CS3234 - Tutorial 5, Solutions

1.

(a) \(p(a, x, f(g(y))) \) and \(p(y, f(z), f(z)) \)

1 First derive the equations:

1. \(a = y \)
2. \(x = f(z) \)
3. \(f(g(y)) = f(z) \)

2 Apply step 4 and replace (1) by (4) \(y = a \):

1. \(y = a \)
2. \(x = f(z) \)
3. \(f(g(y)) = f(z) \)

3 Apply step 6 and replace (3) by (5) \(f(g(a)) = f(z) \), using (4):

1. \(y = a \)
2. \(x = f(z) \)
3. \(f(g(a)) = f(z) \)

4 Apply step 5 and replace (5) by (6) \(g(a) = z \):

1. \(y = a \)
2. \(x = f(z) \)
3. \(g(a) = z \)

5 Apply step 4 and replace (6) by (7) \(z = g(a) \):

1. \(y = a \)
2. \(x = f(z) \)
3. \(z = g(a) \)

6 Apply step 6 and replace (2) by (8) \(x = f(g(a)) \), using (7):

1. \(y = a \)
2. \(x = f(g(a)) \)
3. \(z = g(a) \)

We cannot further apply any other step of the unification algorithm and the most general unifier (mgu) is: \{\(y/a, y/f(g(a)), z/g(a) \}\)

(b) \(p(x, g(f(a)), f(x)) \) and \(p(f(a), y, y) \)

1 First we derive the equations:
(1) \(x = f(a) \)
(2) \(g(f(a)) = y \)
(3) \(f(x) = y \)

2 Apply step 6 and replace (3) by (4) \(f(f(a)) = y \), using (1):
(1) \(x = f(a) \)
(2) \(g(f(a)) = y \)
(4) \(f(f(a)) = y \)

3 Apply step 4 and replace (2) by (5) \(y = g(f(a)) \)
(1) \(x = f(a) \)
(5) \(y = g(f(a)) \)
(4) \(f(f(a)) = y \)

4 Apply step 6 and replace (4) by (6) \(f(f(a)) = g(f(a)) \), using (5):
(1) \(x = f(a) \)
(5) \(y = g(f(a)) \)
(6) \(f(f(a)) = g(f(a)) \)

5 Apply step 5 to unify \(f(f(a)) = g(f(a)) \) and fail, thus atoms are not unifiable.

(c) \(p(x, g(f(a)), f(x)) \) and \(p(f(y), z, y) \)

1 First we derive the equations:
(1) \(x = f(y) \)
(2) \(g(f(a)) = z \)
(3) \(f(x) = y \)

2 Apply step 4 and replace (2) by (4) \(z = g(f(a)) \):
(1) \(x = f(y) \)
(4) \(z = g(f(a)) \)
(3) \(f(x) = y \)

3 Apply step 6 and replace (3) by (5) \(f(f(y)) = y \), using (1):
(1) \(x = f(y) \)
(4) \(z = g(f(a)) \)
(5) \(f(f(y)) = y \)

4 Apply step 4 and replace (5) by (6) \(y = f(f(y)) \):
(1) \(x = f(y) \)
(4) \(z = g(f(a)) \)
(6) \(y = f(f(y)) \)

5 Apply step 6 to (6) in order to unify \(y = f(f(y)) \) and fail because \(y \) appears in the right-hand-side of the equality, thus atoms are not unifiable.
(d) \(p(a, x, f(g(y))) \) and \(p(z, h(z, u), f(u)) \)

1. First, we derive the equations:
 (1) \(a = z \)
 (2) \(x = h(z, u) \)
 (3) \(f(g(y)) = f(u) \)

2. Apply step 4 and replace (1) by (4) \(z = a \):
 (4) \(z = a \)
 (2) \(x = h(z, u) \)
 (3) \(f(g(y)) = f(u) \)

3. Apply step 6 and replace (2) by (5) \(x = f(a, u) \), using (4):
 (4) \(z = a \)
 (5) \(x = h(a, u) \)
 (3) \(f(g(y)) = f(u) \)

4. Apply step 5 and replace (3) by (6) \(g(y) = u \):
 (4) \(z = a \)
 (5) \(x = h(a, u) \)
 (6) \(g(y) = u \)

5. Apply step 4 and replace (6) by (7) \(u = g(y) \):
 (4) \(z = a \)
 (5) \(x = h(a, u) \)
 (7) \(u = g(y) \)

5. Apply step 6 and replace (5) by (8) \(x = f(a, g(y)) \), using (7):
 (4) \(z = a \)
 (8) \(x = f(a, g(y)) \)
 (7) \(u = g(y) \)

We cannot further apply the unification algorithm and the most general unifier (mgu) is : \(\{a/z, f(a, g(y))/x, g(y)/u \} \).

2.

(a) Let's assume that the first clause, \(p(a, b) \) is missing.

