Every participant has a key pair & publishes their public key.

Encryption: \(A \rightarrow B, \ c = E_{b_{\text{pub}}}(m) \). Attacker may know \(m, c, b_{\text{pub}} \).

Authentication: \(A \rightarrow B, \ C = E_{a_{\text{priv}}}(M) \). B can verify with \(E_{A_{\text{pub}}}(C) \). No confidentiality.

Can combine authentication with encryption. Schneier recommends sign, then encrypt.

Multiplying two \(n \) bit numbers is \(O(n^2) \) ops [Knu98, Section 4.3.1, Algorithm M].

Exponentiating an \(n \) bit number mod \((n \) bit \#) is approx \(O(n^3) \) bit operations. For a 1024 bit \#, this is \(\approx 1G \) bitops. On a 1ns instruction issue machine, this is \(\approx 1s \)!
RSA

By definition $\phi(n)$ is the number of integers $0 < x < n$ that are relatively prime to n. Consider

$$n = p \times q$$

where p and q are distinct primes. Then

$$\phi(n) = (n - 1) - (p - 1) - (q - 1) = (p - 1) \times (q - 1)$$

1. Choose large primes p and q differing by a few digits. Say one of 75 digits, the other of 100 digits. Both $(p - 1)$ and $(q - 1)$ should contain a large prime factor.

2. Compute $n = p \times q$. No one can factor n easily la.

3. Choose e to be, say 65537.

4. Compute $d \equiv e^{-1} \mod \phi(n)$.

5. Public key = (e, n).

6. Private key = (d, n). Infeasible to get d given (e, n).

7. For a given message m, its encryption is $c = m^e \mod n$. And to decrypt a cipher text c, compute $m = c^d \mod n$.

8. $m^e \equiv m^{ed} \equiv m^{1 \mod \phi(n)} \equiv m$.

2
An example of RSA

Let \(p = 57748729314142811323 \) and \(q = 5295757044745316310341 \). Then,

\[
\begin{align*}
 n &= 305823240090462151745038276856407276791143 \\
 \phi(n) &= 305823240090462151739684771082347817669480.
\end{align*}
\]

Choose \(e = 65537 \), then \(d = e^{-1} \mod \phi(n) \)

\[
= 59944845540718629190350345138224820571313
\]

Encode a message “NUS” as its binary encoding (for example) to get \(0x4E5553 = 5133651 \).

To encrypt, find

\[
5133651^{65537} \mod 305823240090462151745038276856407276791143
= 217657393729141588774828799917624500652607
\]

To decrypt, compute \(c^d \) to get the original message.

\[
\begin{align*}
217657393729141588774828799917624500652607^{59944845540718629190350345138224820571313} & = \text{run time error in bc} \\
& = 5133651
\end{align*}
\]
Breaking RSA

▶ Brute force. Try all possible values of d. Given an (m, c) pair, find a d such that $c^d = m$. From this get $\phi(n)$ [Wel01, Section 16.2] and verify that this $\phi(n)$ yields the correct factors of n.

▶ Mathematical attacks.
 - Factor n.
 - Find $\phi(n)$. But knowing $\phi(n)$ is equivalent to factoring n. Because $n = pq$, $\phi(n) = n - (p + q) + 1$ and we have
 \[
 \begin{align*}
 p + q &= n + 1 - \phi(n) \\
 p - q &= \sqrt{(p + q)^2 - 4n}
 \end{align*}
 \]

 This gives equations for $p + q$ and $p - q$.

▶ Timing attacks.

▶ Do we need factorization to solve the RSA problem which is finding the e^{th} root modulo n [MvOV96, Section 3.3]?

Show [Sta99, Fig. 6.9] on MIPS years needed to factor large n.
Miller-Rabin Primality Test

Thm: If p is an odd prime, then $x^2 \equiv 1 \pmod{p}$ has only two solutions, namely $x = 1$ and $x = -1$.

Proof: $x^2 \equiv 1 \pmod{p}$ means that $p \mid (x^2 - 1)$, or $p \mid (x - 1)(x + 1)$. Because p is prime, it divides either $(x - 1)$ or $(x + 1)$. It cannot divide both because then it’d divide their difference which is $(x + 1) - (x - 1) = 2$.

Example: $5^2 \pmod{6} = 1$ because $5^2 - 1 = \frac{(5-1)(5+1)}{2 \times 3}$.

Miller-Rabin primality test

By Fermat’s theorem, $x^{p-1} \equiv 1 \pmod{p}$ if p is prime. So to test a number n for primality, try Fermat’s for $x = 2, 3, 4$. Now, let $n - 1 = 2^e \cdot y$. Find x^y. We ultimately want to find x^{y2^e}. Repeatedly square x^y but make sure that you never have $z^2 = 1$ when $z \not= \pm 1$.
Let $\mathbb{Z}_p = \{0, 1, \ldots, p - 1\}$, p is prime and

$$\mathbb{Z}_p^* = \{1, 2, \ldots, p - 1\}$$

For $0 < g < p$ let’s study the sequence

$$g^1, g^2, g^3, \ldots$$

We know that $g^{p-1} \equiv 1 \pmod{p}$. Show [Sta99, Table 7.6].

