in static
analysis of multiprocessors, time-critical systems often opt
not to exploit multiprocessing, while non-critical systems
generally utilize measurement-based performance analysis.
Tools for estimating cache access time are presented, among
others, in [17], [5] and [10]. It has also been proposed to
perform static scheduling of memory accesses so that they
can be factored in to achieve reliable WCET analysis on
multiprocessors [16].

The only technique in literature that has addressed inter-
core shared-cache analysis so far is the one proposed by
Yan and Zhang [23]. Their approach accounts for inter-core
cache contention by detecting accesses across cores which
map to the same set in the shared cache. They treat all tasks
executing in a different core than the one under consideration
as potential conflicts regardless of their actual execution time
frames; thus the resulting estimate is highly pessimistic. We
also note that their work has not addressed the problem
with multi-level cache analysis observed by [7] (a “non-
classified” access in L1 cache cannot be safely assumed
to always access L2 cache in the worst case) and will be
prone to unsafe estimation when applied to set-associative
caches. This concern, however, is orthogonal to the issues
arising from cache sharing. Our proposed analysis is able

Table II
CHARACTERISTICS AND SETTINGS OF THE DEBIE BENCHMARK

MSC Task Codesize (bytes) Core
1 boot main 3,200 1
2 pwr main1 9,456 1

pwr main2 3,472 1
pwr class 1,648 4

3 wr main1 3,408 1
wr main2 5,952 1
wr class 1,648 4

4 rcs main 3,400 1
5 rwd main 3,400 1
6 init main1 320 1

init main2 376 1
init main3 376 1
init main4 376 1
init health 5,224 2
init telecm 4,408 2
init acqui 200 4
init hit 616 4

7 sby health1 16,992 2
sby health2 448 2
sby telecm 23,288 2
sby su1 6,512 4
sby su2 4,392 4
sby su3 1,320 4

8 acq health1 16,992 2
acq health2 448 2
acq telecm 23,288 2
acq acqui1 3,136 4
acq acqui2 3,024 4
acq telemt 3,768 3
acq class 3,064 4
acq hit 8,016 4
acq su0 2,536 4
acq su1 6,512 4
acq su2 4,392 4
acq su3 1,320 4

10
12

Code Size Distribution

4
6
8
10

#o
f t

as
ks

0
2

0-1k 1k-2k 2k-4k 4k-8k 8k-16k 16k-

Task Code Size

Figure 7. Code size distribution of DEBIE benchmark.

to obtain improved estimates by exploiting the knowledge
about interaction among tasks in the multiprocessor.

VI. ESTIMATION RESULTS

Setup: We compile our benchmark for SimpleScalar
PISA (Portable ISA) instruction set [4] — a MIPS like in-
struction set architecture. The individual tasks are compiled
into SimpleScalar PISA compliant binaries, and their control
flow graphs (CFGs) are extracted as input to the cache
analysis framework. The cache analysis framework is built
on top of the open-source WCET analysis tool Chronos [11].
Details of the tasks in the DEBIE benchmark and their code-
sizes appear in Figure 7 and Table II. The table also shows

the mapping of the tasks to the processor cores in a system
with four cores.

As we are modeling the cache, we assume a simple
in-order processor with unit-latency for all data memory
references. We perform all experiments on a 3GHz Pentium
4 CPU with 2GB memory.

Our analysis produces the WCRT result when the iterative
work flow as shown in Figure 4 terminates. The estimate pro-
duced after the first iteration assumes that any pair of tasks
assigned to different cores may execute concurrently and
evict each other’s content from the shared cache. This value
is essentially the estimation result following Yan-Zhang’s
technique [23] — the only available shared-cache analysis
method in the literature (see Section V). The improvement in
WCRT estimation accuracy due to our proposed analysis is
demonstrated by comparing this value to the final estimation
result of our technique.

