Relations (Partial Orders), Functions. (Oct 16–20)

1. Let \(A = \{ x \in \mathbb{Z} : -3 \leq x \leq 3 \} \). Consider the following relations on \(A \): \(R_\prec \) (the less than relation), \(R_\leq \) (the less than or equal relation), \(R_\equiv \) (the equal relation), \(R_\geq \) (the greater than or equal relation), \(R_\succ \) (the greater than relation), \(R_\divides \) (the “divides” relation).

 - Which of these relations are partial orders?
 - For relations that are partial orders, determine (if any) their least elements, greatest elements, minimal elements, maximal elements.

2. Let \(R \subseteq A \times B \) be a relation from \(A \) to \(B \). Show that \(R \) induces naturally a function \(f : P(A) \to P(B) \) and a function \(g : P(B) \to P(A) \).

 If \(A = \{0, 1, 2, 3\} \), \(B = \{a, b, c, d, e, f\} \), and \(R = \{0, 2\} \times \{a, c, e\} \), what are \(f \) and \(g \)?

3. Let \(f : A \to B \). That is, \(f \) is a function from \(A \) to \(B \). Prove the following claims.

 - If \(X \subseteq Y \subseteq A \), then \(f(X) \subseteq f(Y) \).
 - If \(X \subseteq Y \subseteq B \), then \(f^{-1}(X) \subseteq f^{-1}(Y) \).
 - For any \(X, Y \subseteq A \), \(f(X \cap Y) \subseteq f(X) \cap f(Y) \). Show that the inclusion can be proper.
 - For any \(X, Y \subseteq A \), \(f(X \cup Y) = f(X) \cup f(Y) \).
 - For any \(X, Y \subseteq B \), \(f^{-1}(X \cap Y) = f^{-1}(X) \cap f^{-1}(Y) \).
 - For any \(X, Y \subseteq B \), \(f^{-1}(X \cup Y) = f^{-1}(X) \cup f^{-1}(Y) \).

4. Consider the following functions \(f : \mathbb{R} \to \mathbb{R} \) where \(f \) is respectively the floor function \((f(x) = \lfloor x \rfloor) \), the ceiling function \((f(x) = \lceil x \rceil) \), the absolute value function \((f(x) = |x|) \), the exponential function \((f(x) = e^x) \), the identity function \((f(x) = x) \), the quadratic function \((f(x) = x^2) \), the cubic function \((f(x) = x^3) \), and the sine function \((f(x) = \sin(x)) \). For each function, determine if it is 1-1, onto, its range, and \(f^{-1}(\{x\}) \) for each \(x \in \mathbb{R} \).