Processing of Mix-Sensitivity Video Surveillance Streams on Hybrid Clouds

Chunwang Zhang, Ee-Chien Chang
School of Computing, National University of Singapore
28th June, 2014
Outline

1. Motivation
2. Hybrid Cloud Video Surveillance Model
3. Scheduler
4. Evaluation
5. Conclusions
1. Motivation

- **Video surveillance systems are inherently data-intensive and often compute-intensive**
 - Transcoding, indexing, video analytics etc
 - Workload could be seasonal
1. Motivation

• Outsourcing to public cloud (e.g., Amazon AWS)?
 • Surveillance videos could contain sensitive info.
 • Various data breaches were reported for different cloud providers.
 • Processing in the encrypted domain is too costly for large video data.

• We consider the approach of data/computations segregation in the hybrid cloud.

- Trusted.
- Fixed computing power.

- Curious.
- Elastic computing power.

Private cloud

costly connection

Public Cloud
1. Motivation

- **A hybrid cloud-based video surveillance system**
 - Pushing partial video streams to public cloud while keeping sensitive video streams in the local private cloud

- It’s desired to have a middleware that unifies the two clouds and schedules the computation effectively.
1. Motivation

• Previous works on distributed stream processing focus on scheduling among multiple servers to balance workload among all the servers, etc.

• Our problem can be treated as a special case of some known general scheduling models but has its difference
 • Conceptually consists of only two servers – a private and a public server

Private cloud
 - Trusted.
 - Fixed computing power.

Public Cloud
 - Curious.
 - Elastic computing power.

costly connection
Our Works

• A stream processing model specifically designed for the hybrid cloud setting
 • Can handle ad-hoc queries and dynamic clients without rescheduling

• Formulation of the scheduling problem
 • Minimizes the monetary cost to be incurred on public cloud, subject to resources, security and QoS constraints

• An efficient scheduler

• A proof-of-concept system
Outline

1. Motivation
2. Hybrid Cloud Video Surveillance Model
3. Proposed Scheduler
4. Evaluation
5. Conclusions
2. Hybrid Cloud Video Surveillance Model

Stream Processing Model

- Each task template is modeled as a directed, acyclic and labeled graph.
 - Each template can be instantiated to multiple sources/sinks.
 - Connection Points (CPs): where ad-hoc queries and “dynamic clients” can attach
2. Hybrid Cloud Video Surveillance Model

Some tasks could be completed in multiple ways:

Example 1

Task graph 1:
- **Src** → **Combine** → **Transcode** → **Sink**

Task graph 2:
- **Src** → **Transcode** → **Combine** → **Sink**

Example 2

Task graph 1:
- **Src** → **Face detection & Draw boxes** → **Sink**

Task graph 2:
- **Src** → **Lower resolution** → **Draw boxes** → **Sink**

Time labels:
- t_1
- t_2
- t_3
2. Hybrid Cloud Video Surveillance Model

Security Model

- Each node in an instantiated task is tagged as *sensitive* or *non-sensitive*

Different stream sources can have different sensitivity

“Videos generated by cameras in the meeting room is sensitive iff time is between 2--4pm”
2. Hybrid Cloud Video Surveillance Model

Cost Model
• Approximates actual monetary cost to be incurred

*Each ECU provides the equivalent CPU capacity of a 1.0–1.2 GHz 2007 Opteron or Xeon processor.
2. Hybrid Cloud Video Surveillance Model

System Architecture

- Task templates
- Instances with known source/sink locations
- Performance requirement
- Assigned Tasks
- (Tagged) Instantiated tasks
- System configuration
- Event Detector
- Scheduler
- Sensitivity Analyzer
- Private Cloud Scheduler
- Public Cloud Scheduler
- Performance requirements
- System configuration
- Assigned Tasks
- Task templates
- Event Detector
- Scheduler
- Sensitivity Analyzer
- Private Cloud Scheduler
- Public Cloud Scheduler
Outline

1. Motivation
2. Hybrid Cloud Video Surveillance Model
3. Scheduler
4. Evaluation
5. Conclusions
3. Scheduler – problem formulation

• **Given:** a set of task templates, and the number of time each template is to be instantiated.

