Resolution and Logic Programming

★ Ground resolution
★ Unification and occur check
★ General Resolution
★ Logic Programming
★ SLD-resolution
★ The programming language Prolog
 ⇒ Syntax
 ⇒ Arithmetic
 ⇒ Lists

Motivation (1)

- We want to show \(\Phi \models \Psi \), for two propositional formulas \(\Phi, \Psi \).
- Assume \(\Phi \) is \(\Phi_1 \land \cdots \land \Phi_n \) in CNF, and \(\Psi \) is \(L_1 \land \cdots \land L_m \), a conjunction of literals.
- Showing \(\Phi \models \neg \Psi \) is equivalent with showing that the set of formulas \(\{ \Phi_1, \ldots, \Phi_n, \neg \Psi \} \) is unsatisfiable.
- \textbf{Resolution}: a procedure \(\text{Res}(\chi_1, \chi_2) \) applied to two formulas, and returning a (simpler) formula \(\chi \), such that, if \(\{ \chi_1, \chi_2, \chi \} \) is unsatisfiable, then so is \(\{ \chi_1, \chi_2 \} \).

Motivation (2)

- We hope to produce the iteration
 \[
 \{ \Phi_1, \ldots, \Phi_n \rightarrow \top \},
 \{ \Phi_1, \ldots, \Phi_n \rightarrow \top, \text{Res}(\neg \Psi, \Phi_0) = \chi_1 \},
 \{ \Phi_1, \ldots, \Phi_n \rightarrow \top, \text{Res}(\chi_1, \Phi_0) = \chi_2 \}
 \]
 \[
 \vdots
 \]
 \[
 \{ \Phi_1, \ldots, \Phi_n \rightarrow \top, \chi_1, \ldots, \chi_{k-1}, \text{Res}(\chi_{k-1}, \Phi_0) = \bot \} \quad \text{unsatisfiable}
 \]
 where \(1 \leq k \leq n, 1 \leq i \leq l. \)
- According to the property on the previous slide, if the last set is unsatisfiable, then so is the first set.
- A procedure showing that a set of formulas is unsatisfiable is called a \textit{resolution procedure}.

CNF and Clausal Form (1)

- Given the CNF propositional formula \(\Phi \equiv \Phi_1 \land \cdots \land \Phi_n \), where \(\Phi_i \) are disjuncts, \(1 \leq i \leq n \).
- For each \(i, 1 \leq i \leq n, \Phi_i \equiv p_{i1} \lor \cdots \lor p_{ik} \lor q_{i1} \land \cdots \land q_{il} \).
- \(\Phi \) is equivalent to \(p_{11} \land \cdots \land p_{ik} \lor q_{11} \land \cdots \land q_{il} \) which we call a \textit{clause}.
- We represent the clause by \(p_{i1} \cdots p_{ik} \rightarrow q_{i1} \cdots q_{il} \).
- We represent \(\Phi \) as the set of clauses
 \[
 \{ (p_{i1} \cdots p_{ik} \rightarrow q_{i1} \cdots q_{il}), \cdots | 1 \leq i \leq n \}
 \]
 which we call the \textit{clausal form} of \(\Phi \).

CNF and Clausal Form (2)

\(\neg(p_1 \land \cdots \land p_k) \) can be written as \(p_1 \land \cdots \land p_k \rightarrow \top \), or as \(p_1 \cdots p_k \rightarrow \neg \).
\(q_1 \lor \cdots \lor q_l \) can be written as \(\bot \rightarrow q_1, \ldots, q_l \),
or as \(q_1, \ldots, q_l \rightarrow \bot \).
\(\bot \) can be written as \(\bot \rightarrow \top \), and is denoted by \(\square \) (empty clause).

Ground Resolution

Given two clauses
\[
\chi_1 : p_{i1} \cdots p_{ik} \rightarrow q_{i1} \cdots q_{il},
\chi_2 : q_{s1} \cdots q_{sl} \rightarrow s_{l1} \cdots s_{lk}.
\]
If \(p_i \) and \(q_i \) are the same propositional symbol, then \(\text{Res}(\chi_1, \chi_2) \) is
\[
p_{i1} \cdots p_{ik} \rightarrow q_{i1} \cdots q_{il} \land p_{s1} \cdots p_{sl} \rightarrow s_{l1} \cdots s_{lk}.
\]
This is similar to the following cancelling rule in arithmetic.
\[
a+b=c \quad \Rightarrow \quad a+c=d+e
\]
\[
a+b+d = d+c+e.
\]
Ground Resolution Example

