Motivation for verification

Computation Tree Logic — syntax and semantics

Example: mutual exclusion

A model checking algorithm
Verification methods may be classified according to the following main criteria:

- **Proof-based vs. model-based** - if a soundness and completeness theorem holds, than:
 - proof = valid formula = true in all models;
 - model-based = check satisfiability in one model

- **Degree of automation** - fully automated, partially automated, or manual

- **Full- vs. property-verification** - a single property vs. full behavior

- **Domain of application** - hardware or software; sequential or concurrent; reactive or terminating; etc.

- **Pre- vs. post-development**
Model Checking is a verification method that is:

- model-based, automated, using a property-verification approach, mainly useful to verifying concurrent programs and reactive systems, typically in a post-development stage.

Program Verification (to be studied later), is:

- proof based, computer-assisted (partially-automated), mainly used for sequential, terminating programs
• Classical propositional and predicate calculi use a *unique* universe for interpreting formulas.

• In the 1950s Kripke introduced a type of semantic models where more (local) universes are possible

• There is a relation of *accessibility* between these universes and operators to express relationships between such universes, leading to various kinds of *modalities*.

• When such operators are added, one gets *modal logics*. When *time* is the parameter that causes the passing from one universe to another, one speaks about *temporal logics*.
Programs (software) fit well in this framework:

- a universe corresponds to a state;
- the accessibility relation is given by the transition from one state to another;
- classic predicate logic may be used to specify relationships between variables in a state.

At this point we are lacking a mechanism to relate these universes (states). A variety of such mechanisms shall be introduced throughout this course.
We have the following characterizations of time:

- **linear** — a chain of time instances, or
- **branching** — several alternative future worlds may be possible at a given point in time;

or

- **discrete** — the time is represented by the set of integers, or
- **continuous** — time is represented by the set of real numbers.

Next, we shall study *Computation Tree Logic (CTL)* which is a type of temporal logic using branching and discrete time.
For any model checking problem (based on CTL, or other logic), we are required to answer the question of whether

\[M, s \models \Phi \]

where

- \(M \) is an appropriate model for the given system, and \(s \) is a state of the model;
- \(\Phi \) is a CTL formula intended to be satisfied by the system.
BNF definition of CTL:

\[\phi ::= \bot \mid \top \mid p \mid (\neg \phi) \mid (\phi \land \phi) \mid (\phi \lor \phi) \mid (\phi \rightarrow \phi) \mid AX\phi \mid EX\phi \mid A[\phi U \phi] \mid E[\phi U \phi] \mid AG\phi \mid EG\phi \mid AF\phi \mid EF\phi \]

The new connectives **AX**, **EX**, **AU**, **EU**, **AG**, **EG**, **AF**, and **EF** are called *temporal connectives*.
The temporal connectives use two letters:

- **A** and **E** to quantify over the breadth in a branching point:
 - **All alternatives** in a branching point;
 - there **Exists at least one alternative** in a branching point

- **G** and **F** to quantify along the paths:
 - all future states on a path, **Globally**;
 - there exists at least one **Future state** along the path

Two more operators expressing properties along the paths are used:

- **X** to refer to the **next state** in the path (this leads to the discrete feature of the time), and

- **U** —the **Until** operator.
Convention:

- the unary connectives (including AX, EX, AG, EG, AF, and EF) bind most tightly;
- next come \land and \lor;
- lowest priority \rightarrow, AU and EU.
Examples

1. $EG\ r$
2. $AG(q \rightarrow EG\ r)$
3. $\forall r \cup q$
4. $EF\ E[r \cup q]$
5. $\forall p \cup EF\ r$
6. $EF\ EGp \rightarrow AF\ r$
7. $AG\ AF\ r$
8. $\forall p_1 \cup \forall p_2 \cup p_3$
9. $E[\forall p_1 \cup p_2] \cup p_3$
10. $AG(p \rightarrow \forall p \cup (\neg p \land \forall \neg p \cup q))]$
The parse tree of the formula

\[A[AX \neg p \cup E[EX(p \land q) \cup \neg p]] \]
A *model* $\mathcal{M} = (S, \rightarrow, L)$ for CTL consists of

- a set of states S
- a binary relation \rightarrow on S such that for every $s \in S$ there exists $s' \in S$ with $s \rightarrow s'$
- a labeling function $L : S \rightarrow \mathcal{P}(\text{Atoms})$

The intuition is that L says which atoms are true in a state and \rightarrow describes how the systems move from state to state.