• **Find:** The assignment of every operations in each instantiated task such that the cost incurred is minimized, subject to:
 1. Private cloud cannot be overloaded;
 2. Sensitive streams cannot flow into public cloud;
 3. Delay constraint for each assigned task can be met.
3. Scheduler – problem formulation

Cost function

\[\text{COST} = \alpha \sum_{i,j} c_j^i (1 - x_j^i) + \beta \sum_{i,j,k} b_{j,k}^i |x_j^i - x_k^i| \]

- \(x_j^i \): assignment of operation \(j \) in instantiated task \(i \).
- Value 0 if assigned to public cloud; 1 otherwise.

Parameter \(\alpha \) and \(\beta \) can be determined by the cloud pricing model in use, e.g., \(\alpha = 0.08 \) and \(\beta = 0.684 \) according to Amazon.

Computation cost (\(\alpha \times \) number of ECUs)

Communications cost (\(\beta \times \) inter-cloud bandwidth)
3. Scheduler

- Not surprisingly, finding the optimal solution is NP-hard.

- Our solution:
 - Reduce the states space to a smaller set of “minimal configurations”, and then employs integer programming to select the desired configurations
 - In cases where the problem size are still too large for the integer programming solver, employ a heuristic to further reduce the number of configurations.
Outline

1. Motivation
2. Hybrid Cloud Video Surveillance Model
3. Scheduler
4. Evaluation
5. Conclusions
4. Evaluation

Conducted two groups of experiments:

- Large-scale simulations
- Proof-of-concept system evaluation on Amazon EC2

We consider 5 schedulers

1) Task-Level Water-filling (TLW): if a task contains sensitive operations, the whole task is assign private, except for sinks. Otherwise, assign it to public.

2) Task-Level Random (TLR): same as TLW but randomly assign non-sensitive task.

3) Greedy: Consider the task one by one, using the optimal assignment for each of them.

4) ProposedC: our scheduler with objective to minimize monetary cost

5) ProposedB: our scheduler with objective to minimize bandwidth usage
4. Evaluation: simulations

- **Simulation Setting**

 - 10 different task templates where the number of operations nodes ranging from 3 to 15
 - Choose compute cost in \((0,2]\) ECU and bandwidth cost in \((0,1]\) MB/s
 - Each template is to be instantiated to 10 streams. Randomly set the sensitivity.
 - Private cloud ranges from 200 to 600 ECUs, Delay constrain: 250ms
4. Evaluation: simulations

- **Without security constraint**

 TLW pushes all streams to public cloud, giving highest monetary cost and bandwidth usage.
4. Evaluation: simulations

- Without security constraint
4. Evaluation: simulations

- Without security constraint

Greedy incurs higher bandwidth cost than ours, and hence higher money cost.

Greedy can fully utilize the private cloud as ours.
4. Evaluation: simulations

- Without security constraint

Our schedulers can reduce monetary cost by around 29%-84% compared to a pure public cloud setting.

![Graphs showing monetary cost, inter-cloud bandwidth, and outsourced computation](image)
4. Evaluation: simulations

- randomly tags streams to be sensitive

TLW, TLR and Greedy cannot schedule all the tasks when \(C = 200 \)
4. Evaluation: simulations

- randomly tags streams to be sensitive

Our schedulers can handle all, and constantly outperform the others
4. Evaluation: proof-of-concept system

The Task Template (has 2 alternative ways to complete)
4. Evaluation

TLW and TLR fail when # of streams > 8
4. Evaluation

Greedy also fails when

of streams > 10
4. Evaluation

ProposedB and ProposedC always choose the same confs, and rendered as one line.
5. Conclusions

• Practical to process large mixed-sensitivity video surveillance streams on hybrid clouds
• The proposed scheduler is effective in reducing monetary cost and inter-cloud bandwidth usage
• The monetary costs are lower than a single public cloud setting

Future Work
• To support real-time re-scheduling
• To implement on top of existing stream processing systems, e.g., Apache Storm[1]

Q & A