Model Fitting

CS6240 Multimedia Analysis

Leow Wee Kheng

Department of Computer Science
School of Computing
National University of Singapore
Model fitting fits a model to input data.

- It is equivalent to registration.
- A model can be parametric or non-parametric.
- Input data can be data points or images.

Let’s start with fitting of lines, planes, and curves to data points.
Fitting of line in 2-D space can be stated as follows:

Given data points \((x_i, z_i), i = 1, \ldots, n,\) determine the line (i.e., linear function) \(f(x)\) that minimizes the error \(z - f(x)\).

This is also called **linear regression**.
Equation of a line in 2-D space is

\[z = a_1 x + a_2. \]

(1)

The difference \(e_i = z_i - (a_1 x_i + a_2) \) is the fitting error.

So, the problem is to find the line, parameterized by \(a_1 \) and \(a_2 \), that minimizes the sum-squared error \(E \)

\[E = \sum_i \| z_i - (a_1 x_i + a_2) \|^2. \]

(2)

To find the least-squared fitting line, combine Eq. 1 for all \(i \):

\[
\begin{bmatrix}
 z_1 \\
 \vdots \\
 z_n
\end{bmatrix} =
\begin{bmatrix}
 x_1 & 1 \\
 \vdots & \vdots \\
 x_n & 1
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2
\end{bmatrix}
\]

(3)
which can be written as

\[Z = MA \] \hspace{1cm} (4)

where

\[
Z = \begin{bmatrix}
z_1 \\
\vdots \\
z_n
\end{bmatrix}, \quad M = \begin{bmatrix}
x_1 & 1 \\
\vdots & \vdots \\
x_n & 1
\end{bmatrix}, \quad A = \begin{bmatrix}
a_1 \\
a_2
\end{bmatrix}.
\]

Then, the least-square solution for \(A \) is given by

\[A = (M^\top M)^{-1} M^\top Z. \] \hspace{1cm} (5)
Plane Fitting

The same method can be applied to the fitting of planes in 3-D space.

Equation of planes in 3-D space:

\[z = a_1 x + a_2 y + a_3. \] \hspace{1cm} (6)

Then, we obtain

\[
\begin{bmatrix}
 z_1 \\
 \vdots \\
 z_n
\end{bmatrix} =
\begin{bmatrix}
 x_1 & y_1 & 1 \\
 \vdots & \vdots & \vdots \\
 x_n & y_n & 1
\end{bmatrix}
\begin{bmatrix}
 a_1 \\
 a_2 \\
 a_3
\end{bmatrix}
\] \hspace{1cm} (7)

which can also be written as

\[Z = MA. \] \hspace{1cm} (8)
Curved Surface Fitting

Consider data points \((x_i, y_i, z_i)\) that define a curved surface in 3-D space.

A simple way to represent the curved surface is by means of an order-\(m\) polynomial function:

\[
z = \sum_{k} \sum_{l} a_{kl} x^k y^l, \quad 0 \leq k + l \leq m.
\]
For example, a 2nd-order polynomial function is

\[z = a_{20}x^2 + a_{02}y^2 + a_{11}xy + a_{10}x + a_{01}y + a_{00}. \]

(10)

Combining the equation for all \(i \) gives

\[
\begin{bmatrix}
z_1 \\
n \\
z_n
\end{bmatrix} =
\begin{bmatrix}
x_1^2 & y_1^2 & x_1y_1 & x_1 & y_1 & 1 \\
n \\
x_n^2 & y_n^2 & x_ny_n & x_n & y_n & 1
\end{bmatrix}
\begin{bmatrix}
a_{20} \\
\vdots \\
a_{00}
\end{bmatrix}
\]

(11)

which can also be written as

\[Z = MA. \]

(12)

So, fitting of polynomial curved surface in 3-D space is easy!

Exercise: Fit a polynomial curve in 2-D space.
Another general way to represent a curved surface is by means of basis functions $h_k(x, y)$, $k = 1, \ldots, K$:

$$z = \sum_{k=1}^{K} a_k h_k(x, y).$$ \hspace{1cm} (13)

- Usually use radially symmetric functions called radial basis functions.
- Usually want basis functions to have finite support, i.e., have non-zero value over small domain.
- Examples: Gaussian, splines, wavelets, etc.
Previous sections illustrate fitting of models to data points.

What about fitting models to image content?

This is more tedious because

- digital image is a discrete object, and
- image content can be very complex.

Here, we look at some simple examples as illustrations.
Point Fitting

The simplest example is to fit a model to a point in the image.

How does a point look like in an image?

(a) A point. (b) The enlarged image of a point.

