Homework 2: NumPy Arrays and Matrices

Objectives:
- Learn about NumPy arrays and matrices and the differences between them.

NumPy Operations

NumPy supports multi-dimensional array called ndarray. In NumPy, a matrix is a special 2D array that allows matrix multiplication. In most cases, a 2D array can be regarded as the same as a matrix, except for matrix multiplication.

1. Run Python 2.7 IDLE (Integrated Development Environment).

2. Import NumPy
   ```
   >>> import numpy as np
   ```

3. 1D arrays
 - Create 1D arrays.
     ```
     >>> a = np.array([1, 2, 3])
     >>> a
     >>> b = np.array([0.1, 0.2, 0.3])
     ```
 - Array elements are indexed from 0 to n-1, where n is the number of elements.
     ```
     >>> for i in range(len(b)):
     ...     print i, b[i]
     ```

 Notes:
 - The print statement should be indented by a tab character.
 - After typing the print statement, press the enter key two times to execute.

 - Operations on arrays are performed in an element-by-element manner.
     ```
     >>> 0.5 + a
     >>> 0.5 * a
     >>> a + b
     >>> a - b
     >>> a * b
     >>> a / b
     ```
Explicit loop over array elements runs slower, particularly for large arrays.

```python
>>> c = np.zeros(3)
>>> for i in range(len(c)):
    c[i] = a[i] + b[i]
>>> print c
```

So, it is advisable to use the built-in array operations that not only runs faster but are also more compact and easier to read.

4. 2D arrays
- Create 2D arrays.

```python
>>> a = np.array([[1, 2, 3], [4, 5, 6]])
>>> print a
>>> b = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
>>> print b
```

- Get an element.

```python
>>> a[1, 2]
```

- Get row 0, which returns an array of one row.

```python
>>> a[0, :]
```

- Get column 1, which also returns an array of one row.

```python
>>> a[:, 1]
```

- Operations on arrays are performed in an element-by-element manner.

```python
>>> 0.5 + a
>>> 0.5 * a
>>> a + b
>>> a - b
>>> a * b
>>> a / b
```

5. Matrices
- Create matrices.

```python
>>> a = np.matrix([[1, 2, 3], [4, 5, 6]])
>>> print a
>>> b = np.matrix([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]])
>>> print b
```
- Get an element.

 >>> a[1,2]

- Get row 0, which returns a row matrix.

 >>> a[0,:]

- Get column 1, which returns a column matrix. This operation is different from that for 2D arrays.

 >>> a[:,1]

- These matrix operations produce the same results as those for 2D arrays.

 >>> 0.5 + a
 >>> 0.5 * a
 >>> a + b
 >>> a - b
 >>> a / b

- This operation is invalid because the two matrices are not of compatible sizes.

 >>> a * b

- Matrix multiplication is valid only if the matrices have compatible sizes.

 >>> c = np.array([[0.1, 0.2], [0.3, 0.4], [0.5, 0.6]])
 >>> print a.shape, c.shape
 >>> a * c

6. Special arrays

- Create special 2D arrays.

 >>> np.empty([2,3]) # array with arbitrary values
 >>> np.eye(2,3) # with ones along diagonal and zeros elsewhere
 >>> np.identity(3) # identity array
 >>> np.ones([2,3]) # array filled with ones
 >>> np.zeros([2,3]) # array filled with zeros
 >>> np.random.rand(2,3) # array with random values

- Convert 2D arrays into matrices.

 >>> a = np.zeros([2,3])
 >>> a
 >>> b = np.matrix(a)
 >>> b
 >>> c = np.matrix(np.zeros([2,3])) # short-hand method
 >>> c
7. Adding, subtracting or dividing array with matrix results in a matrix.

```python
>>> a = np.matrix(np.eye(2,3))
>>> a
>>> b = np.ones([2,3])
>>> b
>>> a - b
>>> b - a
>>> a / b
>>> b / a
```

Note: Mixing arrays and matrices in an expression can create confusion. It is advisable not to mix arrays and matrices in an expression.

Summary

Note the similarities and differences between array and matrix operations.

<table>
<thead>
<tr>
<th>Operation</th>
<th>Arrays</th>
<th>Matrices</th>
<th>Similar?</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>element-by-element addition</td>
<td>element-by-element addition</td>
<td>yes</td>
</tr>
<tr>
<td>-</td>
<td>element-by-element subtraction</td>
<td>element-by-element subtraction</td>
<td>yes</td>
</tr>
<tr>
<td>*</td>
<td>element-by-element multiplication</td>
<td>matrix multiplication</td>
<td>no</td>
</tr>
<tr>
<td>/</td>
<td>element-by-element division</td>
<td>element-by-element division</td>
<td>yes</td>
</tr>
<tr>
<td>[i,:]</td>
<td>returns a row</td>
<td>returns a row</td>
<td>yes</td>
</tr>
<tr>
<td>[:,j]</td>
<td>returns a row</td>
<td>returns a column</td>
<td>no</td>
</tr>
</tbody>
</table>