Formal Specification and Design Techniques (CS5232)

Dr. DONG Jin Song

thank Dr. B. Duke and Prof. G. Rose for the joint work on Object-Z and for providing some parts of the notes

thank Dr. B. Mahony for the joint work on TCOZ

http://www.comp.nus.edu.sg/~dongjs/ic52z5.html

2004
Course Overview

- Introduction to Set, Logic and Z Notation
- Object-Oriented Z — Object-Z (relation to UML)
- Advanced Formal Object Modelling Techniques
- Real-Time Extensions to Object-Z
- Real-Time CSP
- Timed Communicating Object Z (TCOZ)
- Case Studies on Specifying Reactive Systems

Part 1 — Introduction and Background

The Classical Engineer

- models with calculus, geometry
- analyses using classical theorems (Newton, Fourier, Gauss, ...)
- constructs a hard product

The Software Engineer

- models with set theory, logic
- analyses using rules of inference
- constructs a soft product
Why Formal Specification?

A formal specification should

- add clarity and understanding by giving a description of the system which is
 - complete
 - unambiguous
 - easily analysed;

- lead to better code that is
 - reliable
 - accurate
 - maintainable
 - reusable
 - verified.
Formal Specification and Software Engineering

(Towards an integrated methodology for software engineering.)

Formal specification

- is not a replacement, but rather an enhancement of existing methodologies;
- can only be effective if integrated within an overall methodology for software engineering.

Implications of Using Formal Specification
- training in the use of notation
- integration with informal methodologies
- translation for client consumption
- emphasis upon abstraction

Formal methods by themselves will not solve the software crisis.

A Formal Specification forms

the basis of the

- contract between designer and client
- plan for builder (programmer)
- reference document for
 - disputes, verification (testing)
 - user documentation, maintenance

A Formal Specification should be

- precise
- readily analysed
- easy to modify, refine
- understandable
A Specification Language should

- be a precise thinking tool for designers
- enhance communication between
 - designers
 - designer and programmer
 - designer and client
- enable formal (rigorous) analysis
- lead to separation of concerns
- allow abstraction, non-determinism
- encourage a sound design style
- have a formal syntax and semantics
- be usable

Some Specification Languages

State Oriented
Systems modelled by an underlying state which can undergo change:

- VDM, Z, Object-Z

Process Algebra
Systems modelled as processes partaking in communication:

- CSP, CCS, LOTOS

Algebraic
Systems modelled by equations related by axioms (re-writing rules):

- ACT 1, CLEAR, OBJ, Larch
The Z Specification Language

- developed originally at Programming Research Group, Oxford University
- based on set theory and predicate logic
- system described by introducing fixed sets and variables and specifying the relationships between them using predicates
- declarative, not procedural
- system state determined by values taken by variables subject to restrictions imposed by state invariant
- operations expressed by relationship between values of variables before, and values after, the operation
- variable declarations and related predicates encapsulated into schemas
- schema calculus facilitates the composition of complex specifications

Predicate Calculus

A predicate (proposition) is a statement that is either true or false.

- today is Monday
- $x + y = 9$ \hspace{1cm} P(x, y)

- Logic operators:
 - Not (\neg), e.g. $\neg (11 < 3)$ is true
 - And (\land), e.g. $(11 > 3) \land (2 + 2 = 4)$
 - Or (\lor), e.g. $P \lor (\neg P)$ (a tautology)
 - Implies (\Rightarrow), e.g. $(11 < 3) \Rightarrow (2 + 2 = 5)$ is true
 - Equivalence (\Leftrightarrow), e.g. $P \Leftrightarrow P$ (is a tautology)
Universal Quantifier (\(\forall\))

Consider the predicate

“all natural numbers are bigger than zero”.

We can write this formally as

\[\forall \ n : \ N \ \bullet \ n > 0 \]

More generally,

\[\forall x : X \bullet P(x) \text{ abbreviates } P(a) \land P(b) \land P(c) \land \cdots \]

Are the following predicates true or false?

\[\forall n : \mathbb{N} \bullet n^2 > n \]

\[\forall n : \mathbb{N} \bullet (n^2 = n) \Rightarrow (n = 0 \lor n = 1) \]

Existential Quantifier (\(\exists\))

Consider the predicate

“there is a natural number bigger than zero”.

We can write this formally as

\[\exists \ n : \ N \ \bullet \ n > 0 \]

More generally,

\[\exists x : X \bullet P(x) \text{ abbreviates } P(a) \lor P(b) \lor P(c) \lor \cdots \]

Are the following predicates true or false?

\[\exists x : \mathbb{N} \bullet x = x + 1 \]

\[\forall x : \mathbb{N} \bullet (\exists y : \mathbb{N} \bullet y > x) \]
Sets

A set is a collection of elements (or members). e.g.
\{a, b, c\}, \{3, 1, 16\}

- the elements are not ordered
 \{a, b, c\} is the same set as \{b, a, c\}

- the elements are not repeated
 \{a, a, b\} is the same set as \{a, b\}

Some Given Sets

\[\begin{align*}
\mathbb{N} & = \{0, 1, 2, \ldots\} \quad \text{natural numbers} \\
\mathbb{N}_0 & = \{1, 2, 3, \ldots\} \\
\mathbb{Z} & = \{0, 1, -1, 2, -2, \ldots\} \quad \text{integers} \\
\mathbb{R} & \quad \text{real numbers} \\
\emptyset & \quad \text{empty set: the set with no elements}
\end{align*}\]

Membership

\(x \in X\)

is a predicate which is

- true if \(x\) is in the set \(X\), e.g. \(a \in \{a, b, c\}\) \quad (T)
- false if \(x\) is not in the set \(X\), e.g. \(d \in \{a, b, c\}\) \quad (F)

Notice the difference between ‘:\’ and ‘\in’:

\[\forall x : \mathbb{Z} \cdot x > 5 \Rightarrow x \in \mathbb{N}\]

\(x : \mathbb{Z}\) declares a new variable \(x\) of type \(\mathbb{Z}\)

\(x \in \mathbb{N}\) is a predicate which is true or false depending upon the value of the previously declared \(x\)
Set Expressions

\{a, b, c, d\} \quad (is \ a \ finite \ set)

\mathbb{N} \quad (is \ an \ infinite \ set)

We can express a set by listing its elements, but this is impractical if the set is large, and impossible if the set is infinite.

Instead, a set can be defined by giving a predicate which specifies precisely those elements in the set.

e.g. the set of all natural numbers less than 99 is:

\[
\{ \ n : \mathbb{N} \mid n < 99 \ \}\}

In general, the set

\[
\{ x : X \mid P(x) \}\}

is the set of elements of \(X\) for which the predicate \(P\) is true.