Comparison with Yan-Zhang’s method: Yan-Zhang’s
analysis [23] is restricted to direct mapped cache. Thus, to
make a fair comparison, we first configure both L1 and L2
as direct mapped caches. Figure 8(a) shows the comparison
of the estimated WCRT between Yan-Zhang’s analysis and
ours on varying number of cores. The size of L1 cache
is 2KB bytes with 16-byte block size. The L2 cache has
32-byte block size. The L2 cache size is doubled with the
doubling of the number of cores. We assume 1 cycle latency
for L1 hit, 10 cycle latency for L1 cache misses and 100
cycle latency for L2 cache misses. When only one core is
employed, the tasks execute non-preemptively without any
interference. Thus the two methods produce the exact same
estimated WCRT. In the 2-core and 4-core settings where
task interferences become significant to the analysis, our
method achieves up to 15% more accuracy over Yan-Zhang’s
method.

As tasks are distributed on more cores, the parallelization
of task execution may reduce overall runtime. But at the
same time, the concurrency gives rise to inter-core L2
cache content evictions that contribute to an increase in
task runtime. In this particular experiment, we observe that
the WCRT value can increase (1-core to 2-core) as well as
decrease (2-core to 4-core) with increasing number of cores.

In Figure 8(b), we compare the number of inter-core
cache evictions estimated by both methods for the same
configurations as in Figure 8(a). When only one core is
employed, there is no inter-core evictions for both methods.
For multi-core systems, due to the accurate task interference,
the number of inter-core evictions of our method are much
smaller than Yan-Zhang’s method as shown in Figure 8(b).
This explains the WCRT improvement in Figure 8(a).

Set associative caches: Our method is able to handle
set-associative caches accurately by taking into account
the age of the memory blocks. Figure 8(c) compares the
estimated WCRT with and without the optimization for set-
associativity (see Section IV-B) in a 2-core system. Without

Yan-Zhang's Method Our Method w/o optimization wtih optimizationYan-Zhang's Method Our MethodYan Zhang s Method Our Method w/o optimization wtih optimizationYan Zhang s Method Our Method

26) 24)30)26

es

24

es

30

ds
)

24yc
le

23yc
le

25an
d

24

cy

23

cy25

us
a

22on

22

on

ou

20lli
o

21lio20(th20m
i 21

m
il

s
 (

18T
 (

20 (m15on
s

18

R
T 20

R
T 15

ct
io

16W
C

R

19

W
C

R

10vi
c6

d
W 9

W10Ev

14te
d 18ed

or
e

12m
at

17at
e

5co12tim 17imer

10Es
t

16Es
t

0nt
e

10
1 L2 8KB 2 L2 16KB 4 L2 32KB

E 16
1 2 4 8

E0
1 L2 8KB 2 L2 16KB 4 L2 32KB

I

1-core, L2:8KB 2-core, L2:16KB 4-core, L2:32KB 1way 2way 4way 8way1-core. L2:8KB 2-core. L2:16KB 4-core. L2:32KB

Core Configuration (L1: 2KB) Core Configuration (2-core, L1:2KB)Core Configuration (L1: 2KB)Core Configuration (L1: 2KB) Core Configuration (2 core, L1:2KB)

(a) WCRT Comparison (b) Inter-core Eviction Comparison (c) Set associativity optimization(a) WCRT Comparison (b) Inter-core Eviction Comparison (c) Set associativity optimization

Figure 8. Comparison between Yan-Zhang’s method and our method and the improvement of set associativity optimization.

Y Zh ' M th d O M th dYan-Zhang's Method Our Method

120s)

100cl
es

100

n
cy

80lio
n

60(m
il

40

60

R
T

 (

40

W
C

R

20ed
 W

0m
at

e

0
512B 1KB 2KB 4KBst

im

512B 1KB 2KB 4KBEs

Core Configuration (2-core, L2: 16KB)

() V i 1 Si(a) Varying L1 Size

Yan-Zhang's Method Our Method

26

Yan Zhang s Method Our Method

26

es
)

25

cy
cl

24

on
 c

23

m
ill

io

22 (
m

21C
R

T

20

21

W
C

19

20

te
d

19

im
at

18
4KB 8KB 16KB 32KBEs

ti

4KB 8KB 16KB 32KBE

Core Configuration (2-core, L1: 2KB)g (,)