1. \(p(c, b) \)
2. \(p(x, y) \leftarrow p(x, z), p(z, y) \)
3. \(p(x, y) \leftarrow p(y, x) \)
4. Goal : \(\leftarrow p(a, c) \)
5. \(\leftarrow p(a, z), p(z, c), [a/x, c/y] \) 4,2
6. \(\leftarrow p(a, z), p(z, z1), p(z1, c), [a/x, z1/y] \) 5,2
7. ... infinite
So, there is no refutation.

(b) Let’s assume that the second clause, \(p(c, b) \) is missing.

1. \(p(a, b) \)
2. \(p(x, y) \leftarrow p(x, z), p(z, y) \)
3. \(p(x, y) \leftarrow p(y, x) \)
4. \(\text{Goal} : \leftarrow p(a, c) \)
5. \(\leftarrow p(a, z), p(z, c) \) \hspace{1cm} [a/x, c/y] \hspace{0.5cm} 4,2
6. \(\leftarrow p(a, b), p(b, c) \) \hspace{1cm} [b/z] \hspace{0.5cm} 5,1
7. \(\leftarrow p(b, c) \) \hspace{0.5cm} 6,1
8. \(\leftarrow p(b, z), p(z, c) \) \hspace{1cm} [b/x, c/y] \hspace{0.5cm} 7,2
9. \(\leftarrow p(b, z), p(z, z1), p(z1, c) \) \hspace{1cm} [b/x, z1/y] \hspace{0.5cm} 8,2
10. ... infinite

So, there is no refutation

(c) Let’s assume that the third clause, \(p(x, y) \leftarrow p(x, z), p(z, y) \) is missing.

1. \(p(a, b) \)
2. \(p(c, b) \)
3. \(p(x, y) \leftarrow p(y, x) \)
4. \(\text{Goal} : \leftarrow p(a, c) \)
5. \(\leftarrow p(c, a) \) \hspace{1cm} [a/x, c/y] \hspace{0.5cm} 4,3
6. \(\leftarrow p(a, c) \) \hspace{1cm} [c/x, a/y] \hspace{0.5cm} 5,3
7. ... infinite

So, there is no refutation

(d) Let’s assume that the forth clause, \(p(x, y) \leftarrow p(y, x) \) is missing.

1. \(p(a, b) \)
2. \(p(c, b) \)
3. \(p(x, y) \leftarrow p(x, z), p(z, y) \)
4. \(\text{Goal} : \leftarrow p(a, c) \)
5. \(\leftarrow p(a, z), p(z, c) \) \hspace{1cm} [a/x, c/y] \hspace{0.5cm} 4,3
6. \(\leftarrow p(a, b), p(b, c) \) \hspace{1cm} [b/z] \hspace{0.5cm} 5,1
7. \(\leftarrow p(b, c) \) \hspace{0.5cm} 6,2
8. \(\leftarrow p(b, z), p(z, c) \) \hspace{1cm} [b/x, c/y] \hspace{0.5cm} 6,3
9. \(\leftarrow p(b, z), p(z, z1), p(z1, c) \) \hspace{1cm} [b/x, z1/y] \hspace{0.5cm} 8,3
10. ... infinite

So, there is no refutation.
Proof:
Clauses 3 and 4 have completely general heads \(p(x, y) \), they will match any subgoal. Thus, if clause 3 is before clause 4 in the program, the system will never consider clause 4 and vice versa. Using depth-first search algorithm (like we did), it will never be found a refutation (the leftmost path in the search tree is infinite).

3.

(a) the split predicate takes a list of integers and splits it into two lists containing the odd-ranked, and the even-ranked elements of the original list, respectively.

\[
\text{split} ([\emptyset], [], []). \\
\text{split} ([H|T], [H|Odds], Evens) :- \\
\text{split} (T, Evens, Odds).
\]

Another solution is the following:

\[
\text{split} ([\emptyset], [], []). \\
\text{split} ([A], [A], []). \\
\text{split} ([A, B|T], [A|T1], [B|T2]) :- \\
\text{split} (T, T1, T2).
\]

(b) the merge predicate takes two sorted lists of integers and merges them into a sorted list containing all the elements of the two lists

\[
\text{merge} ([\emptyset], T, T). \\
\text{merge} (T, [], T). \\
\text{merge} ([H1|T1], [H2|T2], [H1|T3]) :- \\
H1 \leq H2, \text{merge} (T1, [H2|T2], T3). \\
\text{merge} ([H1|T1], [H2|T2], [H2|T3]) :- \\
H1 > H2, \text{merge} ([H1|T1], T2, T3).
\]

(c) the mergesort predicate uses split and merge, defined previously, to sort a list of integers using the mergesort algorithm.

\[
\text{mergesort} ([\emptyset], []). \\
\text{mergesort} ([H], []). \\
\text{mergesort} ([H1, H2|T], B) :- \\
\text{split} ([H1, H2|T], Aodds, Aevens), \\
\text{mergesort} (Aodds, Bodds), \\
\text{mergesort} (Aevens, Bevens), \\
\text{merge} (Bodds, Bevens, B).
\]