Examples

the set of even integers is

\[
\{ z : \mathbb{Z} \mid \exists k : \mathbb{Z} \bullet z = 2k \}\}

the set of natural numbers which when divided by 7 leave a remainder of 4 is

\[
\{ n : \mathbb{N} \mid \exists m : \mathbb{N} \bullet n = 7m + 4 \}\}

\mathbb{N} \ is \ the \ set \ \{ z : \mathbb{Z} \mid z \geq 0 \}\}

\mathbb{N}_1 \ is \ the \ set \ \{ n : \mathbb{N} \mid n \geq 1 \}\}

if \(a, b\) are any natural numbers then \(a..b\) is defined as the set of all natural numbers between \(a\) and \(b\) inclusive, i.e.

\(a..b\) \ is \ the \ set \ \{ n : \mathbb{N} \mid a \leq n \leq b \}\}
Subset (⊆) and Proper Subset (⊂)

If S and T are sets,

$$S \subseteq T \quad (S \text{ is a subset of } T)$$

is a predicate equivalent to

$$\forall s : S \cdot s \in T$$

$$S \subset T \quad (S \text{ is a proper subset of } T)$$

is a predicate equivalent to $S \subseteq T \land S \neq T$

Example: the following predicates are true

- $\{0, 1, 2\} \subseteq \mathbb{N}$
- $2..3 \subseteq 1..5$
- $\{a, b\} \subseteq \{a, b, c\}$
- $\emptyset \subseteq X$ for any set X
- $\{x\} \subseteq X \iff x \in X$

Power Set (\mathcal{P})

If X is a set,

$$\mathcal{P}X \quad (\text{the power set of } X)$$

is the set of all subsets of X.

$$A \in \mathcal{P}B \quad = \quad A \subseteq B$$

Example: the following predicates are true

- $\mathcal{P}\{a, b\} = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$
- $\mathcal{P}\emptyset = \{\emptyset\} \quad (\neq \emptyset)$
- $1..5 \in \mathbb{P}\mathbb{N}$
- $2..4 \in \mathbb{P}(1..5)$

If X has k elements, $\mathcal{P}X$ has 2^k elements.
Set Union (\cup)

Suppose $S, T : \mathcal{P}X$ (i.e. $S \subseteq X$ and $T \subseteq X$); then

$S \cup T$ (i.e. S union T)

is a set equal to

$\{x : X \mid x \in S \lor x \in T\}$

e.g. the following predicates are true

$\{a, b, c\} \cup \{b, g, h\} = \{a, b, c, g, h\}$

$(1..5) \cup (3..7) = 1..7$

$\mathbb{N}_1 \cup \{0\} = \mathbb{N}$

$A \cup \emptyset = A$ (for any set A)

Set Intersection (\cap)

Suppose $S, T : \mathcal{P}X$; then

$S \cap T$ (i.e. S intersection T)

is a set equal to

$\{x : X \mid x \in S \land x \in T\}$

e.g. the following predicates are true

$\{a, b, c\} \cap \{b, g, h\} = \{b\}$

$(1..5) \cap (3..7) = 3..5$

$\{a, b, c\} \cap \{d, g\} = \emptyset$ (the sets are disjoint)

$A \cap \emptyset = \emptyset$ (for any set A)
Set Difference (−)

Suppose $S, T : \mathbb{P} \mathbb{X}$; then

$\forall x \in S \setminus T$ (S subtract T)

is a set equal to

$\{x : x \in S \land x \not\in T\}$

E.g. the following predicates are true

$\{a, b, c\} - \{b, g, h\} = \{a, c\}$

$(1 \ldots 5) - (3 \ldots 7) = 1 \ldots 2$

$\mathbb{N}_1 = \mathbb{N} - \{0\}$

$A - \emptyset = A$ (for any set A)

Cartesian Product (\times)

If A and B are sets,

$A \times B$ (A cross B)

is the set of all ordered pairs (a, b) with $a \in A$ and $b \in B$.

E.g. the following predicates are true

$\{a, b\} \times \{a, c\} = \{(a, a), (a, c), (b, a), (b, c)\}$

$(5, -1) \in \mathbb{N} \times \mathbb{Z}$

$(5, -1) \not\in \mathbb{N} \times \mathbb{N}$

$6 \not\in \mathbb{N} \times \mathbb{N}$

$A \times \emptyset = \emptyset$ (for any set A)

$\mathbb{R} \times \mathbb{R}$ is the Cartesian plane
Cardinality

If X is any finite set,

$$\#X$$

is a natural number denoting the cardinality of (i.e. the number of elements in) X.

e.g.

$$\# \{a, b, c\} = 3$$

$$\#\emptyset = 0$$

$$\# P A = 2^\#A \text{ (for any finite set } A)$$

Types

\mathbb{Z} is strongly typed: every expression is given a type.

Any set can be used as a type.

The following are equivalent within set comprehension

$$(x, y) : A \times B$$

$x : A; y : B$$

$x, y : A$ (when $B = A$)

Notice that

$$\forall S : P A \bullet \ldots \text{ not } \forall S \subseteq A \bullet \ldots$$

$$\forall S : P A \bullet (\forall y : S \bullet \ldots) \text{ not } \forall S : P A; y : S \bullet \ldots$$
Relations

A relation R from A to B, denoted by

$$R : A \leftrightarrow B,$$

is a subset of $A \times B$.

R is the set $\{(c, x), (c, z), (d, x), (d, y), (d, z)\}$

Notation: the predicates

$$(c, z) \in R \quad \text{and} \quad c \mapsto z \in R \quad \text{and} \quad c R z$$

are equivalent.

$$\text{dom } R \quad \text{is the set} \quad \{a : A \mid \exists b : B \bullet a R b\}$$

$$\text{ran } R \quad \text{is the set} \quad \{b : B \mid \exists a : A \bullet a R b\}$$

Examples

$$\leq : \mathbb{N} \leftrightarrow \mathbb{N}$$

$$\forall x, y : \mathbb{N} \bullet$$

$$x \leq y \iff \exists k : \mathbb{N} \bullet x + k = y$$

i.e. the relation \leq is the infinite subset

$$\{(0, 0), (0, 1), (1, 1), (0, 2), (1, 2), (2, 2), \ldots\}$$

of ordered pairs in $\mathbb{N} \times \mathbb{N}$.