Graphical description:

- $S = \{s_0, s_1, s_2\}$
- $\rightarrow = \{(s_0, s_1), (s_0, s_2), (s_1, s_0), (s_1, s_2), (s_2, s_2)\}$
- $L(s_0) = \{p, q\}, L(s_1) = \{q, r\}, L(s_2) = \{r\}$
Let $\mathcal{M} = (S, \rightarrow, L)$ be a model for CTL, $s \in S$, and ϕ a CTL formula. The satisfaction relation

$\mathcal{M}, s \models \phi$

is inductively defined by

1. $\mathcal{M}, s \models \top$ and $\mathcal{M}, s \not\models \bot$ for all $s \in S$;
2. $\mathcal{M}, s \models p$ iff $p \in L(s)$;
3. $\mathcal{M}, s \models \neg \phi$ iff $\mathcal{M}, s \not\models \phi$;
4. $\mathcal{M}, s \models \phi \land \psi$ iff $\mathcal{M}, s \models \phi$ and $\mathcal{M}, s \models \psi$;
5. $\mathcal{M}, s \models \phi \lor \psi$ iff $\mathcal{M}, s \models \phi$ or $\mathcal{M}, s \models \psi$;
6. $\mathcal{M}, s \models \phi \rightarrow \psi$ iff $\mathcal{M}, s \not\models \phi$ or $\mathcal{M}, s \models \psi$;
7. $\mathcal{M}, s \models AX \phi$ iff for all s' such that $s \rightarrow s'$ we have $\mathcal{M}, s' \models \phi$;
8. $\mathcal{M}, s \models EX \phi$ iff for some s' such that $s \rightarrow s'$ we have $\mathcal{M}, s' \models \phi$;
9. $\mathcal{M}, s \models \text{AG} \phi$ iff for all paths $s = s_1 \rightarrow s_2 \rightarrow \ldots$ we have $\mathcal{M}, s_i \models \phi$, for all i;

10. $\mathcal{M}, s \models \text{EG} \phi$ iff there exists a path $s = s_1 \rightarrow s_2 \rightarrow \ldots$ such that $\mathcal{M}, s_i \models \phi$, for all i;

11. $\mathcal{M}, s \models \text{AF} \phi$ iff for all paths $s = s_1 \rightarrow s_2 \rightarrow \ldots$ we have $\mathcal{M}, s_i \models \phi$, for some i;

12. $\mathcal{M}, s \models \text{EF} \phi$ iff there exists a path $s = s_1 \rightarrow s_2 \rightarrow \ldots$ such that $\mathcal{M}, s_i \models \phi$, for some i;

13. $\mathcal{M}, s \models \text{A}[\phi \cup \psi]$ iff for all paths $s = s_1 \rightarrow s_2 \rightarrow \ldots$ there exists an i such that $\mathcal{M}, s_i \models \psi$ and $\mathcal{M}, s_j \models \phi$ for all $j < i$;

14. $\mathcal{M}, s \models \text{E}[\phi \cup \psi]$ iff there exists a path $s = s_1 \rightarrow s_2 \rightarrow \ldots$ and an i such that $\mathcal{M}, s_i \models \psi$ and $\mathcal{M}, s_j \models \phi$ for all $j < i$;
• Notice that ‘the future’ is the reflexive-transitive closure \(\rightarrow^* \) of the (direct) accessibility relation \(\rightarrow \).

• In common words:

 – the *future contains the present* and

 – *a future of a future of* \(t \) *is a future of* \(t \).