- A point usually occupies more than one pixel.
- A point does not have sharp edges. The edges are smooth or blurred.
An appropriate model of a point is 2D Gaussian.

\[g(x, y) = \exp \left(-\frac{x^2 + y^2}{2\sigma^2} \right) \]

(14)
So, a point can be modeled by the 2D Gaussian G as follows:

$$G(x; \theta) = G(x; A, B, \sigma, u) = A + B \exp \left(-\frac{\|x - u\|^2}{2\sigma^2}\right)$$ \hspace{1cm} (15)

- $x = (x, y)$: any location in the image.
- A: intensity of background (dark region).
- B: peak intensity of point (brightest region).
- $u = (u, v)$: peak location, i.e., center of point.
- σ: amount of spread of the Gaussian.
- $\theta = (A, B, \sigma, u, v)^\top$: parameters of the point model.
If the model G matches a point in image I perfectly, then

$$G(x; \theta) = I(x)$$

(16)

for all locations x within the model G.

So, the point fitting problem is to find the parameters θ that minimize the error E:

$$E(\theta) = \frac{1}{2} \sum_{x \in W} (G(x; \theta) - I(x))^2$$

(17)

where W is the extent of G (like a small window or template).
Since E is differentiable, we can compute the derivatives of E with respect to the parameters, $\partial E / \partial \theta = (\partial E / \partial A, \ldots, \partial E / \partial v)^\top$.

\[
\begin{align*}
\frac{\partial E}{\partial A} &= \sum_{x \in W} (G(x; \theta) - I(x)) \\
\frac{\partial E}{\partial B} &= \sum_{x \in W} (G(x; \theta) - I(x)) \exp \left(-\frac{\|x - u\|^2}{2\sigma^2} \right) \\
\frac{\partial E}{\partial u} &= \sum_{x \in W} (G(x; \theta) - I(x)) \exp \left(-\frac{\|x - u\|^2}{2\sigma^2} \right) \frac{x - u}{\sigma^2} \\
\frac{\partial E}{\partial \sigma} &= \sum_{x \in W} (G(x; \theta) - I(x)) \exp \left(-\frac{\|x - u\|^2}{2\sigma^2} \right) \frac{\|x - u\|^2}{\sigma^3}
\end{align*}
\]
It is difficult to solve $\partial E/\partial \theta = 0$ analytically for the minimum. In this case, we can apply \textbf{gradient descent} method as follows:

Initialize θ.
Repeat until convergence

update θ in the direction of negative gradient of E:

$$\Delta \theta = -\eta \frac{\partial E}{\partial \theta}$$ \hspace{1cm} (19)

i.e.,

$$\theta(t + 1) = \theta(t) - \eta \frac{\partial E}{\partial \theta}.$$ \hspace{1cm} (20)

- η is a constant update rate.
- η should be small to ensure stability and convergence.
- There are many possible convergence criteria, e.g., $E(t + 1) - E(t)$ is small enough.
Intuitive Idea of Gradient Descent

Consider $\frac{\partial E}{\partial A}$. Assume $B = 0$ for now.

- When $A > I$, $\Delta A < 0$, A is decreased towards I.
- When $A < I$, $\Delta A > 0$, A is increased towards I.

Notes:

- Gradient descent changes the parameters towards the desired values.
- Can use this to check whether the signs of the equations are correct.
- In theory, when the desired values are attained, the error E is minimized.
- In practice, gradient descent can get trapped in local minimum.
Example: Fit a Gaussian model to a point in the image.

Actual parameter values: \((A, B, u, v, \sigma) = (10, 170, 4.4, 3.7, 1.8)\)
Initial estimate \(\theta(0): (A, B, u, v, \sigma) = (0, 100, 5, 3, 1)\)

Optimization error \(E(\theta)\) over iteration \(t\):
Error of position \((u, v)\) over iteration \(t\):

- Need a good initial estimate. Otherwise, algorithm can get trapped in a **local minimum**.
- Since \((u, v)\) can be real-valued, model fitting produces a **sub-pixel localization** of the point in the image.
Edge Fitting

Edge fitting can be performed in a similar manner. An edge is defined by a change of intensity, which is a blurred step function.
Edge Model

- \((O, x, y)\) is the global coordinate system of the image.
- \((O', x', y')\) is the local coordinate system in which the edge is defined.
A unit step function is defined as

\[U(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{otherwise} \end{cases} \]

An ideal 2-D step edge \(S \) located at \(O' \) in the coordinate system \((O', x', y')\) along the \(y' \)-axis is given by

\[S(x', y') = U(x') . \]
A 2-D blurred edge F can be modeled by convolving the 2-D step edge S with a 1-D Gaussian G across the edge:

$$F(x', y'; \sigma) = \int G(w; \sigma) S(x' - w, y') \, dw$$ \hspace{1cm} (22)

where

$$G(w; \sigma) = \exp \left(-\frac{w^2}{2\sigma^2} \right)$$ \hspace{1cm} (23)
O' is located at (u, v) of the global coordinate system.