$$\text{divides} : \mathbb{N}_1 \leftrightarrow \mathbb{N}$$

$$\forall x : \mathbb{N}_1 ; y : \mathbb{N} \bullet$$

$$x \text{ divides } y \iff \exists k : \mathbb{N} \bullet x \cdot k = y$$

$$3 \text{ divides } 6 \quad \text{but} \quad \neg (3 \text{ divides } 7)$$
Domain and Range Restriction

Suppose \(R : A \leftrightarrow B \) and \(S \subseteq A \) and \(T \subseteq B \); then

\[
S \triangleleft R \quad \text{is the set} \quad \{(a, b) : R \mid a \in S\}
\]
\[
R \triangleright T \quad \text{is the set} \quad \{(a, b) : R \mid b \in T\}
\]

Notice that both are true:

\(S \triangleleft R \in A \leftrightarrow B \) and \(R \triangleright T \in A \leftrightarrow B \)

e.g. if

\(\text{has_sibling} : \text{People} \leftrightarrow \text{People} \) then

\[
\text{female} \triangleleft \text{has_sibling} \quad \text{is the relation} \quad \text{is_sister_of}
\]
\[
\text{has_sibling} \triangleright \text{female} \quad \text{is the relation} \quad \text{has_sister}
\]

Domain and Range Subtraction

Suppose \(R : A \leftrightarrow B \) and \(S \subseteq A \) and \(T \subseteq B \); then

\[
S \triangleleft R \quad \text{is the set} \quad \{(a, b) : R \mid a \not\in S\}
\]
\[
R \triangleright T \quad \text{is the set} \quad \{(a, b) : R \mid b \not\in T\}
\]

The following predicates are true

\[
S \triangleleft R = (A - S) \triangleleft R
\]
\[
R \triangleright T = R \triangleright (B - T)
\]
\[
S \triangleleft R \in A \leftrightarrow B
\]
\[
R \triangleright T \in A \leftrightarrow B
\]

\[
\text{female} \triangleleft \text{has_sibling} \quad \text{is the relation} \quad \text{is_brother_of}
\]
\[
\text{has_sibling} \triangleright \text{female} \quad \text{is the relation} \quad \text{has_brother}
\]
Relational Image

Suppose $R : A \leftrightarrow B$ and $S \subseteq A$

$$R[S] = \{b : B \mid \exists a : S \bullet a R b\}$$

$R[S] \subseteq B$

$$\text{divides}[\{8, 9\}] = \{x : \mathbb{N} \mid \exists k : \mathbb{N} \bullet x = 8k \lor x = 9k\}$$

$$= \{\text{numbers divided by 8 or 9}\}$$

$$\leq \{\{7, 3, 21\}\} = \{x : \mathbb{N} \mid x \geq 3\}$$

$\text{has_sibling}[\text{male}] = \{\text{people who have a brother}\}$

Inverse

Suppose $R : A \leftrightarrow B$

$$R^{-1} = \{(b, a) : B \times A \mid a R b\}$$

$$R^{-1} \in B \leftrightarrow A$$

$\text{has_sibling}^{-1} = \text{has_sibling}$

$\text{divides}^{-1} = \text{has_divisor}$

$\text{succ} : \mathbb{N} \leftrightarrow \mathbb{N}$

$$\forall x, y : \mathbb{N} \bullet$$

$$x \text{ succ} y \iff x + 1 = y$$

$succ^{-1} = \text{pred}$
Relational Composition

Suppose $R : A \leftrightarrow B$ and $S : B \leftrightarrow C$

$$R \circ S = \{(a, c) : A \times C \mid \exists b : B \bullet a R b \land b S c\}$$

![Diagram of relational composition]

$R \circ S \in A \leftrightarrow C$

e.g.

\[\text{is_parent_of } \circ \text{is_parent_of} = \text{is_grandparent_of}\]

$R^0 = \text{id}[A], \ R^1 = R, \ R^2 = R \circ R, \ R^3 = R \circ R \circ R, \ldots$

Functions

A (partial) function f from a set A to a set B, denoted by

$$f : A \rightarrow B,$$

is a subset f of $A \times B$ with the property that for each $a \in A$ there is at most one $b \in B$ with $(a, b) \in f$.

![Diagram of function]

\[
\begin{align*}
\text{dom}f &= \text{the set } \{a : A \mid \exists b : B \bullet (a, b) \in f\} \\
\text{ran}f &= \text{the set } \{b : B \mid \exists a : A \bullet (a, b) \in f\}
\end{align*}
\]
Function Application

Suppose $f : A \to B$ and $a \in \text{dom } f$; then $f(a)$ denotes the unique image in B that a is mapped to by f.

The predicates

$(a, b) \in f$ and $f(a) = b$

are equivalent.

Total Functions

A function $f : A \to B$ is a total function, denoted

$f : A \to B$,

if and only if $\text{dom } f$ is the set A.

Specifying Functions

(1) **Using a Look-up Table**

If a function $f : A \to B$ is finite (and not too large) we can specify the function explicitly by listing all the pairs (a, b) in the subset of $A \times B$ where $f(a) = b$.

Example:

$address : \text{PassportNo} \to \text{Address}$

<table>
<thead>
<tr>
<th>PassportNo</th>
<th>Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>A001017</td>
<td>77 Sunset Strip</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>G707165</td>
<td>19 Mail Street</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
</tbody>
</table>

2) Declaring Axioms

A function can be specified by giving a predicate determining which pairs \((a, b)\) are in the function.

(a)

\[
\begin{align*}
\text{double} &: \mathbb{N} \to \mathbb{N} \\
\forall n &: \mathbb{N} \bullet \text{double}(n) = 2n
\end{align*}
\]

(b)

\[
\begin{align*}
\text{halve} &: \mathbb{N} \to \mathbb{N} \\
\text{dom halve} &= \{n : \mathbb{N} \mid \exists m : \mathbb{N} \bullet 2m = n\} \\
\forall n &: \text{dom halve} \bullet 2 \ast \text{halve}(n) = n
\end{align*}
\]

(c)

\[
\begin{align*}
\text{root} &: \mathbb{N} \to \mathbb{N} \\
\text{dom root} &= \{n : \mathbb{N} \mid \exists m : \mathbb{N} \bullet m^2 = n\} \\
\forall n &: \text{dom root} \bullet (\text{root}(n))^2 = n
\end{align*}
\]

(d)

\[
\begin{align*}
+ &: \mathbb{N} \times \mathbb{N} \to \mathbb{N} \\
\forall (n, m) &: \mathbb{N} \times \mathbb{N} \bullet + (n, m) = n + m
\end{align*}
\]