• By unfolding [unwinding] the graph of a CTL model one gets and *infinite tree*, whence ‘*computation tree logic*’.
A CTL graph and its unfolding.
The Meaning of $\text{EF, EG, AG, and AF}$
Until $p \cup q$ in a linear time model [or on a path in CTL].

The formula $p \cup q$ holds in s_3, but not in s_0 (we suppose p holds only in the indicated states)
Examples

\[M, s_0 \models p \land q \quad \text{Yes} \]
\[M, s_0 \models \neg r \quad \text{Yes} \]
\[M, s_0 \models T \quad \text{Yes} \]
\[M, s_0 \models \text{EX} (q \land r) \quad \text{Yes} \]
\[M, s_0 \models \neg \text{AX} (q \land r) \quad \text{Yes} \]
\[M, s_0 \models \neg \text{EF} (p \land r) \quad \text{Yes} \]
\[M, s_0 \models \text{EG} r \quad \text{No} \]
\[M, s_2 \models \text{EG} r \quad \text{Yes} \]
\[M, s_2 \models \text{AG} r \quad \text{Yes} \]
\[M, s_0 \models \text{AF} r \quad \text{Yes} \]
\[M, s_0 \models E[(p \land q) \lor r] \quad \text{Yes} \]
\[M, s_0 \models A[p \lor r] \quad \text{Yes} \]
Examples of practically relevant properties that may be checked:

- it is possible to reach a state where started holds, but ready not:

 \[\text{EF}(\text{started} \land \neg \text{ready}) \]

- for any state, if a request occurs, then it will eventually be acknowledged:

 \[\text{AG}(\text{request} \rightarrow \text{AF acknowledged}) \]

- a certain process is enabled infinitely often on every computation path:

 \[\text{AG}(\text{AF enabled}) \]

- whatever happens, a certain process will eventually be permanently deadlocked:

 \[\text{AF}(\text{AG deadlocked}) \]
from any state it is possible to get to a *restart* state:

$$AG(\text{EF restart})$$

an upwards traveling elevator at the 2nd floor does not change its direction when has passengers going to the 5th floor:

$$AG(floor = 2 \land direction = \text{up} \land ButtonPressed5 \rightarrow A[direction = \text{up} \lor floor = 5])$$

the elevator can remain idle on the trird floor with its doors closed

$$AG(floor = 3 \land idle \land door = \text{closed} \rightarrow EG(floor = 3 \land idle \land door = \text{closed}))$$
Definition: Two CTL formulas ϕ and ψ are *semantically equivalent*, denoted $\phi \equiv \psi$ if any state in any model that satisfies one of them also satisfies the other.

Useful equivalences:

1. $\neg AF \phi \equiv EG \neg \phi$
2. $\neg EF \phi \equiv AG \neg \phi$
3. $\neg AX \phi \equiv EX \neg \phi$
4. $AF \phi \equiv A[\top U \phi]$
5. $EF \phi \equiv E[\top U \phi]$
Corollary (adequate sets of temporal connectives): The following sets of connectives are adequate for CTL (in the sense that each CTL formula may be transformed into an equivalent one using only those connectives):

- AU, EU and EX;
- EG, EU and EX; (hint for proof: $A[\phi \ U \ \psi] \equiv \neg(E[\neg\psi \ U (\neg\phi \land \neg\psi)] \lor \text{EG } \neg\psi)$)
- AG, AU and AX;
- AF, EU and AX
More useful equivalences (fixed-point definitions)

6 \(\text{AG} \phi \equiv \phi \land \text{AX} \text{AG} \phi \)
7 \(\text{EG} \phi \equiv \phi \land \text{EX} \text{EG} \phi \)
8 \(\text{AF} \phi \equiv \phi \lor \text{AX} \text{AF} \phi \)
9 \(\text{EF} \phi \equiv \phi \lor \text{EX} \text{EF} \phi \)
10 \(\text{A} \phi \text{ U } \psi \equiv \psi \lor (\phi \land \text{AX} \text{A} \phi \text{ U } \psi) \)
11 \(\text{E} \phi \text{ U } \psi \equiv \psi \lor (\phi \land \text{EX} \text{E} \phi \text{ U } \psi) \)