(b) V i L2 Si(b) Varying L2 Size

Figure 9. Comparison of estimated WCRT between Yan-Zhang’s method
and our method for varying L1 and L2 cache sizes.

the optimization, all the “Always Hit” accesses are turned
into “Non-Classified” accesses as long as there are conflicts
from other cores, regardless of the memory blocks’ age.
Here, L1 cache is configured as 2KB direct mapped cache
with 16-byte block size and L2 cache is configured as a
32KB set-associative cache with 32-byte block size, but
varied associativity (1, 2, 4, 8). As shown in Figure 8(c),
when associativity is set to 1 (direct mapped cache), there
is no gain from the optimization. However, for associativity

30
L1:2x512B

15
20
25

m
e

(s
ec

) L1:2x512B
L1:2x1KB
L1:2x2KB
L1:2x4KB

5
10
15

al
ys

is
 T

im L1:4x512B
L1:4x1KB
L1:4x2KB

0
2KB 4KB 8KB 16KB 32KB

A
na

Sh d L2 C h Si

L1:4x4KB

Shared L2 Cache Size

Figure 10. Runtime of our iterative analysis.

≥ 2, the estimated WCRT is improved significantly with the
optimization.

Sensitivity to L1 cache size: Figure 9(a) shows the
comparison of the estimated WCRT on a 2-core system
where L1 cache size is varied but L2 cache size is kept
as constant. Again both L1 and L2 caches are configured as
direct mapped caches due to the limitation of Yan-Zhang’s
analysis. Our method is able to filter out evictions among
tasks with separated lifetimes and achieves up to 20% more
accuracy over Yan-Zhang’s method.

Sensitivity to L2 cache size: Figure 9(b) shows the com-
parison of the estimated WCRT on a 2-core system where
L2 cache size is varied but L1 cache size is kept as constant.
Here too, both L1 and L2 caches are configured as direct
mapped caches. We observe slightly larger improvement as
we increase the L2 cache size. In general, more space in
L2 cache reduces inter-task conflicts. Without refined task
interference information, however, there can be significant
pessimism in estimating inter-core evictions, which limits
the benefit of the larger space in the perspective of Yan-
Zhang’s analysis. As a result, our analysis is able to achieve
lower WCRT estimates as compared to Yan-Zhang’s method.

Scalability: Finally, Figure 10 sketches the runtime of
our complete iterative analysis (L2 cache and WCRT analy-
sis) for various configurations. It takes less than 30 seconds
to complete our analysis for any considered settings.

VII. CONCLUDING REMARKS

We have presented a worst-case response time (WCRT)
analysis of concurrent programs running on shared cache
multi-cores. Our concurrent programs are captured as graphs
of Message Sequence Charts (MSCs) where the MSCs
capture ordering of computation tasks across processes. Our
timing analysis iteratively identifies tasks whose lifetimes
are disjoint and uses this information to rule out cache
conflicts between certain task pairs in the shared cache. Our
analysis obtains lower WCRT estimates than existing shared-
cache analysis methods on a real-world application.

In future, we are planning to extend the work in several
directions. This will also amount to relaxing or removing
the restrictions in our current analysis framework, namely
- (i) handling of data caches, (ii) handling cache replace-
ment policies other than LRU, (iii) directly capturing the
constructive effect of shared code (such as libraries) across
tasks, and (iv) allowing tasks to communicate via message
passing as well as shared memory.

ACKNOWLEDGMENTS

This work was partially supported by NUS University Re-
search Council grant R-252-000-321-112 and NUS Faculty
Research Council grant R-252-000-387-112.

REFERENCES

[1] Message Sequence Charts. ITU-TS Recommendation Z.120,
1996.

[2] M. Alt, C. Ferdinand, F. Martin, and R. Wilhelm. Cache
behavior prediction by abstract interpretation. Lecture Notes
in Computer Science, 1145:52–66, 1996.

[3] R. Alur and M. Yannakakis. Model checking message se-
quence charts. In Proceedings of the International Conference
on Concurrency Theory, 1999.