(e) Let \(\text{People}\) be the set of all living people.

\[
\begin{align*}
\text{birth} &: \text{People} \to \mathbb{N} \\
\forall p &: \text{People} \bullet \text{birth}(p) \text{ is the year of } p\text{'s birth}
\end{align*}
\]
(3) Using Recursion

This is a variant on the previous declarative specification; a function is defined recursively in terms of itself.

e.g.

\[
\begin{align*}
\text{fact} : \mathbb{N} & \rightarrow \mathbb{N} \\
fact(1) &= 1 \\
\forall n : \mathbb{N} - \{1\} \cdot fact(n) = n \cdot fact(n - 1)
\end{align*}
\]

so

\[
\begin{align*}
\text{fact}(1) &= 1 \\
\text{fact}(2) &= 2 \cdot \text{fact}(1) = 2 \cdot 1 = 2 \\
\text{fact}(3) &= 3 \cdot \text{fact}(2) = 3 \cdot 2 = 6 \\
\text{fact}(4) &= 4 \cdot \text{fact}(3) = 4 \cdot 6 = 24
\end{align*}
\]

and so on....

(4) Giving an Algorithm

A function \(f : A \rightarrow B \) is specified by an algorithm (i.e., a program) such that given any element \(a \) in the domain of \(f \), the element \(f(a) \) can be computed using the algorithm.

e.g.

\[
\begin{align*}
\text{input} \ n : \mathbb{N} \\
\text{var} \ x, y : \text{integer} \\
\text{begin} \\
x := n; \ y := 0; \\
\text{while} \ x \neq 0 \text{ do} \\
\text{begin} \\
x := x - 1; \ y := y + 2 \\
\text{end; } \\
\text{write}(y) \\
\text{end}.
\end{align*}
\]

\[
\text{This algorithm computes the function.}
\]

\[
\begin{align*}
\text{double} : \mathbb{N} & \rightarrow \mathbb{N} \\
\forall n : \mathbb{N} & \cdot \text{double}(n) = 2n
\end{align*}
\]

But how can we prove this?
Function Overriding

Suppose \(f, g : A \to B \); then

\[f \oplus g = \text{the function} \ (\text{dom } g \cup f) \cup g \]

i.e. the following predicates are true

\[
\begin{align*}
\forall a : \text{dom } f & \cup \text{dom } g \quad (f \oplus g)(a) = g(a) \\
\forall a : \text{dom } f & - \text{dom } g \quad (f \oplus g)(a) = f(a) \\
f \oplus g & \in A \to B
\end{align*}
\]

e.g.

\[\{a \mapsto x, b \mapsto y, c \mapsto x\} \oplus \{a \mapsto y\} = \{a \mapsto y, b \mapsto y, c \mapsto x\}\]

\(\text{double} \oplus \text{root} = \{(0, 0), (1, 1), (2, 4), (3, 6), (4, 2), \ldots\}\]

Sequences

A sequence \(s \) of elements from a set \(A \), denoted

\[s : \text{seq } A , \]

is a function \(s : \mathbb{N} \to A \) where \(\text{dom } s = 1 \ldots n \) for some natural number \(n \). For example,

\[\langle b, a, c, b \rangle \] denotes the sequence (function)\(\{1 \mapsto b, 2 \mapsto a, 3 \mapsto c, 4 \mapsto b\} \)

The empty sequence is denoted by \(\langle \rangle \).

The set of all sequences of elements from \(A \) is denoted \(\text{seq } A \) and is defined to be

\[\text{seq } A = \{s : \mathbb{N} \to A \mid \exists n : \mathbb{N} \bullet \text{dom } s = 1 \ldots n\} \]

We define \(\text{seq}_1 A \) to be the set of all non-empty sequences, i.e.

\[\text{seq}_1 A = \text{seq } A - \{\langle \rangle\} \]

Notice that: \(\langle a, b, a \rangle \neq \langle a, a, b \rangle \neq \langle a, b \rangle \)
Special Functions for Sequences

Concatenation

\[(a, b) \cdot (b, a, c) = (a, b, a, c)\]

Head

\[
\begin{align*}
\text{head} : \text{seq}_1 A & \rightarrow A \\
\forall s : \text{seq}_1 A \bullet \text{head}(s) &= s(1)
\end{align*}
\]

\[\text{head}\langle c, b, b\rangle = c\]

Tail

\[
\begin{align*}
\text{tail} : \text{seq}_1 A & \rightarrow \text{seq}_1 A \\
\forall s : \text{seq}_1 A \bullet \langle\text{head}(s)\rangle \cdot \text{tail}(s) &= s
\end{align*}
\]

\[\text{tail}\langle c, b, b\rangle = \langle b, b\rangle\]

Part 2 — Z Specifications

Z Case Study: A Message Buffer

- A number of messages are transmitted from one location to another.
- Because of other traffic on the line each message for transmission is placed in a buffer which outputs the message when the line is free.
- This buffer may contain several messages at any time, but there is a fixed upper limit on the number of messages the buffer may contain.
- The buffer operates on a first in/first out (FIFO) principle.
Formal Specification

The State Schema

\[
[MSG] \quad (\text{The exact nature of these messages is not important})
\]

is the set of all possible messages that could ever be transmitted.

\[
max : \mathbb{N} \quad (\text{The actual value of } max \text{ is not important})
\]

is the constant maximum number of messages that can be held in the buffer at any one time.

\[
\text{Buffer} \\
\begin{align*}
\text{items} : \text{seq MSG} & \quad \text{declaration} \\
\#items \leq max & \quad \text{predicate}
\end{align*}
\]

e.g. suppose \(MSG = \{m_1, m_2, m_3\} \) and \(max = 4 \)

Then \(\text{items} = \langle m_1, m_2 \rangle \) is an instance, but \(\text{items} = \langle m_3, m_1, m_1, m_2, m_2 \rangle \) is not

- a schema specifies a relationship between variable values; \textit{Buffer} is a \textit{state} schema
- a state schema specifies a ‘snapshot’ of a system
- variables are declared and typed in the top part of the schema
- a predicate (axiom) restraining the possible values of the declared variables is given in the bottom part of the schema
- an instance of a schema is an assignment of values to variables consistent with their type declaration and satisfying the predicate
Operation Schema

The state schema Buffer gives a static view of the system. To specify how the system can change we need to specify operation schema.
An operation can be thought of as taking an instance of the state schema and producing a new instance.
To specify such an operation we express as a predicate the relationship between the instance of the state before the operation and the instance after the operation.
We adopt the convention that the value of state variables before the operation are denoted by unprimed identifiers, while values after the operation are denoted by primed identifiers.
For the message buffer there are two operations:

\[
\text{Join} \quad \text{(a new message is added to the buffer)}
\]

\[
\text{Leave} \quad \text{(a message leaves the buffer)}
\]