A mechanism for solving such fixed-point equations \(Y = \phi \land \text{AX} \ Y \) and the next operators \(\text{AX} \) and \(\text{EX} \) are sufficient to represent all temporal logic operators.
Goal: to develop protocols for accessing some critical sections such that only one process can be in its critical section at a time. A collection of desirable properties is:

Safety: the protocol allows only one process to be in its critical section at any time

Liveness: whenever any process wants to enter its critical section, it will eventually be permitted to do so

Non-blocking: a process can always request to enter its critical section

No strict sequencing: Processes need not enter their critical section in strict sequence
A simple model MUT1:

The system consists of two processes P_1 and P_2, each making a loop $n \rightarrow t \rightarrow c \rightarrow \ldots$ (noncritical \rightarrow trying \rightarrow critical $\rightarrow \ldots$). The system’s behaviour is the product (interleaving) of the behaviours of P_1 and P_2, but the state (c_1, c_2) is excluded.
Mutual Exclusion (3)

Safety: $\phi_1 = \text{def } AG \neg(c_1 \land c_2)$ — satisfied in each state;

Liveness: $\phi_2 = \text{def } AG(t_1 \rightarrow AF c_1)$ — not satisfied in the initial state s_0; e.g., s_1 is accessible, t_1 is true, but there is a path $s_1 \rightarrow s_3 \rightarrow s_7 \rightarrow s_1 \rightarrow \ldots$ where c_1 is always false;

Non-blocking: $\phi_3 = \text{def } AG(n_1 \rightarrow EX t_1)$ — true

No strict sequencing:

$\phi_4 = \text{def } EF(c_1 \land E[c_1 U (\neg c_1 \land E[\neg c_2 U c_1])])$ — true
A second model MUT2:
• This model is obtained by splitting state s_3 of MUT1 in two different states s_3 and s_8.

• By splitting s_3 into two states we are able to identify which process was the first asking to access its critical section: if P_1 was the first, the resulting state is s_3, otherwise s_8.

Fact: All four properties (i.e., formulas ϕ_1 to ϕ_4) are valid in MUT2.
Recall that the problem to be solved by model checking is

(A) “Given a model \mathcal{M}, a CTL formula ϕ, and a state s, does $\mathcal{M}, s \models \phi$ hold?”, where

- \mathcal{M} is a model of the system and s is a state of the model;
- ϕ is a CTL formula intended to be satisfied by the system.

What is the model used for the system? Typically:

“A system is represented by a finite transition system (usually, a huge labeled directed graph, often with millions of states).”

The infinite trees obtained by unfolding such graphs are useful to develop an intuition of the reasoning process, but not to be used on our finite computers.
Given \mathcal{M}, s, and ϕ, the result returned by a model checker is either

(1) yes: $\mathcal{M}, s \models \phi$ or

(2) no: $\mathcal{M}, s \not\models \phi$

but, quite useful, in the latter case most of model checkers return a trace/path which invalidates ϕ, as well (a counterexample).

Alternative problem:

(B) Given a model \mathcal{M} and a CTL formula ϕ find all states s of the model which satisfy ϕ

These two problems are obviously equivalent: once one is able to develop algorithms to solve one of them, the other is solved, as well. We will be mainly concerned with the latter problem B.
We are starting with a version using the following reduced set of CTL connectives

\[\Gamma = \{ \bot, \neg, \land, \text{AF}, \text{EU}, \text{EX} \} \]

where:

- \(\bot, \neg, \text{and} \land \) are used for the propositional part
- \text{AF, EU, and EX} are used for the temporal part

Hence, there is a **preprocessing** procedure to:

1. check the CTL syntax correctness of the given formula \(\phi \) and
2. translate it in a formula \(\text{TRANSLATE}(\phi) \) written with connectives in \(\Gamma \), only.