So, transform edge from local system to global system:

$$
\begin{bmatrix}
 x' \\
 y'
\end{bmatrix} =
\begin{bmatrix}
 (x - u) \cos \theta + (y - v) \sin \theta \\
 -(x - u) \sin \theta + (y - v) \cos \theta
\end{bmatrix}
$$

(24)

Let the gray level on the darker side be A and the gray level on the brighter side be B. Then, the final edge model M is:

$$
M(x, y; \theta) = A + BF(x', y'; \sigma)
$$

(25)

where $\theta = (u, v, \theta, \sigma, A, B)^T$ is the parameter vector.
Can compute the error of match $E(\theta)$ as

$$E(\theta) = \sum_{x \in W} (M(x; \theta) - I(x))^2$$

(26)

where W is the extent of M.

Now, apply algorithm to find the θ that minimizes $E(\theta)$. In this case, it is not so easy to differentiate E wrt θ.

One method is to apply Powell’s direction set algorithm [PTVF92].

- Powell’s algorithm does not require the user to provide the partial derivatives of E.
- It estimates the partial derivative numerically.
Fitting Other Models

- Other parametric models such as corners can be fitted to the image in a similar way. (Exercise, [DB93, DG90])
- Fitting general models is more complex.
- Two kinds of models:
 - Parametric: represented by parametric but non-analytic equations.
 - Non-parametric: represented by a set of discrete data points.
The previous method minimizes error of one of the coordinates (z).

What if you want to minimize the perpendicular distances of the points to the line (or plane)?

Need to compute the distance of a point to a line (or plane).
Equation of hyperplane \(\pi \) (line in 2-D, plane in 3-D, etc.):

\[
a_1 x_1 + a_2 x_2 + \cdots + a_n x_n + a_{n+1} = 0.
\]

(27)

Denote \(\mathbf{a} = (a_1 \cdots a_n)^\top \), \(\mathbf{x} = (x_1 \cdots x_n)^\top \).

Then, equation of \(\pi \) can be written as

\[
\mathbf{a}^\top \mathbf{x} + a_{n+1} = 0
\]

(28)

where \(\mathbf{x} \) is a point on \(\pi \).

Then, the unit vector \(\mathbf{u} \) of \(\pi \) is \(\mathbf{a}/\|\mathbf{a}\| \). (Exercise)
Consider a point p not on π.

Let x denote the perpendicular projection of p on π. Perpendicular distance of p to π, denoted as d, is given by

$$d = p^\top u - x^\top u = \frac{p^\top a - x^\top a}{\|a\|} = \frac{a^\top p + a_{n+1}}{\|a\|}.$$

(29)
So, finding the best-fit hyperplane π is to find the \mathbf{a} that minimizes the distance D

$$D = \sum_i \left[\frac{\mathbf{a}^\top \mathbf{p} + a_{n+1}}{\|\mathbf{a}\|} \right]^2.$$ (30)

- This equation is difficult to differentiate.
- Can apply Powell’s direction set algorithm [PTVF92].

Notes:

- So, fitting n-D linear or non-linear models to data points in $n + 1$-D space is not too difficult.
- But, fitting other models are not so easy.
- Example: How to fit a curve (1-D object) to data points in 3-D space?
- No convenient analytic form. How to even represent them?
Problems and algorithms discussed:

<table>
<thead>
<tr>
<th>problem</th>
<th>corresp.</th>
<th>model</th>
<th>algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>line, plane</td>
<td>known</td>
<td>linear</td>
<td>linear least square</td>
</tr>
<tr>
<td>curve, curved surface</td>
<td>known</td>
<td>polynomial, RBF</td>
<td>linear least square</td>
</tr>
<tr>
<td>line, plane</td>
<td>unknown</td>
<td>linear</td>
<td>Powell</td>
</tr>
<tr>
<td>point in image</td>
<td>unknown</td>
<td>Gaussian</td>
<td>gradient descent</td>
</tr>
<tr>
<td>edge in image</td>
<td>unknown</td>
<td>Step</td>
<td>Powell</td>
</tr>
</tbody>
</table>

- Fitting a model to input data is equivalent to registering the model to the input data.
- Model fitting is also equivalent to model learning.
 After fitting, you get a model that fits the data.
- Usually need good initialization to get good optimization results.
Exercise

(1) Develop a method for fitting a polynomial curve in 2-D space.

(2) Develop a method for fitting a corner model to a corner in an image.

(3) The equation of a hyperplane \(\pi \) is given by

\[
a_1 x_1 + a_2 x_2 + \cdots + a_n x_n + a_{n+1} = 0. \tag{31}
\]

Denote \(\mathbf{a} = (a_1 \cdots a_n)^\top \), \(\mathbf{x} = (x_1 \cdots x_n)^\top \). Show that the unit vector \(\mathbf{u} \) of \(\pi \) is \(\mathbf{a}/\|\mathbf{a}\| \).
R. Deriche and T. Blaszka.
Recovering and characterizing image features using an efficient model based approach.

http://citeseer.nj.nec.com/deriche94recovering.html.

R. Deriche and G. Giraudon.
Accurate corner detection: An analytical study.

Reference II

Numerical Recipes in C.