The sequence g^1, g^2, g^3, \ldots ends in 1. If the sequence ends in 1, it clearly repeats itself after that. If it does not, let $g^m = g^x$. Then, since g^{-1} exists, $g^{x-m} \equiv 1 \pmod{m}$, which is a contradiction. Or looked differently, $g^m(g^{x-m} - 1) \equiv 0$ which means that $p | g^{x-m} - 1$, or that $g^{x-m} \equiv 1 \pmod{m}$.

Def: g is a primitive root of n if $\text{ord}(g) = \phi(n)$. Not all integers have primitive roots. Integers with primitive roots are of the form: $2, 4, p^\alpha, 2p^\alpha$, p odd prime.

Thm: \mathbb{Z}_p^* is a cyclic group. Not every element of \mathbb{Z}_p^* is a generator. For e.g., $<2> \pmod{7} = \{1, 2, 4\}$.

Logarithms are the inverse of exponentiation.

<table>
<thead>
<tr>
<th>Reals</th>
<th>\mathbb{Z}_p^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log_x 1 = 0$</td>
<td>$\log_g 1 \pmod{p} \equiv 0$</td>
</tr>
<tr>
<td>$\log_x x = 1$</td>
<td>$\log_g g \pmod{p} \equiv 1$</td>
</tr>
<tr>
<td>$\log_x (yz) = \log_x y + \log_x z$</td>
<td>$\log_g (yz) \pmod{p} \equiv \log_g y + \log_g z \pmod{\phi(p)}$</td>
</tr>
<tr>
<td>$\log_x (y^r) = r \log_x y$</td>
<td>$\log_g (y^r) \pmod{p} \equiv r \log_g y \pmod{\phi(p)}$</td>
</tr>
</tbody>
</table>
Diffie-Hellman Key Exchange

prime \(p \), generator \(\alpha \).

A \rightarrow B: \(\alpha^a \)

B \rightarrow A: \(\alpha^b \)

From this both compute shared secret \(\alpha^{ab} \).

DH: Given \(\alpha^a, \alpha^b \), compute \(\alpha^{ab} \). Certainly no harder than Dlog. Does Dlog hard \(\Rightarrow \) DH “secure”? Open problem. (Strong evidence).

Dlog is randomly self reducible. Susceptible to person-in-the-middle attack.

Diffie-Hellman in practice: \(p = 1024 \) bit prime, \(g \in Z_p^* \), an element of order \(q \) where \(q \) is a prime such that \(q \mid (p - 1) \) and \(q \approx 2^{160} \) (160 bits).

Now \(a \in \{0, 1, \ldots, q - 1\} \) and \(b \in \{0, 1, \ldots, q - 1\} \). Since \(q \) is 160 bits, \(g^a \mod p \) only needs 160 multiplies rather than 1024. A seven fold improvement!
See [Knu98, Section 4.3.2].

Alternative for doing arithmetic on large numbers. Have several moduli m_1, m_2, \ldots, m_r relatively prime in pairs and work on residues $u \mod m_i$ instead of with u.

Regard (u_1, u_2, \ldots, u_r) as a new type of internal representation for u.

Disadvantage: Can’t test for $>$, overflow, do division.

Advantage: Parallelizes multiplication.

\[
(u_1, u_2, \ldots, u_r) + (v_1, v_2, \ldots, v_r) = ((u_1 + v_1) \mod m_1, \ldots, (u_r + v_r) \mod m_r)
\]

\[
(u_1, u_2, \ldots, u_r) - (v_1, v_2, \ldots, v_r) = ((u_1 - v_1) \mod m_1, \ldots, (u_r - v_r) \mod m_r)
\]

\[
(u_1, u_2, \ldots, u_r) \times (v_1, v_2, \ldots, v_r) = ((u_1 \times v_1) \mod m_1, \ldots, (u_r \times v_r) \mod m_r)
\]

You can see the above because $uv \mod x = (u \mod x)(v \mod x)$.

Proof: Let $m = m_1 m_2 \cdots m_r$ and let u_1, u_2, \ldots, u_r be integers. Then there is exactly one integer u such that $0 \leq u < m$ and $u \equiv u_j \pmod{m_j}$ for $1 \leq j \leq r$.

Let $M_k = m/m_k$. Then $\text{GCD}(M_k, m_k) = 1$. So $M_k^{-1} \pmod{m_k}$ exists. Let this be y_k. Then

\[
u = u_1 M_1 y_1 + u_2 M_2 y_2 + \cdots + u_r M_r y_r
\]

is the solution of the simultaneous congruences.
Let $m_1 = 9, m_2 = 10, m_3 = 11$. Then $m = 990$. Suppose you wanted to find $889^{899} \mod 990$.

- Find the representation of 889 in the new system $= (7, 9, 9)$.
- Now $889^{899} = (7, 9, 9)^{899} = (7^{899} \mod 9, 9^{899} \mod 10, 9^{899} \mod 11)$.
- That is $= (4, 9, 5)$.
- Convert this back to the integer $= 49$.
References