The Join Operation

\[
\text{Join} \quad \begin{array}{l}
\text{items, items'} : \text{seq MSG} \\
\text{msg} : \text{MSG} \\
\# \text{items} \leq \text{max} \\
\# \text{items'} \leq \text{max} \\
\# \text{items} < \text{max} \\
\text{items'} = \text{items} \cap \langle \text{msg}\rangle
\end{array}
\]

- \text{items} denotes the sequence of messages in the buffer before the operation
- \text{items'} denotes the sequence of messages in the buffer after the operation
- the decoration ? denotes an input
- there is an implicit \& between each line
• the first two lines of the predicate indicate that we have a valid instance of the state schema *Buffer* both before and after the operation

• the third line of the predicate is a pre-condition for the operation: it indicates that for the *Join* operation to be possible the buffer must not already be completely full

• the last line of the predicate specifies the relationship between the buffer contents before and after the operation: the input message is appended to the sequence of messages already in the buffer. e.g. suppose

\[\begin{align*}
MSG &= \{m_1, m_2, m_3\} \quad \text{and} \quad max = 4 \quad \text{and} \\
items &= \langle m_1, m_2, m_1 \rangle \quad \text{and} \quad msg? = m_3;
\end{align*} \]

then after the operation
\[items = \langle m_1, m_2, m_1, m_3 \rangle \]

Schema Inclusion

Because we always have a ‘before’ and ‘after’ instance of the state schema for any operation we make the following syntactic simplification: define

\[\Delta Buffer \]
\[items, items' : \text{seq} MSG \]
\[\#items \leq max \]
\[\#items' \leq max \]

and we can now write *Join* by including this schema:

\[Join \]
\[\Delta Buffer \]
\[msg? : MSG \]
\[\#items < max \]
\[items' = items \cap \langle msg? \rangle \]
In general, including a schema in the declaration part of another schema means that the included schema has its declaration added to the new schema, and its predicate conjoined to the predicate of the new schema.
e.g. if

\[
\begin{array}{c}
A \\
x : T_1 \\
y : T_2 \\
P(x, y)
\end{array}
\quad
\begin{array}{c}
S \\
z : T_3 \\
Q(x, y, z)
\end{array}
\]

then \(S \) expands to the schema

\[
\begin{array}{c}
S \\
x : T_1 \\
y : T_2 \\
z : T_3 \\
P(x, y) \land Q(x, y, z)
\end{array}
\]

The Leave Operation

\[
\begin{array}{c}
\text{Leave} \\
\Delta \text{Buffer} \\
\text{msg}! : \text{MSG} \\
\text{items} \neq \emptyset \quad \text{items} = \langle \text{msg}! \rangle \text{items}'
\end{array}
\]

- the decoration ! denotes an output
- the first line of the predicate is a pre-condition for the operation: it indicates that for the \text{Leave} operation to be possible the buffer must not be empty
- the last line of the predicate specifies the relationship between the buffer contents before and after the operation: the output message is taken from the head of the sequence of messages in the buffer, leaving just the tail of the sequence in the buffer.
The Initial State

To complete the specification of the message buffer we need to specify the initial state of the buffer:

\[
\begin{array}{c}
\text{Buffer}_{INIT} \\
\text{items} = \langle \rangle
\end{array}
\]
i.e.

\[
\begin{array}{c}
\text{Buffer}_{INIT} \\
\text{items} : \text{seq MSG} \\
\#\text{items} \leq \text{max} \\
\text{items} = \langle \rangle
\end{array}
\]

Conclusions

We have specified the message buffer in terms of what an observer of the buffer can expect to see. Initially the buffer would be empty, and then the operations of Join and Leave can occur whenever they are enabled (i.e. when their pre-conditions are satisfied). Operations are assumed to be atomic (i.e. occur instantaneously). At all times an observer would notice that the state schema for the buffer is satisfied.

Extending Specifications

Example: A Slow Buffer

\[
\begin{array}{c}
\text{delay} : \mathbb{N}
\end{array}
\]

\[
\begin{array}{c}
\text{SlowBuffer}_{INIT} \\
\text{SlowBuffer} \\
\text{idle} : \mathbb{N}
\end{array}
\]
i.e.

\[
\begin{array}{c}
\text{SlowBuffer} \\
\text{items} : \text{seq MSG}; \text{idle} : \mathbb{N} \\
\#\text{items} \leq \text{max}
\end{array}
\]

\[
\begin{array}{c}
\text{SlowBuffer}_{INIT} \\
\text{SlowBuffer} \\
\text{Buffer}_{INIT} \\
\text{idle} = 0
\end{array}
\]
i.e.

\[
\begin{array}{c}
\text{SlowBuffer}_{INIT} \\
\text{items} : \text{seq MSG} \\
\text{idle} : \mathbb{N} \\
\#\text{items} \leq \text{max} \land \text{items} = \langle \rangle \land \text{idle} = 0
\end{array}
\]
Merging Schemas

\[
\begin{align*}
A & : x : T_1 \\
y & : T_2 \\
_ & : P(x, y) \\
B & : y : T_2 \\
z & : T_3 \\
_ & : Q(y, z)
\end{align*}
\]

\[
C
\begin{align*}
A & : x : T_1 \\
y & : T_2 \\
z & : T_3 \\
_ & : P(x, y) \land Q(y, z)
\end{align*}
\]

- type compatibility is needed to merge schemas

Slow Operations

\[
\begin{align*}
\text{SlowJoin} & : \Delta \text{SlowBuffer} \\
_ & : \text{Join} \\
_ & : \text{idle} \geq \text{delay} \\
_ & : \text{idle}' = 0
\end{align*}
\]

\[
\begin{align*}
\text{SlowJoin} & : \text{items}, \text{items}' : \text{seq MSG} \\
_ & : \text{idle}, \text{idle}' : \text{N} \\
_ & : \text{msg}' : \text{MSG} \\
_ & : \# \text{items} \leq \text{max} \land \# \text{items}' \leq \text{max} \\
_ & : \# \text{items} < \text{max} \\
_ & : \text{items}' = \text{items} \ominus \langle \text{msg}' \rangle \\
_ & : \text{idle} \geq \text{delay} \land \text{idle}' = 0
\end{align*}
\]

i.e.
\[
\begin{align*}
\text{SlowLeave} \quad & \quad \Delta \text{SlowBuffer} \\
\text{Leave} \quad & \quad \text{idle} \geq delay \land idle' = 0 \\
\text{Tick} \quad & \quad \Delta \text{SlowBuffer} \\
\text{idle}' = idle + 1 \land \text{items}' = \text{items}
\end{align*}
\]

Exercise:
give the expanded form of the operation schemas \textit{SlowLeave} and \textit{Tick}.

