Assignment 01:
Algorithm Analysis – Solution

1. Exercise 2.1 on page 50: Order the following functions by growth rate:
 \(N, \sqrt{N}, N^{1.5}, N^2, N \log N, N \log \log N, N \log^2 N, N \log(N^2), 2/N, 2^N, 2^{N/2}, 37, N^2 \log N, N^3 \). Indicate which functions grow at the same rate and show why this is the case.

 Answer:

 \[
 \frac{2}{N} < 37 < \sqrt{N} < N < N \log N < N \log \log N \leq N \log(N^2) < N^2 < N^{1.5} < N^2 \log N < N^3 < 2^{N/2} < 2^N
 \]

 \((1) \)

 The only two functions that grow at the same rate are \(N \log N \) and \(N \log(N^2) \):

 \[
 N \log(N^2) = 2N \log N = \Theta(N \log N)
 \]

 \((2) \)

 For all other functions, the ordering is strict. In particular the following functions do not grow at the same rate:

 \[
 2^{N/2} \neq \Theta(2^n) \quad \text{as} \quad \lim_{N \to \infty} \frac{2^{N/2}}{2^N} = \lim_{N \to \infty} \frac{2^{N/2}}{2^{N/2} \times 2^{N/2}} = \lim_{N \to \infty} \frac{1}{2^{N/2}} = 0
 \]

 \((3) \)

 \[
 N \log^2 N = N[\log N]^2 \neq N \log \log N
 \]

 \((4) \)

 \[
 N^{1.5} \neq \Theta(N \log^2 N) \quad \text{as} \quad \lim_{N \to \infty} \frac{N^{1.5}}{N \log^2 N} = \lim_{N \to \infty} \frac{N^{0.5}}{\log^2 N}
 \]

 \[
 = \lim_{N \to \infty} \frac{0.5N^{-0.5}}{2 \log N} = \lim_{N \to \infty} \frac{0.25N^{0.5}}{\log N} = \infty
 \]

 \((5) \)

2. Exercise 2.22–2.24, pages 53-54:

 (a) Show that \(X^{62} \) can be computed with only eight multiplications.
Answer:

\[X^{62} = X^{20} \times X^{42} \quad (6) \]
\[X^{42} = X^{20} \times X^{20} \times X^{2} \]
\[X^{20} = X^{10} \times X^{10} \]
\[X^{10} = X^{5} \times X^{5} \]
\[X^{5} = X^{2} \times X^{2} \times X \]
\[X^{2} = X \times X \]

(b) Write the fast exponentiation routine without recursion in Java. Submit your solution on paper. You don’t need to actually implement the algorithm (optional).

Answer:

```java
public static int pow(int base, int exp) {
    int acc = 1;
    int e = exp;
    int b = base;
    if (exp == 0) {
        return 1;
    }
    while (e != 1) {
        if (e % 2 == 1) {
            acc *= b;
        }
        b *= b;
        e /= 2;
    }
    return acc * b;
}
```

To understand the algorithm, think of the binary representation of exp:

\[base^{exp} = base \sum a_i 2^i = \prod base^{a_i 2^i} \quad (7) \]

The index \(i \) ranges from 0 to \(\lceil \log_2(N + 1) \rceil \). In every step the next component \(base^{a_i 2^i} \) (from the right) is added to the accumulator. The loop invariant is \(acc = base^{exp \% 2^i} \). When the loop ends, the accumulator equals \(base^{exp} \) which is the desired result.
For example, in the case of base=3 and exp=5 we have:

\[
3^5 = 3^{1\cdot2^2+0\cdot2^1+1\cdot2^0} = 3^{1\cdot2^2} \cdot 3^{0\cdot2^1} \cdot 3^{1\cdot2^0}
\] (8)

(c) Give a precise count on the number of multiplications used by the fast exponentiation routine. (Hint: Consider the binary representation of N.)

Answer: The fast exponentiation algorithm iterates over all bits in the binary representation of exp. In every iteration, the value of \(x \) is squared (one multiplication). If the current bit is 1, the value of \(x \) is multiplied with the result (another multiplication). When the number of bits is 1, \(n \) will be 1 or 0; in this case, no multiplication is carried out. Thus, the total number of multiplications is:
\(# \text{ bits in } N\) + \(# '1' \text{ in } N\) – 2.