03b—Inductive Definitions

CS 5209: Foundation in Logic and AI

Martin Henz and Aqinas Hobor

January 28, 2010

Generated on Monday 1st February, 2010, 16:38
Inductive definitions

Often one wishes to define a set with a collection of rules that determine the elements of that set. Simple examples:

- Binary trees
- Natural numbers

What does it mean to define a set by a collection of rules?
Example 1: Binary trees (w/o data at nodes)

- is a binary tree;
- if l and r are binary trees, then so is $l \xrightarrow{\text{}} r$

Examples of binary trees:
Example 2: Natural numbers in unary (base-1) notation

- Z is a natural;
- if n is a natural, then so is $S(n)$.

We pronounce Z as “zed” and “S” as successor. We can now define the natural numbers as follows:

- $\text{zero} \equiv Z$
- $\text{one} \equiv S(Z)$
- $\text{two} \equiv S(S(Z))$
- \ldots

CS 5209: Foundation in Logic and AI

03b—Inductive Definitions
It's possible to view naturals as trees, too:

\[
\begin{align*}
\text{zero} & \equiv Z \\
\text{one} & \equiv S(Z) \\
\text{two} & \equiv S(S(Z)) \\
\ldots
\end{align*}
\]
Examples (more formally)

- Binary trees: The set Tree is defined by the rules

\[
\begin{array}{c}
\text{null} \\
\hline
\end{array}
\quad
\begin{array}{c}
t_l \\
\hline
\end{array}
\quad
\begin{array}{c}
t_r \\
\hline
\end{array}
\]

- Naturals: The set Nat is defined by the rules

\[
\begin{array}{c}
\mathbb{Z} \\
\hline
\end{array}
\quad
\begin{array}{c}
n \\
\hline
\end{array}
\quad
\begin{array}{c}
S(n) \\
\hline
\end{array}
\]
Given a collection of rules, what set does it define?

- What is the set of trees?
- What is the set of naturals?

Do the rules pick out a unique set?
There can be many sets that satisfy a given collection of rules

- $MyNum = \{Z, S(Z), \ldots\}$
- $YourNum = MyNum \cup \{\infty, S(\infty), \ldots\}$, where ∞ is an arbitrary symbol.

Both $MyNum$ and $YourNum$ satisfy the rules defining numerals (i.e., the rules are true for these sets).

Really?
MyNum Satisfies the Rules

MyNum = \{Z, Succ(Z), S(S(Z)), \ldots\}

Does MyNum satisfy the rules?

- Z ∈ MyNum. √
- If n ∈ MyNum, then S(n) ∈ MyNum. √
YourNum Satisfies the Rules

YourNum = \{Z, S(Z), S(S(Z)), \ldots\} \cup \{\infty, S(\infty), \ldots\}

Does YourNum satisfy the rules?

- Z \in YourNum. √
- If n \in YourNum, then S(n) \in YourNum. √
Both MyNum and YourNum satisfy all rules.

It is not enough that a set satisfies all rules.

Something more is needed: an extremal clause.

- “and nothing else”
- “the least set that satisfies these rules”
An inductively defined set is the **least set** for the given rules.

Example: $MyNum = \{Z, S(Z), S(S(Z)), \ldots\}$ is the least set that satisfies these rules:

- $Z \in Num$
- if $n \in Num$, then $S(n) \in Num$.

What do we mean by “least”?

Answer: The smallest with respect to the subset ordering on sets.

- Contains no “junk”, only what is required by the rules.
- Since YourNum \supseteq MyNum, YourNum is ruled out by the extremal clause.
- MyNum is “ruled in” because it has no “junk”. That is, for any set S satisfying the rules, S \supset MyNum
We almost always want to define sets with inductive definitions, and so have some simple notation to do so quickly:

\[S = \text{Constructor}_1(\ldots) \mid \text{Constructor}_2(\ldots) \mid \ldots \]

where \(S \) can appear in the \(\ldots \) on the right hand side (along with other things). The \(\text{Constructor}_i \) are the names of the different rules (sometimes text, sometimes symbols). This is called a recursive definition.

Examples:

- Binary trees: \(\tau = \bullet \mid \tau \trie \tau \)
- Naturals: \(\mathbb{N} = \mathbb{Z} \mid S(\mathbb{N}) \)
There is a close connection between a recursive definition and a definition by rules:

- Binary trees: \(\tau = \bullet \mid \tau \cdot \tau \)

 \[
 \begin{array}{c}
 _ \\
 _ \\
 \bullet \\
 \end{array}
 \quad \begin{array}{c}
 t_l \\
 _ \\
 t_r \\
 \end{array}
 \]

- Naturals: \(\mathbb{N} = \mathbb{Z} \mid S(\mathbb{N}) \)

 \[
 \begin{array}{c}
 _ \\
 _ \\
 \mathbb{Z} \\
 \end{array}
 \quad \begin{array}{c}
 n \\
 _ \\
 S(n) \\
 \end{array}
 \]

“recursive definition style” means that the extremal clause holds.
Inductively defined sets “come with” an induction principle. Suppose \(I \) is inductively defined by rules \(R \).

- To show that every \(x \in I \) has property \(P \), it is enough to show that regardless of which rule is used to “build” \(x \), \(P \) holds; this is called taking cases or inversion.
- Sometimes, taking cases is not enough; in that case we can attempt a more complicated proof where we show that \(P \) is preserved by each of the rules of \(R \); this is called structural induction or rule induction.
Consider the following definition:

- The natural Z has sign 0.
- For any natural n, the natural $S(n)$ has sign 1.