Reasoning About the Specification

Can we verify that the message buffer as specified has the FIFO property, i.e. messages leave the buffer in the same order as they arrive?
To do this we introduce \textit{auxiliary} variables which do not alter the functionality of the specification but aid in the analysis.
In this case we introduce auxiliary sequences \textit{inhist} and \textit{outhist} to record the history of the flow of messages into and out of the buffer.
The new system obtained from the buffer by adding these auxiliary variables can be specified by including the original schemas into new schemas which contain the extra information about auxiliary variables.
e.g. the schema *RecordedJoin* with the included schemas expanded becomes:

```
<table>
<thead>
<tr>
<th>RecordedJoin</th>
<th>RecordedJoin</th>
</tr>
</thead>
<tbody>
<tr>
<td>items, items' : seq MSG</td>
<td>items, items' : seq MSG</td>
</tr>
<tr>
<td>inhist, inhist' : seq MSG</td>
<td>inhist, inhist' : seq MSG</td>
</tr>
<tr>
<td>outhist, outhist' : seq MSG</td>
<td>outhist, outhist' : seq MSG</td>
</tr>
<tr>
<td>msg? : MSG</td>
<td>msg? : MSG</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>#items ≤ max</td>
<td>#items ≤ max</td>
</tr>
<tr>
<td>#items' ≤ max</td>
<td>#items' ≤ max</td>
</tr>
<tr>
<td>#items &lt; max</td>
<td>#items &lt; max</td>
</tr>
<tr>
<td>items' = items ∩ (msg?)</td>
<td>items' = items ∩ (msg?)</td>
</tr>
<tr>
<td>inhist' = inhist ∩ (msg?)</td>
<td>inhist' = inhist ∩ (msg?)</td>
</tr>
<tr>
<td>outhist' = outhist</td>
<td>outhist' = outhist</td>
</tr>
</tbody>
</table>
```

How can we use the auxiliary variables to prove that the buffer satisfies the FIFO property?
Theorem
\[\forall \text{RecordedBuffer} \bullet \text{inhist} = \text{outhist} \bowtie \text{items} \]

Proof:
Use structural induction.
Initially \(\text{inhist} = \text{outhist} = \text{items} = \langle \rangle \),
so the predicate is true.
Suppose the predicate is true, and \text{RecordedJoin} occurs.
After the operation
\[\text{inhist}' = \text{inhist} \bowtie \langle \text{msg}? \rangle \land \text{outhist}' = \text{outhist} \land \text{items}' = \text{items} \bowtie \langle \text{msg}? \rangle \]
Hence:
\[\text{inhist}' = \text{inhist} \bowtie \langle \text{msg}? \rangle = (\text{outhist} \bowtie \text{items}) \bowtie \langle \text{msg}? \rangle = \text{outhist}' \bowtie \text{items}' \]
and the predicate remains true. A similar argument shows that the operation
\text{RecordedLeave} also preserves the predicate. □

Conjunction
\[\text{SlowRecordedBuffer} \equiv \text{SlowBuffer} \land \text{RecordedBuffer} \]
is equivalent to merging the schemas:
\[
\begin{array}{ccc}
\text{SlowRecordedBuffer} \\
\hline
\text{SlowBuffer} & \text{RecordedBuffer} \\
\end{array}
\]
Also
\[\text{SlowRecordedBuffer}_{\text{INIT}} \equiv \text{SlowBuffer}_{\text{INIT}} \land \text{RecordedBuffer}_{\text{INIT}} \]
\[\text{SlowRecordedJoin} \equiv \text{SlowJoin} \land \text{RecordedJoin} \]
If \(A \) and \(B \) are schemas:
- the declaration of \(A \land B \) is the union of the declarations of \(A \) and \(B \);
- the predicate of \(A \land B \) is the conjunction of the predicates of \(A \) and \(B \).
Disjunction

\[
\text{Flag ::= ok | error}
\]

\[
\begin{align*}
\text{JoinOK} & \\
\text{Join} & \\
\text{flag}! : \text{Flag} & \\
\text{flag}! = \text{ok} & \\
\text{JoinError} & \\
\Xi\text{Buffer} & \\
\text{flag}! : \text{Flag} & \\
\#\text{items} = \text{max} \land \text{flag}! = \text{error}
\end{align*}
\]

\[
\text{CompleteJoin} \triangleq \text{JoinOK} \lor \text{JoinError}
\]

\[
\begin{align*}
\text{CompleteJoin} & \\
\Delta\text{Buffer} & \\
\text{msg}? : \text{MSG}; \text{flag}! : \text{Flag} & \\
\#\text{items} < \text{max} \land \text{items}' = \text{items} \land (\text{msg}?) \land \text{flag}! = \text{ok} & \\
\lor & \\
\#\text{items} = \text{max} \land \text{items}' = \text{items} \land \text{flag}! = \text{error}
\end{align*}
\]

If \(A \) and \(B \) are schemas:

- the declaration of \(A \lor B \) is the union of the declarations of \(A \) and \(B \);
- the predicate of \(A \lor B \) is the disjunction of the predicates of \(A \) and \(B \).

In general

\[
\begin{array}{c}
A \\
\hline
x : T_1 \\
y : T_2 \\
P(x, y)
\end{array}
\quad
\begin{array}{c}
B \\
\hline
y : T_2 \\
z : T_3 \\
Q(y, z)
\end{array}
\]

conjunction

\[
\begin{array}{c}
A \land B \\
\hline
x : T_1 ; y : T_2 ; z : T_3 \\
P(x, y) \land Q(y, z)
\end{array}
\]

disjunction

\[
\begin{array}{c}
A \lor B \\
\hline
x : T_1 ; y : T_2 ; z : T_3 \\
P(x, y) \lor Q(y, z)
\end{array}
\]
Composition