ϕ₁ is \(p \land q \rightarrow r \)
ϕ₂ is \(p \rightarrow p \)
ϕ₃ is \(q \rightarrow q \)
ψ is \(r \rightarrow r \)

\(\chi₁ = \text{Res}(ϕ₁, ψ) \) is \(p \land q \rightarrow r \)
\(\chi₂ = \text{Res}(ϕ₂, ψ) \) is \(q \rightarrow p \)
\(\chi₃ = \text{Res}(ϕ₃, ψ) \) is \(q \rightarrow q \)

Alternatively
\(\chi₁ = \text{Res}(ϕ₁, ψ) \) is \(q \rightarrow r \)
\(\chi₂ = \text{Res}(ϕ₂, ψ) \) is \(r \)
\(\chi₃ = \text{Res}(ϕ₃, ψ) \) is \(\Box \)

Predicate Logic Clauses

A predicate logic clause:

\(p(x, y), q(f(x, z), w) \rightarrow r(y, z, w), s(g(z), w) \)

Meaning:

\(\forall x \forall y \forall z \forall w \left(p(x, y) \land q(f(x, z), w) \rightarrow r(y, z, w) \lor s(g(z), w) \right) \)

- First order clauses are a subset of predicate logic; not all predicate logic formulas can be expressed as clauses.
- They are more general than a Turing machine; can specify all possible computations.

Non-Ground Resolution

Consider the following first order clauses.

\(\chi₁ : A₁ \land A₂ \land \ldots \land Aₙ \rightarrow B₁ \land B₂ \)
\(\chi₂ : C₁ \land C₂ \land \ldots \land Cₙ \rightarrow D₁ \land D₂ \)

where the \(Aᵢ, Bᵢ, Cᵢ, \) and \(Dᵢ \) are first order atoms. Assume there exists a substitution \(θ \) such that \(Aθ = Dθ \). We call \(θ \) a unifier. Then \(\text{Res}(χ₁, χ₂) \) is

\(Aθ \land Aθ \land \ldots \land Aθ \land B₁ \land B₂ \land C₁ \land C₂ \land \ldots \land Cₙ \land D₁ \land D₂ \)

which is the same as

\((A₁ \land \ldots \land Aₙ \land B₁ \land \ldots \land Bₙ \land C₁ \land \ldots \land Cₙ \land D₁ \land \ldots \land Dₙ)θ \)

Unification, MGU

Given two atoms, \(A, B \), can we find a unifying substitution \(θ \) such that \(Aθ = Bθ \)? Answer: YES.

A most general unifier (mgu) is a unifying substitution \(θ \) such that for every other unifier \(θ' \), there exists a substitution \(σ \) such that

\(Aθ' = (Aθ)σ \)
\(Bθ' = (Aθ)σ \)

Unification Algorithm

The following algorithm computes the mgu of two atoms \(A \) and \(B \), or returns "no solution" if no such mgu exists.

1. If the predicate symbols of \(A \) and \(B \) are not identical, return "no solution".
2. Form \(p₁(x₁, \ldots, xₖ) = p₂(x₁', \ldots, xₖ') \) derive these of equations \(x₁ = x₁', \ldots, xₖ = xₖ' \).
3. Enum all equations of the form \(x = x' \), where \(x \) is a variable.
4. Transform all equations of the form \(t = s \), where \(t \) is not a variable, into \(s = t \).
5. Let \(f = f' \) be an equation where \(f \) and \(f' \) are not variables. If the function symbols of \(f \) and \(f' \) are not identical return "no solution." Otherwise, replace the equation \(f(x₁, \ldots, xₖ) = f'(x₁', \ldots, xₖ') \) by the equations \(x₁ = x₁', \ldots, xₖ = xₖ' \).
6. Let \(x = y \) be an equation such that \(x \) has another occurrence in the set of equations. If \(t \) contains \(x \), return "no solution." Otherwise replace all other occurrences of \(x \) by \(y \).