In the sequel, we suppose \(\phi \) to be in CTL \(\Gamma \)-format.
The idea of this algorithm is to:

- decompose formula ϕ in pieces (sub-formulas) and apply a structural induction to label the graph with sub-formulas of ϕ (the intuition is that a formula that labels a state is true in that state)

- for each such sub-formula, parse the graph to infer the truth in a state according to the meaning of the connectives and the truth values of its sub-formulas

In 2, one may need to know the values of sub-formulas in possibly many different states; this is the case for temporal operators, but not for the propositional ones.
The Labeling Algorithm (2)

Input: a CTL model $\mathcal{M} = (S, \rightarrow, L)$ and a CTL formula ϕ
(in Γ-format)

Output: the set of states of \mathcal{M} which satisfy ϕ

1. \bot: no states are labeled with \bot

2. p: label with p all states s such that $p \in L(s)$

3. $\neg\phi_1$: label s with $\neg\phi_1$ if s is not already labeled with ϕ_1

4. $\phi_1 \land \phi_2$: label s with $\phi_1 \land \phi_2$ if s is already labeled both with ϕ_1
 and ϕ_2

5. $\mathsf{EX} \phi_1$: label s with $\mathsf{EX} \phi_1$ if one of its successors is already
 labeled with ϕ_1
The Labeling Algorithm (3)

6. **AF \(\phi_1 \):**
 a. (initial marking) label any \(s \) with \(\text{AF} \ \phi_1 \) if \(s \) is already labeled with \(\phi_1 \)
 b. (repeated marking) label any \(s \) with \(\text{AF} \ \phi_1 \) if all successor states of \(s \) are already labeled with \(\text{AF} \ \phi_1 \)
 c. repeat (2) until there are no change

7. **E[\(\phi_1 \cup \phi_2 \)]:**
 a. (initial marking) label any \(s \) with \(E[\phi_1 \cup \phi_2] \) if \(s \) is already labeled with \(\phi_2 \)
 b. (repeated marking) label any \(s \) with \(E[\phi_1 \cup \phi_2] \) if \(s \) is already labeled with \(\phi_1 \) and at least one of its successor states is already labeled with \(E[\phi_1 \cup \phi_2] \)
 c. repeat (2) until there is no change
A rough analysis of the algorithm shows that it has the worse time complexity

\[O(k \cdot m \cdot (m + n)) \]

where \(k \) is the number of connectives of the formula, \(m \) is the number of the states of the model, and \(n \) is the number of the transitions of the model.
Checking $E[^\neg c_2 U c_1]$ in the second mutual exclusion model MUT2:
EG may be handled directly as follows:

6’ EG ϕ_1:

0. label \textit{all} states s with $\text{EG } \phi_1$

1. (initial de-marking) if ϕ_1 does not hold in s then delete the label $\text{EG } \phi_1$

2. (repeated de-marking) delete the label $\text{EG } \phi_1$ from any state s if none of its successor states is labeled with $\text{EG } \phi_1$

3. repeat (2) until there are no change

This different approach is based on the following greatest fix ed-point characterization of EG

$$\text{EG } \phi \equiv \phi \land \text{EX EG } \phi$$
An Improved Variant

- Use EX, EU, and EG instead of EX, EU, and AF
- handle EX and EU as before (using backwards breadth-first search)
- for $\text{EG} \phi$
 - restrict to states satisfying ϕ
 - find SCCs (maximal strongly connected components; these are maximal regions such that any vertex is connected to any other vertex in the region)
 - use backwards breadth-first searching on the restricted graph to find any state that can reach an SCC

Complexity is reduced to $O(k \cdot (m+n))$ (k,m,n as before).
function SAT(\(\phi\)):
/* precondition: \(\phi\) is an arbitrary CTL formula */
/* postcondition: SAT(\(\phi\)) returns the set of states satisfying \(\phi\) */
begin function

case
\(\phi\) is \(\top\): return \(S\)
\(\phi\) is \(\bot\): return \(\emptyset\)
\(\phi\) is atomic formula: return \(\{s \in S \mid \phi \in L(s)\}\)
\(\phi\) is \(\neg \phi_1\): return \(S \setminus \text{SAT}(\phi_1)\)
\(\phi\) is \(\phi_1 \land \phi_2\): return \(\text{SAT}(\phi_1) \cap \text{SAT}(\phi_2)\)
\(\phi\) is \(\phi_1 \lor \phi_2\): return \(\text{SAT}(\phi_1) \cup \text{SAT}(\phi_2)\)
\(\phi\) is \(\phi_1 \rightarrow \phi_2\): return \(\text{SAT}(\neg \phi_1 \lor \phi_2)\)
(...cont.)

