Chapter 2
Module 2 - Design

General issues of design
- Must design large things
- Design approaches an art form
- Principal concern with user

Some fun

How not to design
Rules

- Avoid doing things just because you know how to do them.
- Make your designs be driven by requirements.

The design process

The design process involves both
- specification of the behaviour of a product, and
- specification of the detailed techniques used to implement the product.

In each area, there exist a range of tools and techniques that can benefit any software product.

Role of designer

- Designer interacts with people
- Must relate designs back to requirements and constraints.
- Design must be readable, understandable, implementable.
- Designer uses abstraction.

Iconic abstraction

Text file using an icon:
Higher level abstractions

✔ Desktop
✔ Wastebasket

Building blocks

<table>
<thead>
<tr>
<th>Menu</th>
<th>Checkbox</th>
<th>Radiobutton</th>
</tr>
</thead>
<tbody>
<tr>
<td>Open ...</td>
<td>Wipers OK</td>
<td>✔ Point Size 10</td>
</tr>
<tr>
<td>New</td>
<td>Brakas OK</td>
<td>✔ Point Size 12</td>
</tr>
<tr>
<td>Save</td>
<td></td>
<td>✔ Point Size 18</td>
</tr>
<tr>
<td>Save As ...</td>
<td></td>
<td>✔ Point Size 24</td>
</tr>
<tr>
<td>Setup ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Print ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Building blocks

<table>
<thead>
<tr>
<th>Button</th>
<th>Testbox</th>
<th>Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>✔</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

This window is a text widget. It displays one or more lines of text and allows you to edit the text. Here is a summary of the things you can do:

Scrollbar, Graph, Directory Tree
Containers

<table>
<thead>
<tr>
<th>Width</th>
<th>Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>Default</td>
<td>Default</td>
</tr>
<tr>
<td>cm</td>
<td>cm</td>
</tr>
<tr>
<td>inches</td>
<td>inches</td>
</tr>
<tr>
<td>% of Page</td>
<td>% of Page</td>
</tr>
<tr>
<td>% of Column</td>
<td>% of Column</td>
</tr>
</tbody>
</table>

| 0 | 0 |

Sundries

- Cursors
- Fonts
- Colours
- Drag-n-drop
- Cut-n-paste.

Use cases

Designer imagines and proposes common scenarios\(^2\), and
1. checks to see if the scenarios are consistent, and complete,
2. tries out the scenarios on people to see if they work,
3. tests the scenarios and attempts to quantify their behaviour.

\(^2\text{Scenarios=Use cases, Use cases=scenarios.}\)

F&R state diagram

[Diagram of F&R state diagram]
GUI-style *find-and-replace*:

![GUI-style find-and-replace](image)

State diagram

![State diagram](image)

Therac25

The focus on detail related to the state of a dialog is not trivial.

✔ There is a well known example of a poorly constructed dialog, that contributed to the death of cancer patients in the US

http://sunnyday.mit.edu/therac-25.html

Modelling

- Used to demonstrate the UI, without actually implementing the core software.

Dan Bricklen's demo program (a demo copy is available at http://www.brickin.com/) is worth looking at for modelling a user interface. There is an amusing demo called *chiapaint*.
Modelling

It is also relatively easy to model a new UI using Tcl/Tk.

OO technology

The principle features of OO technology are as follows:
1. Abstraction,
2. Information hiding,
3. Inheritance,
4. Polymorphism, and
5. Genericity

OO technology and design

Some of these OO features provide a mechanism which supports the construction of better software...

✔ Create library
✔ Generalize it
✔ Design becomes the detailing of new classes derived from the generalized ones...
GUI design

GUI design has to meld four possibly conflicting elements:

1. **Software model** - structure of data and software
2. **User profile** - the types of users
3. **Product perception** - the mental image developed by user
4. **Product image** - the GUI - screenshots, descriptions or specifications

In general, a GUI is successful when the product perception matches the product image.

CS3283 - Hugh Anderson's notes. Page number: 73

GUI specification/design

Our concern is to:

Develop a functional and behavioural response specification in terms of its cognitive aspects.

The functional and behavioural response specification is turned inside-out from a normal *software* specification. With a *software* behavioural model, we start with an analysis of states, events and actions, and specify the expected views as a result. With GUI specification, our orientation is to start with the views, and specify the states, events and actions associated with those views.

CS3283 - Hugh Anderson's notes. Page number: 74

Basis for GUI design

One of the most characteristic elements of many GUI programs is the use of the event-driven software architecture. When the designer adopts this paradigm, the GUI program is viewed as a series of response routines for particular events.

CS3283 - Hugh Anderson's notes. Page number: 75

Design document

- User requirement
- Environment
 - Software constraints
 - Other constraints
- Interface design
 - Overview
 - Interface description
 - Prototype screens
 - Functional specifications
 - Behavioural specifications
- Testing methodology

CS3283 - Hugh Anderson's notes. Page number: 76
Formal GUI design

✔ Z can formally specify complex GUI interactions.
✔ Z tools test the specification

More details may be found in the handout, found at http://www.cs.virginia.edu/~jck/publications/zum.97.pdf
It describes the interface to a nuclear reactor.

GUI designs

✔ With Therac-25, we saw how a poorly constructed interface led to deaths of patients...
✔ By contrast, a good interface may result in the reverse...

Examples of GUI designs

Here are some examples of different designs for similar things

Lyx Find-and-replace:
Vizualization design

Visualization design has a similar structure to GUI design - a difference being the focus on the use of analogy.

Basis for visualization design

Eick proposes the following guidelines:

1. Focus the visualization on task-specific user needs.
2. Use a whole-database overview display.
3. Encode the data using colour, shape, size, position.
4. Use drill-down, filters and multiple linked views.
5. Use smooth animation for time.

Visualization document

- User requirement
- Environment
 - Software constraints
 - Other constraints
- Interface design
 - Overview
 - Interface description
 - Drill-down and other displays
 - Encoding
- Testing methodologies
Examples of visualization

There are many examples of data visualizations, and I have just taken some from the world of network management - starting from simple graphical displays through to 3D images.

Compact visualization

3D graph
Abstract 3D view - SeeNet

Abstract 3D view - Flodar

3D world-view

Summary of topics

In this module, we introduced the following topics:

- The designer's mindset
- Specification and design, tools and methods
- Examples of successful designs