Repeat steps 4, 5, and 6 until it is no longer possible. If the "no solution" answer has not been produced yet all equations are of the form \(x = f \), where \(f \) does not contain \(x \). The mgu contains all the bindings \(f/x \) where \(x = f \) is an equation in our set.
Example of Applying the Unification Algorithm

Unify the atoms:
\[p(x, f(x, h(x)), y) \] and \[p(g(z), f(g(z)), w, z) \]

First derive the equations:

1. \[x = g(y) \]
2. \[f(x, h(x), y) = f(g(z), w, z) \]

Apply step 5 and replace (2) by

3. \[x = g(z) \]
4. \[h(x) = w \]
5. \[y = z \]

Apply step 4 and replace (4) by

6. \[w = h(x) \]

Example (2)

Current set:

1. \[x = g(y) \]
2. \[x = g(z) \]
3. \[w = h(x) \]
4. \[y = z \]

Replace \((2'')\) by

Use \((1'')\) in \((1'')\) and \((3'')\). The set is now:

1. \[x = g(y) \]
2. \[x = g(z) \]
3. \[w = h(g(z)) \]
4. \[y = z \]

Substitution:

\[[g(z)/x, h(g(z))/w, z/y] \]

Example (3)

\[p(x, f(x, h(x), y))[g(z)/x, h(g(z))/w, z/y] \] is

\[p(g(z), f(g(z), h(g(z)), z)) \]

\[p(g(y), f(g(z), w, z))[g(z)/x, h(g(z))/w, z/y] \] is

\[p(g(z), f(g(z), h(g(z)), z)) \]

Occur Check

Step 6 in the unification algorithm can be very expensive.

Consider unifying
\[p(x_1, x_2, \ldots, x_n, y_1) \] and \[p(f(x_1, x_2, \ldots, x_n), f(x_1, x_2, \ldots, x_n)) \]

This produces:

1. \[x_1 = f(y_1, y_2) \]
2. \[x_2 = f(f(x_1, x_2, \ldots, x_n)) \]
3. \[x_3 = f(f(f(x_1, x_2, \ldots, x_n), f(f(x_1, x_2, \ldots, x_n)))) \]

.....

\[x_n = \text{term with } 2^n \text{ occurrences of } y_1 \]

\[x_0 = \text{term with } 2^{n-1} \text{ occurrences of } y_0 \]

Using step 6, we must return “no solution”; detecting the fact that \(y_0 \) occurs in the right hand side of last equation may require exponential time.

General Resolution

Consider the following first order clauses:

\[X_1 : A_1 \rightarrow B_1 \]
\[X_2 : C_1 \rightarrow B_1 \]

where the \(A_i, B_i, C_i \) and \(D_i \) are first order atoms. Denote by \(T \) the sup of all \(A_i \) and \(D_i \). Then \(\text{Res}(X_1, X_2) \) is

\[\text{Res}(X_1, X_2) = \{ A_1 \rightarrow B_1; \quad \ldots; \quad A_n \rightarrow B_n; \quad C_1 \rightarrow B_1; \quad \ldots; \quad C_n \rightarrow B_1; \quad D_1 \rightarrow B_1; \quad \ldots; \quad D_n \rightarrow B_1 \} \]

If there exist no two unifiable atoms \(A_i \) and \(D_j \) then the resolution rule is undefined.

Resolution Procedure: Let \(S \) be a set of clauses and define \(S_0 = S \). Assume that \(S_n \) has been constructed. Choose two clauses \(X_i, X_j \in S_i \) such that \(\text{Res}(X_i, X_j) \) is defined. If \(\text{Res}(X_i, X_j) = \emptyset \), the original set \(S \) is unsatisfiable. Otherwise, construct \(S_{i+1} = S_i \cup \text{Res}(X_i, X_j) \). If \(S_{i+1} = S \) for all possible pairs \(j \) and \(j \) then \(S \) is satisfiable.

Example of General Resolution

Original set:

1. \[p(x) \rightarrow q(x, f(x)) \]
2. \[p(x) \rightarrow q(x, s(x)) \]
3. \[r(a) \rightarrow r(x) \]
4. \[r(a) \rightarrow r(f(a)) \]
5. \[r(a) \rightarrow r(f(a)) \]
6. \[r(a, f(x)) \rightarrow r(x) \]
7. \[r(f(a), x) \rightarrow r(f(a)) \]

Application of the resolution procedure:

1. \[p(x) \rightarrow q(x, f(x)) \rightarrow [a/x] \] 3, 6
2. \[p(x) \rightarrow q(x, s(x)) \rightarrow [a/x] \] 2, 4
3. \[r(a) \rightarrow r(f(a)) \rightarrow 8, 9
4. \[r(a) \rightarrow r(f(a)) \rightarrow [a/x] \] 1, 4
5. \[r(a) \rightarrow r(f(a)) \rightarrow 8, 11
6. \[r(a, f(x)) \rightarrow r(x) \rightarrow 9, 12
7. \[r(f(a), x) \rightarrow r(f(a)) \rightarrow 8, 13
8. \[r(f(a)) \rightarrow r(f(a)) \rightarrow 9, 14
9. \[r(f(a)) \rightarrow r(f(a)) \rightarrow 10, 15
10. \[r(f(a)) \rightarrow r(f(a)) \rightarrow 11, 14
11. \[r(f(a)) \rightarrow r(f(a)) \rightarrow 12, 15
12. \[r(f(a)) \rightarrow r(f(a)) \rightarrow 13, 15
13. \[r(f(a)) \rightarrow r(f(a)) \rightarrow 14, 15
14. \[r(f(a)) \rightarrow r(f(a)) \rightarrow 15, 15
15. \[□ \] 10, 14
Soundness and Completeness of Resolution

