Problem Formulation

CS6240 Multimedia Analysis

Leow Wee Kheng

Department of Computer Science
School of Computing
National University of Singapore

National University of Singapore
School of Computing
Problem Formulation

Before attempting to solve a problem, we need to first formulate or define the problem.

It is important to precisely define the problem you intend to solve.

The more difficult it is to define the problem, the harder you have to try.

Why?
A Practical Example: Image Mosaicking

How to register images (a) and (b) to produce image (c)?
Maybe, we can write the problem as:

Find the transformation between image (a) and image (b), then transform one of them and blend them together.

This description is not precise.
How to write a program according to the English description?
What makes a good problem definition?

- It is precise.
- It states the objectives (what is required):
 - the inputs and their characteristics, including initial conditions
 - the outputs and their desired characteristics, including goal conditions
 - the relationships between the inputs and the desired outputs

How to state a good problem definition?
Answer: Use mathematical notations.

One way to learn how to write good problem definitions is to start with generic problems.
Abstract Mapping Problem

Let S denote a set $\{x_i\}$ of n points x_i called the source.

Let S' denote a set $\{x'_i\}$ of n points x'_i called the target.

Suppose we know that there is a mapping from each $x_i \in S$ to $x'_i \in S'$.

We want to determine the mapping function.

How to formulate this problem?
A possible problem formulation:

*Given a set S of n points x_i and a set S' of n points x'_i, determine the function $f : S \rightarrow S'$ such that $x'_i = f(x_i)$ for $i = 1, \ldots, n$."

“Determine the function” means “determine the form and parameters of the function”.

(CS6240)
Example: Linear Case

In the linear case, \(x'_i = f(x_i) \) can be written in matrix form:

\[
x'_i = F x_i.
\]

(1)

In this case, the form is a linear equation and the parameters are the values of the matrix elements in \(F \).

In practice, we usually cannot obtain the exact \(F \). There is an error \(e_i = \|x'_i - Fx_i\| \).
So, we can re-formulate the problem as:

*Given a set S of n points x_i and a set S' of n points x'_i, determine the matrix F that minimizes the sum-squared error E:

$$E = \sum_{i=1}^{n} \|x'_i - Fx_i\|^2.$$ \hfill (2)

- Now, the problem becomes an optimization problem.
- Eq. 2 is called the objective function.
In the previous example, the mapping or correspondence is known.

What if the mapping is unknown?

- Let S denote a set $\{x_i\}$ of m points x_i.
- Let S' denote a set $\{x'_i\}$ of n points x'_j, m may or may not be equal to n.
We know that a point in S can map to some points in S', but don’t know which one.

So, must use different subscripts for points in S and S'. Same subscript implicitly means “known correspondence”.

A possible problem formulation:

Given a set S of m points x_i and a set S' of n points x'_j, determine the function $f : S \rightarrow S'$ such that for each $x_i \in S$, there is a $x'_j \in S'$ such that $x'_j = f(x_i)$.

This formulation is ambiguous.

There are many possible f. Which one is it talking about?
Suppose we know how to measure the difference d between any $x_i \in S$ and $x'_j \in S'$.

We can formulate the problem as one of finding the best mapping:

> Given a set S of m points x_i, a set S' of n points x'_j, and a difference measure $d(x_i, x'_j)$, determine the function $f : S \rightarrow S'$ that minimizes the sum-squared error E:

$$E = \sum_{i=1}^{m} d^2(x_i, f(x_i)).$$

Questions:

- In the above formulation, why use $d(x_i, f(x_i))$ instead of $d(x_i, x'_j)$?
- Can we use $d(x'_j, f(x_i))$ as in Eq. 2?
- What are the differences between this problem definition and the one in Eq. 2?
A Practical Example: Image Mosaicking

This problem can be divided into three sub-problems:

1. Identify corresponding points between the two images.
2. Compute transformation between the two images.
3. Transform and blend images.

Let’s consider Sub-Problem 2.

Suppose the transformation T is linear.

Then, ideally

$$x'_i = T x_i, \text{ for each point } i.$$ \hfill (4)

In reality, there is an error $e_i = \|x'_i - T x_i\|$.

So, we can formulate the problem as follows:

Given a set S of n points x_i and a set S' of n points x'_i, determine the matrix T that minimizes the sum-squared error E:

$$E = \sum_{i=1}^{n} \|x'_i - Tx_i\|^2.$$ \hspace{1cm} (5)

Note:

- To completely define image mosaicking problem, need to define sub-problems 1 and 3 as well. (Exercise)
Constrained Mapping Problem

In some applications, there are constraints that must be satisfied.

Consider the generic mapping problem in Section 1:
- The problem definition does not prohibit multiple points in \(S \) to map to a single point in \(S' \), i.e., it allows for many-to-one mapping.
- Suppose we need to impose one-to-one mapping.
- Then, the problem definition can be re-formulated as follows:

Given a set \(S \) of \(m \) points \(x_i \), a set \(S' \) of \(n \) points \(x'_j \), and a difference measure \(d(x_i, x'_j) \), determine the function \(f : S \rightarrow S' \) that minimizes the sum-squared error \(E \):

\[
E = \sum_{i=1}^{m} d^2(x_i, f(x_i)) \quad (6)
\]

subject to the constraint that \(f \) is a one-to-one function.
Another way to describe the constraint is:

subject to the constraint that $f(x_i) \neq f(x_k)$ for any $x_i, x_k \in S$
such that $x_i \neq x_k$.

The above problem is called a constrained optimization problem.
Summary

- A good problem definition is precise and it states the problem requirements and objectives.
- Many multimedia analysis problems can be formulated as optimization problems.
- Before you try to solve a problem, first study it carefully and then formulate the problem.
- Usually, you need to revise your problem formulations several times to make it more precise and more correctly describe the problem.
(1) Define sub-problems 1 and 3 of image mosaicking.