Let P be the following property: Every natural has sign 0 or 1.

Does P satisfy the rules Z and $S(n)$?
How to take cases

To show that every \(n \in \text{Nat} \) has property \(P \), it is enough to show:

- \(Z \) has property \(P \).
- For any \(n \), \(S(n) \) has property \(P \).

Recall:

- The natural \(Z \) has sign \(0 \).
- For any natural \(n \), the natural \(S(n) \) has sign \(1 \).

Let \(P = \text{“Every natural has sign } 0 \text{ or } 1 \text{.”} \). Does \(P \) hold for all \(\mathbb{N} \)?

Proof. We take cases on the structure of \(n \) as follows:

- \(Z \) has sign \(0 \), so \(P \) holds for \(Z \). \(\checkmark \)
- For any \(n \), \(S(n) \) has sign \(1 \), so \(P \) holds for any \(S(n) \). \(\checkmark \)

Thus, \(P \) holds for all naturals.

CS 5209: Foundation in Logic and AI 03b—Inductive Definitions 18
Example: Even and Odd Naturals

- The natural Z has parity 0.
- If n is a natural with parity 0, then $S(n)$ has parity 1.
- If n is a natural with parity 1, then $S(n)$ has parity 0.

Let P be: Every natural has parity 0 or parity 1.

Can we prove this by taking cases?
Taking cases

We need to show $P = \text{“Every natural has parity 0 or parity 1.”}$,
- Z has property P.
- For any n, $S(n)$ has property P.

Where parity is defined by
- The natural Z has parity 0.
- If n is a natural with parity 0, then $S(n)$ has parity 1.
- If n is a natural with parity 1, then $S(n)$ has parity 0.

Proof. We take cases on the structure of n as follows:
- Z has parity 0, so P holds for Z. √
- For any n, $S(n)$ has parity well... hmmm... it is unclear; it depends on the parity of n. X

We are stuck! We need an extra fact about n's parity...
This fact is called an *induction hypothesis*. To get such an induction hypothesis we do *induction*, which is a more powerful way to take cases. To show that every $n \in Num$ has property P, we must show that every rule preserves P; that is:

- Z has property P.
- If n has property P, then $S(n)$ has property P.

The new part is “if n has property P, then . . .”; this is the induction hypothesis.

Note that for the naturals, structural induction is just ordinary mathematical induction!
Every natural has parity 0 or parity 1.

Proof. We take cases **on the structure of n** as follows:
- Z has parity 0, so P holds for Z. √
- For any n, we can’t determine the parity of S(n) until we know something about the parity of n. X

Proof. We **do induction on the structure of n** as follows:
- Z has parity 0, so P holds for Z. √
- Given an n such that P holds on n, show that P holds on S(n). Since P holds on n, the parity of n is 0 or 1. If the parity of n is 0, then the parity of S(n) is 1. If the parity of n is 1, then the parity of S(n) is 0. In either case, the parity of S(n) is 0 or 1, so if P holds on n then P holds on S(n). √

Thus, P holds for an natural n.
Extending case analysis and structural induction to trees

Case analysis: to show that every tree has property P, prove that

- has property P.
- for all τ_1 and τ_2, $\tau_1 \rightarrow \tau_2$ has property P.

Structural induction: to show that every tree has property P, prove

- has property P.
- if τ_1 and τ_2 have property P, then $\tau_1 \rightarrow \tau_2$ has property P.

Note that we do not require that τ_1 and τ_2 be the same height!
How can we justify case analysis and induction?

Let \(I \) be a set inductively defined by rules \(R \).

- Case analysis is really a lightweight “special case” of structural induction where we do not use the induction hypothesis. If structural induction is sound, then case analysis will be as well.

- One way to think of a property \(P \) is that it is exactly the set of items that have property \(P \). We would like to show that if you are in the set \(I \) then you have property \(P \), that is, \(P \supseteq I \).

- Remember that \(I \) is (by definition) the smallest set satisfying the rules in \(R \).

- Hence if \(P \) satisfies (is preserved by) the rules of \(R \), then \(P \supseteq I \).

- This is why the extremal clause matters so much!
To show: Every tree has a height, defined as follows:

- The height of is 0.
- If the tree has height and the tree has height , then the tree has height \(1 + \max(h_l, h_r) \).

Clearly, every tree has at most one height, but does it have any height at all?

It may seem obvious that every tree has a height, but notice that the justification relies on structural induction!

- An “infinite tree” does not have a height!
- But the extremal clause rules out the infinite tree!
Formally, we prove that for every tree t, there exists a number h satisfying the specification of height.

Proceed by induction **on the structure of trees**, showing that the property “there exists a height h for t” satisfies (is preserved by) these rules.
Example: height

- **Rule 1:** \bullet is a tree.
 Does there exist h such that h is the height of $Empty$? Yes! Take $h=0$.

- **Rule 2:** $\langle l, r \rangle$ is a tree if l and r are trees.
 Suppose that there exists h_l and h_r, the heights of l and r, respectively (*the induction hypothesis*).
 Does there exist h such that h is the height of $Node(l, r)$? Yes! Take $h = 1 + \max(h_l, h_r)$.

Thus, we have proved that all trees have a height.