\(\text{Join} \triangleright \text{Leave} \)

is an (atomic) operation with the effect of a \(\text{Join} \) followed by a \(\text{Leave} \). Defining \(\text{Join} \text{Leave} \triangleq \text{Join} \triangleright \text{Leave} \) gives

\[
\begin{array}{l}
\text{Join} \text{Leave} \\
\quad \text{ΔBuffer} \\
\quad \text{msg?}, \text{msg!} : \text{MSG} \\
\quad \# \text{items} < \text{max} \\
\quad \exists \text{items}'' : \text{seq MSG} \bullet \text{items}'' = \text{items} \wedge (\text{msg?}) \wedge \text{items}'' = (\text{msg!}) \text{items}'
\end{array}
\]

- the pre-state of \(\text{Join} \) is the pre-state of \(\text{Join} \triangleright \text{Leave} \)
- the post-state of \(\text{Join} \) is identified with the pre-state of \(\text{Leave} \) and hidden within \(\text{Join} \triangleright \text{Leave} \)
- the consequent post-state of \(\text{Leave} \) is the post-state of \(\text{Join} \triangleright \text{Leave} \)

Composition in general

\[
\begin{array}{l}
A \\
\quad x : T_1 \\
\quad y : T_2 \\
\quad P(x, y)
\end{array}
\]

\[
\begin{array}{l}
\text{ΔA} \\
\quad t_3? : T_3 \\
\quad t_4! : T_4 \\
\quad Q_1(x, x', y, y', t_3?, t_4!)
\end{array}
\]

\[
\begin{array}{l}
\text{ΔA} \\
\quad t_5? : T_5 \\
\quad t_6! : T_6 \\
\quad Q_2(x, x', y, y', t_5?, t_6!)
\end{array}
\]

\[
\begin{array}{l}
\text{ΔA} \\
\quad t_3? : T_3 \\
\quad t_4! : T_4 \\
\quad t_5? : T_5 \\
\quad t_6! : T_6 \\
\quad \exists x'' : T_1; y'' : T_2 \bullet \\
\quad Q_1(x, x'', y, y'', t_3?, t_4!) \land Q_2(x'', x', y'', y', t_5?, t_6!)
\end{array}
\]
Piping

\[\text{Duplicate} \]
\[\text{msg}? : \text{MSG}; \text{duplicate!} : \text{seq MSG} \]
\[\text{duplicate!} = \langle \text{msg}?, \text{msg}? \rangle \]

\[\text{LeaveDuplicated} \triangleq \text{Leave} \gg\gg \text{Duplicate} \]

\[\Delta \text{Buffer} \]
\[\text{duplicate!} : \text{seq MSG} \]
\[\text{items} \neq \langle \rangle \]
\[\exists m : \text{MSG} \cdot \text{items} = \langle m \rangle \cap \text{items'} \land \text{duplicate!} = \langle m, m \rangle \]

- the output variables of \text{Leave} and the input variables of \text{Duplicate} with identical bases (i.e. ignoring the decorations '?' and '!' respectively) have their values identified and hidden in \text{Leave} \gg\gg \text{Duplicate}.

Piping in general

\[A \]
\[x : T_1; y : T_2 \]
\[P(x, y) \]

\[\Delta A \]
\[t_5? : T_5 \]
\[t_6! : T_6 \]
\[RA(x, x', y, y', t_5?, t_6!) \]

\[D \]
\[v : T_3; w : T_4 \]
\[Q(v, w) \]

\[\Delta D \]
\[t_6? : T_6 \]
\[t_7! : T_7 \]
\[RD(v, v', w, w', t_6?, t_7!) \]

\[AOP \gg DOP \]
\[\Delta A \]
\[\Delta D \]
\[t_5? : T_5 \]
\[t_7! : T_7 \]
\[\exists t : T_6 \cdot RA(x, x', y, y', t_5?, t) \land RD(v, v', w, w', t, t_7!) \]
Non-determinism

\[
\begin{array}{c}
\text{GOP1} \\
\Delta G \\
a' = 3
\end{array}
\]

- \(b'\) can take any value \(\geq 3\) regardless of the value of \(b\)
- \(c' = 3\) because the state invariant gives \(a' = c'\)
- if the value of \(b\) is to remain unchanged, \(b = b'\) must be added

\[
\begin{array}{c}
\text{GOP2} \\
\Delta G \\
out!: \mathbb{N} \\
out! = a + b + c
\end{array}
\]

- the values of \(a', b', c'\) are undefined except that \(a' \leq b'\) and \(a' = c'\)
- compare with using \(\Xi G\)

Renaming

\[
\begin{array}{c}
A \\
x : T_1 \\
y : T_2 \\
P(x, y)
\end{array}
\]

\[
\begin{array}{c}
R \equiv A[z/y] \text{ expands to} \\
P(x, z)
\end{array}
\]

e.g. \(\text{TwoJoins} \equiv \text{Join}[msg_1?/msg?] \circ \text{Join}[msg_2?/msg?]\)

\[
\begin{array}{c}
\Delta \text{Buffer} \\
m_{sg_1?}, m_{sg_2?} : \text{MSG} \\
\# \text{items} < \text{max} - 1 \land \text{items}' = \text{items} \cap \langle m_{sg_1}? \rangle \cap \langle m_{sg_2}? \rangle
\end{array}
\]

(compare this with \(\text{Join} \circ \text{Join}\))
Schemas as Types

Instantiation
- a schema determines a type
- a variable of type schema (an instance) can be declared
- variables within an instance are referenced using the ‘dot’ notation

e.g.
\[
\begin{array}{c}
\text{TwoBuffers} \\
\text{a, b : Buffer} \\
\text{a.items = b.items}
\end{array}
\]

expands to give
\[
\begin{array}{c}
\text{TwoBuffers} \\
\text{a, b : Buffer} \\
\#a.items \leq \text{max} \\
\#b.items \leq \text{max} \\
\text{a.items = b.items}
\end{array}
\]

In general, if
\[
\begin{array}{c}
A \\
x : T_1 \\
y : T_2 \\
P(x, y)
\end{array}
\]
then
\[
\begin{array}{c}
I \\
a : A
\end{array}
\]
expands to give
\[
\begin{array}{c}
I \\
a : A \\
P(a.x, a.y)
\end{array}
\]

\[
\begin{array}{c}
H1 \\
A \\
x : T_3 \\
\text{has a type clash unless } T_1 = T_3
\end{array}
\]

\[
\begin{array}{c}
H2 \\
a : A \\
x : T_3 \\
\text{has no type clash}
\end{array}
\]
Global Definitions (constants)

\[
\begin{align*}
square : \mathbb{N} \to \mathbb{N} \\
\forall n : \mathbb{N} \cdot \text{square}(n) = n^2
\end{align*}
\]

\[
\begin{align*}
temp : \mathbb{N} \\
temp < 451
\end{align*}
\]

\[
max : \mathbb{N}
\]