Soundness: If the unsatisfiable clause □ is derived during the general resolution procedure, then the original set of clauses is unsatisfiable.

Completeness: If a set of clauses is unsatisfiable, then the empty clause □ can be derived by the resolution procedure.

Logic Programming

From now on, instead of writing clauses as

\[A_1, \ldots, A_n \rightarrow B_1, \ldots, B_m \]

we shall prefer to write clauses as

\[B_1, \ldots, B_m \leftarrow A_1, \ldots, A_n \]

For \(n = 1 \) we have Horn clauses, typically denoted as

\[H \leftarrow A_1, \ldots, A_n \]

\(H \) — the head, \(A_1, \ldots, A_n \) — the body

If \(n = 0 \), the clause is a goal.

If \(n = 1 \) and \(m = 0 \) (body is empty), we have a fact.

A logic program is a set of Horn clauses.

Resolution for Logic Programs

In what follows, we shall introduce restrictions for the resolution procedure that would make it more computationally efficient.

Definition: A computation rule is a rule for choosing literals in a goal clause. A search rule is a rule for choosing clauses to resolve with the chosen literal in a goal clause.

Typical computation rule: leftmost atom in a goal \(\Gamma \).

Typical search rule: clauses are tried in the order in which they are written.

Example of Resolution for Logic Programs

<table>
<thead>
<tr>
<th>Logic program</th>
<th>Applying the resolution procedure, with computation and search rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. (q(x,y) \leftarrow p(x,y))</td>
<td>7. (\leftarrow p(x,a)) [(x/a \rightarrow y)] 6,1</td>
</tr>
<tr>
<td>2. (q(x,y) \leftarrow p(x,z,q(x,z)))</td>
<td>8. (\leftarrow p(x,a) [(x/a \rightarrow y)] 7,2</td>
</tr>
<tr>
<td>3. (p(x,a) \leftarrow)</td>
<td>9. (\leftarrow q(x,y) [(y/a \rightarrow z)] 8,5</td>
</tr>
<tr>
<td>4. (p(x,b) \leftarrow)</td>
<td>10. (\leftarrow p(x,a) [(x/a \rightarrow y)] 9,1</td>
</tr>
<tr>
<td>5. (p(x,b) \leftarrow)</td>
<td>11. □</td>
</tr>
<tr>
<td>6. Goal: (\leftarrow q(x,a))</td>
<td>10,3</td>
</tr>
</tbody>
</table>

The Programming Language Prolog

A Prolog program is, in its most basic form, a set of Horn clauses. Given a goal, the execution of the program and the goal is achieved by applying the resolution procedure with the following rules:

Computation rule: Choose literals from left to right in the goal.

Search rule: Choose clauses top-to-bottom as they are written in the program text.

The resolution procedure augmented with these rules is called SLD-resolution.

Syntax:

- Predicate and function symbols start with lowercase letters.
- Variables start with uppercase letters or underscore.
- The arrow is represented by the \(\leftarrow \) operator.
- The dot . acts as a clause separator.

Prolog Example

\[\text{ancestor}(X, Y) := \text{parent}(X, Y). \]
\[\text{ancestor}(X, Y) := \text{parent}(X, Z), \text{ancestor}(Z, Y). \]

parent(bob, allen), **parent**(catherine, allen),

parent(dave, bob), **parent**(ellen, bob),

parent(harry, george), **parent**(idos, george),

parent(joe, harry).

Goal: ancestor(fred, bob)

Answer: Yes

Goal: ancestor(fred, a)

Answer: A:bob

Goal: ancestor(A, allen)

Goal: ancestor(A, Z)
Execution of Prolog Programs, SLD-Tree.

Free and Bound Variables

When a substitution is computed, a pair x/t is called a **binding**.

If t is a variable, then x is called **free**.

If t is a non-variable term, then x is called **bound**.

Prolog uses special predicates for arithmetic, accessing files, etc. Such predicates have restrictions on using free variables.