ϕ is $AX\phi_1$: \text{return } SAT(\neg EX \neg \phi_1)$

ϕ is $EX\phi_1$: \text{return } SAT_{EX}(\phi_1)$

ϕ is $A[\phi_1 U \phi_2]$:

\text{return } SAT(\neg (E[\neg \phi_1 U (\neg \phi_1 \land \neg \phi_2)] \lor EG \neg \phi_2))

ϕ is $E[\phi_1 U \phi_2]$: \text{return } SAT_{EU}(\phi_1, \phi_2)$

ϕ is $EF\phi_1$: \text{return } SAT(E[\top U \phi_1])

ϕ is $EG\phi_1$: \text{return } SAT(\neg AF \neg \phi_1)$

ϕ is $AF\phi_1$: \text{return } SAT_{AF}(\phi_1)$

ϕ is $AG\phi_1$: \text{return } SAT(\neg EF \neg \phi_1)$

end case

end function
function \text{SAT}_{\text{EX}}(\phi):
/* pre: \phi is an arbitrary CTL formula */
/* post: \text{SAT}_{\text{EX}}(\phi) returns the set of states satisfying \text{EX } \phi */
local var X,Y
begin
X := \text{SAT}(\phi);
Y := \{s_0 \in S | s_0 \rightarrow s_1 \text{ for some } s_1 \in X\};
return Y
end
function SATAF(\(\phi\)):
/* pre: \(\phi\) is an arbitrary CTL formula */
/* post: SATAF(\(\phi\)) returns the set of states satisfying AF \(\phi\) */
local var X, Y
begin
 X := S;
 Y := SAT(\(\phi\));
 repeat until X = Y
 begin
 X := Y;
 Y := Y \(\cup\) \(\{\) s \(\in\) S | for all s' with s \(\rightarrow\) s' we have s' \(\in\) Y\(\}\) ;
 end
 return Y
end
function \text{SAT}^{EU}(\phi, \psi):

/* pre: \phi is an arbitrary CTL formula */

/* post: \text{SAT}^{EU}(\phi, \psi) returns the set of states satisfying \text{E}[\phi \cup \psi] */

local var \ W, \ X, \ Y

begin

\ W := \text{SAT}(\phi);
\ X := S;
\ Y := \text{SAT}(\psi);

repeat until X = Y

begin

\ X := Y;
\ Y := Y \cup (W \cap \{s \in S| \exists s' \text{ such that } s \rightarrow s' \text{ and } s' \in Y\});

end

return Y

end
The State Explosion Problem

- the labeling algorithm is quite efficient [linear in the size of the model]

- ... but the model itself may be large, exponential in the number of the components (running in parallel 10 threads each of them having 10 states results in a systems with $10^{10} = 10,000,000,000$ states!)

- the tendency of the state space to become very large is commonly referred to as the *state explosion* problem

- the state explosion problem is mainly *unsolved* - no general solution is known at the moment
The problem is general unsolved. The following techniques were developed to overcome it in certain particular cases:

1. **efficient data structures** - e.g., *ordered binary decision diagrams* (OBDDs) (OBDDs are used to represent sets of states, not individual states)
2. **abstraction** - one may abstract away variables in the model that are not relevant for the formula being checked
3. **partial order reduction** - different runnings may be equivalent as far as the formula to be checked is concerned; partial order reduction check one trace from such a class only
4. **induction** - this technique is used when a large number of processes is considered
5. **composition** - try to split the problem in small parts to be separately checked