CS3235 Tutorial for week 4

August 28, 2004

1. In class, we saw that the generators for the table $a^n \mod 11$ were 2, 6, 7 and 8. Find a large generator (perhaps one larger than, say, 50) for the table $a^n \mod 263$. Clearly show how you discovered/calculated the generator.
 Clue: Note that $p = 263$ is a prime, and that $p = 2q + 1$ where $q = 131$ is also a prime. As a result, the prime p is commonly called a safe prime.

2. Explain why it is easy to find generators for a table modulo a safe prime. Can you devise a reasonable test to exclude non-generators for a non-safe prime?

3. Plot graphs of $a^n \mod 263$ (y-axis) versus n (x-axis) for your generator, and for a non-generator (perhaps - say 52) in $a^n \mod 131$. Compare the two graphs. Can you think of something useful you can do with the sequence of numbers in your generator? Can you explain why $52^n \mod 131$ has the particular period it has?

4. Use Fermat’s theorem to show the inverse of $6^n \mod 35521$ and $7^n \mod 35521$. Describe exactly how you did this. What limits your technique?

5. Alice is going to send a message to Bob using RSA encryption. Bob had previously choosen some initial values $p = 71$, $q = 97$, and $E = 41$, and had then calculated $N = pq$, $x = (p - 1)(q - 1)$, and $D = 5081$ (which is the multiplicate inverse of E in the field Z_{pq}). Bob publishes (gives to everybody) a key $K_{Public} = (N, E)$, but keeps private the key $K_{Private} = (N, D)$.

(a) If Alice wanted to encode the message “Hi”, she might use the ASCII values as integers: “H” is the integer $m_1 = 72$. “i” is the integer $m_2 = 105$. To send message m to Bob, Alice should send the value $m^E \mod N$ (she can find out E and N because Bob has published them). What two values will Alice transmit to Bob? Show your working.

(b) When Bob receives the two values, he calculates $m^D \mod N$. Show the calculation for each message.

(c) Why is this process different from other encryption processes?