Arithmetic Predicates

The predicate **is**:

- $\exists x \; x \equiv 2 \cdot 3$.
 - Answer: Yes

- $\exists x \; x \equiv 2 \cdot 3$.
 - Answer: Yes

- $\exists x \; x \equiv 2 \cdot 3$.
 - Answer: Yes

- $\exists x \; x \equiv 2 \cdot 3$.
 - Answer: Yes

- $\exists x \; x \equiv 2 \cdot 3$.
 - Answer: Yes

A Factorial Program

Correct program:

```
factorial(0, 1).
factorial(N, X) :-
    N > 0, NL is N-1, factorial(NL, X1), X is X1*N.
```

Goal: $\exists \; \text{factorial}(5, X)$.

Answer: $X = 120$

Wrong program:

```
factorial(0, 1).
factorial(N, X) :-
    N > 0, NL is N-1, X is X1*N, factorial(NL, X1).
```

Goal: $\exists \; \text{factorial}(5, X)$.

Error!!!

Lists (By Example)

Examples of lists:

- $[1, 2, 3, 4]$ is empty list.
- $[1, 2, 3, 4]$ is same as $[1, 2, 3, 4]$.
- $[1, 2, 3, 4]$ is same as $[1, 2, 3, 4]$.
- $[1, 2, 3, 4]$ is same as $[1, 2, 3, 4]$.

- $X = [1, 2, 3, 4]$.
 - Answer: Yes

- $X = [1, 2, 3, 4]$.
 - Answer: Yes

- $X = [1, 2, 3, 4]$.
 - Answer: Yes

Warning:

- $X = [a, b, c, d, e, f]$.
 - Answer: Yes

- $X = [a, b, c, d, e, f]$.
 - Answer: Yes

- $X = [a, b, c, d, e, f]$.
 - Answer: Yes

- $X = [a, b, c, d, e, f]$.
 - Answer: Yes

| [HT] is syntactic sugar for $[1, 2, 3]$.
| [H] is syntactic sugar for nil.

Lists:

```
append([], X, X).
append([H|T], X, [H|T1]) :- append(T, X, T1).
```

Goal: $\exists \; \text{append}([a, b, c], [d, e, f], A)$.

Answer: $A = [a, b, c, d, e, f]$

Goal: $\exists \; \text{append}([a, b, c], A, [a, b, c, d, e, f])$.

Answer: $A = [a, b, c, d, e, f]$

Goal: $\exists \; \text{append}([a, b, c, d, e, f])$.

Answer: $A = [a, b, c, d, e, f]$

```

```
Lists: Sum of All Elements

\[
\begin{align*}
 \text{sum}([1,0]) &= \text{sum}(HT), X \text{ is } X+H. \\
 \text{sum}([H,T],X) &\leftarrow \text{sum}(T, X), X \text{ is } X+H.
\end{align*}
\]

<table>
<thead>
<tr>
<th>Goals</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>\text{sum}([1,2,3,4],X)</td>
<td>A=10.0</td>
</tr>
<tr>
<td>\text{sum}([1,2,3,4],10)</td>
<td>Yes</td>
</tr>
<tr>
<td>\text{sum}([1,2,3,4],11)</td>
<td>No</td>
</tr>
<tr>
<td>\text{sum}(A,10)</td>
<td>Error!!!</td>
</tr>
</tbody>
</table>

Lists: member

\[
\begin{align*}
 \text{member}(L,[H,L]) &= \text{member}(X,[H,T]) \leftarrow \text{member}(T,X). \\
 \text{member}(L,[H,L]) &\leftarrow \text{member}(L,A).
\end{align*}
\]

<table>
<thead>
<tr>
<th>Goals</th>
<th>Answer</th>
</tr>
</thead>
<tbody>
<tr>
<td>?= \text{member}(1,[1,2,3,4])</td>
<td>A=[1,1]</td>
</tr>
<tr>
<td>?= \text{member}(10,[1,2,3,4])</td>
<td>A=[1,1]</td>
</tr>
<tr>
<td>?= \text{member}(A,[1,2,3])</td>
<td>Infinite list of bindings!!</td>
</tr>
<tr>
<td>?= \text{member}(A,[1,2,3])</td>
<td>A=1</td>
</tr>
<tr>
<td>?= \text{member}(A,[1,2,3])</td>
<td>A=2</td>
</tr>
<tr>
<td>?= \text{member}(A,[1,2,3])</td>
<td>A=3</td>
</tr>
</tbody>
</table>