Sample Math Used in CS4243

The mathematics used in CS4243 are basically linear algebra, calculus, and probability. This summary contains a sampling of the math used.

1. Linear Algebra

- An element \(\mathbf{v} \) in an \(n \)-dimensional vector space \(V \) can be represented as a linear combination of \(n \) basis vectors:

\[
\mathbf{v} = \sum_{i=1}^{n} a_i \mathbf{e}_i
\]

(1)

where \(\mathbf{e}_i \) is a basis vector and \(a_i \) is the corresponding coefficient.

- Given a set of \(n \) vector \(\mathbf{x}_i \), the mean of the vectors is

\[
\mathbf{m} = E\{\mathbf{x}\} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i
\]

(2)

and the covariance matrix is

\[
\mathbf{C} = E\{(\mathbf{x} - \mathbf{m})(\mathbf{x} - \mathbf{m})^T\} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i \mathbf{x}_i^T - \mathbf{m} \mathbf{m}^T
\]

(3)

- An eigensystem relates a matrix \(\mathbf{A} \) and a set of vectors \(\mathbf{e}_i \) by the equations

\[
\mathbf{A} \mathbf{e}_i = \lambda_i \mathbf{e}_i
\]

(4)

The vectors \(\mathbf{e}_i \) are the eigenvectors and the corresponding \(\lambda_i \) are the eigenvalues.

- Consider a set of simultaneous equations

\[
\mathbf{A} \mathbf{x} = \mathbf{b}
\]

(5)

where \(\mathbf{A} \) is an \(N \times N \) matrix, \(\mathbf{b} \) and \(\mathbf{x} \) are vectors. This equation defines \(\mathbf{A} \) as a mapping from the vector space \(\mathbf{x} \) to the vector space \(\mathbf{b} \).

 - If \(\mathbf{A} \) is singular, then there is some subspace \(\mathbf{x} \) that is mapped to zero, i.e., \(\mathbf{A} \mathbf{x} = \mathbf{0} \). This subspace is called the nullspace, and its dimensionality is called the nullity of \(\mathbf{A} \).

 - The non-null subspace that is mapped from \(\mathbf{x} \) is called the range of \(\mathbf{A} \) and the dimensionality of the range is called the rank of \(\mathbf{A} \).

 - So, the rank plus the nullity of \(\mathbf{A} \) equals \(N \).
A 3D point W with world coordinate $X = (X, Y, Z)^T$ is mapped onto the camera coordinate system at $X^c = (X^c, Y^c, Z^c)^T$ by a rigid transformation

$$X^c = RX + T$$

where $R = (R_1^T, R_2^T, R_3^T)^T$ is the 3×3 rotation matrix and $T = (T_X, T_Y, T_Z)^T$ is the translation vector that relate the camera and the world coordinate frames.

The rotation matrix can be specified in terms of three Euler angles, pitch (vertical angle) ω, yaw (horizontal angle) ϕ, and roll κ:

$$R = \begin{bmatrix}
\cos \phi \cos \kappa & \sin \omega \sin \phi \cos \kappa + \cos \omega \sin \kappa & -\cos \omega \sin \phi \cos \kappa + \sin \omega \sin \kappa \\
-\cos \phi \sin \kappa & -\sin \omega \sin \phi \sin \kappa + \cos \omega \cos \kappa & \cos \omega \sin \phi \sin \kappa + \sin \omega \cos \kappa \\
\sin \phi & -\sin \omega \cos \phi & \cos \omega \cos \phi
\end{bmatrix}$$

which is an orthonormal matrix, i.e.,

$$R^T R = I$$

where I is the identity matrix.

2. Calculus

- The gradient ∇f of a function f of two variables x and y is the first partial derivative with respect to x and y

$$\nabla f(x, y) = \begin{bmatrix}
\frac{\partial f}{\partial x} \\
\frac{\partial f}{\partial y}
\end{bmatrix}.$$

The magnitude of the gradient is

$$|\nabla f| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}.$$

- The Laplacian $\nabla^2 f$ of a function f of two variables x and y is

$$\nabla^2 f(x, y) = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}.$$

- The image of a moving object changes over time. Assuming small motion, the intensity $E(x, y, t)$ at location (x, y) will remain constant, so that

$$\frac{\partial E}{\partial t} = 0.$$

Using the chain rule for differentiation, we see that

$$\frac{\partial E}{\partial x} \frac{dx}{dt} + \frac{\partial E}{\partial y} \frac{dy}{dt} + \frac{\partial E}{\partial t} = 0.$$
3. Probability

- The notation \(P(H|E) \) denote the probability that \(H \) occurs given that evidence \(E \) has occurred. This conditional probability is defined by the joint probability \(P(H, E) \), that is, the probability that both \(H \) and \(E \) occur:

\[
P(H|E) = \frac{P(H, E)}{P(E)} .
\]
(14)

- From the definition of conditional probability, we have

\[
P(E|H) = \frac{P(E, H)}{P(H)} = \frac{P(H, E)}{P(H)} .
\]
(15)

Therefore,

\[
P(H|E) P(E) = P(E|H) P(H)
\]
(16)

or

\[
P(H|E) = \frac{P(E|H) P(H)}{P(E)}
\]

which is known as the Bayes rule.

- The entropy \(E \) of a probability distribution \(P(i) \) is

\[
E = - \sum_i P(i) \log P(i) .
\]
(18)