[4] T. Austin, E. Larson, and D. Ernst. SimpleScalar: An in-
frastructure for computer system modeling. IEEE Computer,
35(2), 2002.

[5] L.M.N. Coutinho, J.L.D. Mendes, and C.A.P.S. Martins.
MSCSim – Multilevel and Split Cache Simulator. In 36th
Annual Frontiers in Education Conference, 2006.

[6] European Space Agency. DEBIE – First standard
space debris monitoring instrument, 2008. Available at:
http://gate.etamax.de/edid/publicaccess/debie1.php.

[7] D. Hardy and I. Puaut. WCET analysis of multi-level non-
inclusive set-associative instruction caches. In Proceedings of
the Real-Time Systems Symposium, 2008.

[8] R. Heckmann et al. The influence of processor architecture
on the design and the results of WCET tools. Proceedings of
the IEEE, 9(7), 2003.

[9] C.-G. Lee et al. Analysis of cache-related preemption delay
in fixed-priority preemptive scheduling. IEEE Transactions
on Computers, 47(6):700–713, 1998.

[10] J. W. Lee and K. Asanovic. METERG: Measurement-based
end-to-end performance estimation technique in QoS-capable
multiprocessors. In Proceedings of the IEEE Real-Time and
Embedded Technology and Applications Symposium, 2006.

[11] X. Li, Y. Liang, T. Mitra, and A. Roychoudhury. Chronos:
A timing analyzer for embedded software. Science of
Computer Programming, 69(1-3):56–67, 2007. Available at:
http://www.comp.nus.edu.sg/∼rpembed/chronos/.

[12] Y.-T. S. Li, S. Malik, and A. Wolfe. Cache modeling for
real-time software: beyond direct mapped instruction caches.
In Proceedings of the Real-Time Systems Symposium, 1996.

[13] T. Lundqvist and P. Stenstrom. An integrated path and timing
analysis method based on cycle-level symbolic execution.
Real-Time Systems, 17(2-3), 1999.

[14] F. Mueller. Timing analysis for instruction caches. Real-Time
Systems, 18(2-3), 2000.

[15] H. S. Negi, T. Mitra, and A. Roychoudhury. Accurate
estimation of cache-related preemption delay. In Proceedings
of the IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis, 2003.

[16] P. Puschner and M. Schoeberl. On composable system timing,
task timing, and WCET analysis. In International Workshop
on Worst-Case Execution Time Analysis, 2008.

[17] S. Schliecker, M. Negrean, G. Nicolescu, P. Paulin, and
R. Ernst. Reliable performance analysis of a multi-
core multithreaded system-on-chip. In Proceedings of
the IEEE/ACM/IFIP international conference on Hard-
ware/Software codesign and system synthesis, 2008.

[18] J. Staschulat and R. Ernst. Multiple process execution in
cache related preemption delay analysis. In Proceedings of
the 4th ACM international conference on Embedded software,
2004.

[19] V. Suhendra, T. Mitra, A. Roychoudhury, and T. Chen.
Efficient detection and exploitation of infeasible paths for
software timing analysis. In Proceedings of the Design
Automation Conference, 2006.

[20] Y. Tan and V. Mooney. WCRT analysis for a uniprocessor
with a unified prioritized cache. In Proceedings of the
2005 ACM SIGPLAN/SIGBED conference on Languages,
compilers, and tools for embedded systems, 2005.

[21] H. Theiling, C. Ferdinand, and R. Wilhelm. Fast and precise
WCET prediction by separated cache and path analyses. Real-
Time Systems, 18(2/3), 2000.

[22] H. Tomiyama and N. D. Dutt. Program path analysis to
bound cache-related preemption delay in preemptive real-time
systems. In Proceedings of the eighth international workshop
on Hardware/software codesign, 2000.

[23] J. Yan and W. Zhang. WCET analysis for multi-core proces-
sors with shared L2 instruction caches. In Proceedings of the
IEEE Real-Time and Embedded Technology and Applications
Symposium, 2008.