Schemas can be used as types in global definition:

\[
\begin{align*}
\text{length} : \text{Buffer} \to \mathbb{N} \\
\forall b : \text{Buffer} \cdot \\
\text{length}(b) = \#b.\text{items}
\end{align*}
\]

Generic Typing

In schemas:

\[
\begin{align*}
\text{Buffer}[T] \\
\text{items} : \text{seq} T \\
\#\text{items} \leq \text{max}
\end{align*}
\]

\[
\begin{align*}
\text{Join}[T] \\
\Delta\text{Buffer}[T] \\
t? : T
\end{align*}
\]

\[
\begin{align*}
\#\text{items} < \text{max} \land \text{items}' = \text{items}^\wedge(t?)
\end{align*}
\]

In global definitions:

\[
\begin{align*}
[T] \\
\text{head} : \text{seq}_1 \; T \to T \\
\forall s : \text{seq}_1 \; T \cdot \text{head} \; s = s(1)
\end{align*}
\]
Alternative Syntax

\[
A \vdash \frac{x : T_1 \\ y : T_2}{P(x, y)}
\]

can be written as

\[
A \equiv [x : T_1 ; y : T_2 \mid P(x, y)]
\]

e.g.

\[
Buffer \equiv [\text{items} : \text{seq MSG} \mid \# \text{items} \leq \text{max}] \\
\text{SlowBuffer}\text{INIT} \equiv [\text{SlowBuffer} ; \text{Buffer}\text{INIT} \mid \text{idle} = 0] \\
\Delta Buffer \equiv [\text{Buffer} ; \text{Buffer}'] \quad (= \text{Buffer} \land \text{Buffer}')
\]

Z Case Study: Alternating-Bit Protocol

```
LoseMsg
   / \  \\
  /   \\
MsgChan  RecAck
  /   \\
Trans    TransAck
     /   \\
    Retrans TransMsg
   /     \\
Trans  RecMsg  RejMsg
          /      \\
        Rec      \\
          /    \\
        AckChan
          /  \\
        LoseAck
```

74

75
Tag == \{0, 1\}

\[MSG\]

Tag_Msg == Tag \times MSG

\[
\begin{array}{l}
\text{Trans} \\
\quad \text{buf} : \text{seq Tag_Msg} \\
\quad \text{tag} : \text{Tag} \\
\quad \#\text{buf} \leq 1 \\
\quad \forall \ t : \text{Tag}; \ m : \text{MSG} \cdot \\
\quad \quad \text{buf} = ((t, m)) \Rightarrow \text{tag} = t
\end{array}
\]

\[
\begin{array}{l}
\text{Rec} \\
\quad \text{exptag} : \text{Tag}
\end{array}
\]

\[
\begin{array}{l}
\text{MsgChan} \\
\quad \text{msgchan} : \text{seq Tag_Msg}
\end{array}
\]

\[
\begin{array}{l}
\text{AckChan} \\
\quad \text{ackchan} : \text{seq Tag}
\end{array}
\]

State == Trans \land Rec \land MsgChan \land AckChan

- \text{buf} \text{ contains any tagged message that has been transmitted but not yet acknowledged}
- \text{tag} \text{ is the tag of the last tagged message to be transmitted}
- \text{exptag} \text{ is the tag of the next message expected by the receiver}
- \text{msgchan} \text{ is the sequence of tagged messages on route to the receiver}
- \text{ackchan} \text{ is the sequence of tags of messages acknowledged by the receiver on route to the transmitter}

\[
\begin{array}{l}
\text{State}_{\text{INIT}} \\
\quad \text{State} \\
\quad \quad \text{buf} = \langle \rangle \\
\quad \quad \text{tag} = 0 \\
\quad \quad \text{msgchan} = \langle \rangle \\
\quad \quad \text{exptag} = 1 \\
\quad \quad \text{ackchan} = \langle \rangle
\end{array}
\]
Operations

If buf is empty, a message can be accepted from the environment, tagged and this tagged message transmitted.

\[
\begin{align*}
\text{TransMsg} & \quad \text{Trans} \\
\Delta \text{MsgChan} & \quad \Delta \text{MsgChan} \\
\text{m} \? : \text{MSG} & \\
\text{buf} & = \langle \rangle \\
\text{tag}' & = 1 - \text{tag} \\
\text{buf}' & = \langle (\text{tag}', \text{m}) \rangle \\
\text{msgchan}' & = \text{msgchan} \setminus \text{buf}'
\end{align*}
\]

If buf is not empty, its contents can be re-transmitted.

\[
\begin{align*}
\text{Retrans} & \\
\Xi \text{Trans} & \\
\Delta \text{MsgChan} & \\
\text{buf} & \neq \langle \rangle \\
\text{msgchan}' & = \text{msgchan} \setminus \text{buf}
\end{align*}
\]

If msgchan is not empty, the tagged message at its head can be accepted by the receiver.

If its tag is the expected tag, the message is output to the environment.

\[
\begin{align*}
\text{RecMsg} & \\
\Delta \text{MsgChan} & \\
\Delta \text{Rec} & \\
\text{m}! : \text{MSG} & \\
\text{msgchan} & \neq \langle \rangle \\
\text{(exptag, m!)} & = \text{head msgchan} \\
\text{msgchan}' & = \text{tail msgchan} \\
\text{exptag}' & = 1 - \text{exptag}
\end{align*}
\]

If the tag of the tagged message at the head of msgchan is not the expected tag, the message is rejected.

\[
\begin{align*}
\text{RejMsg} & \\
\Delta \text{MsgChan} & \\
\Xi \text{Rec} & \\
\text{msgchan} & \neq \langle \rangle \\
\# \text{m} : \text{MSG} \bullet \\
\text{(exptag, m)} & = \text{head msgchan} \\
\text{msgchan}' & = \text{tail msgchan}
\end{align*}
\]
The tag of the last message output to the environment can be transmitted back as an acknowledgement.

\[
\text{TransAck} \\
\Xi \text{Rec} \\
\Delta \text{Ack Chan} \\
ackchan' = ackchan \cap (1 - \text{exptag})
\]

When an acknowledgement is received by the transmitter, \textit{buf} is emptied if the acknowledgement equals \textit{tag}; otherwise it is rejected.

\[
\text{Rec Ack} \\
\Delta \text{Ack Chan} \\
\Delta \text{Trans} \\
akchan \neq \langle \rangle \\
akchan' = \text{tail acknowledgement} \\
tag = \text{head acknowledgement} \Rightarrow \text{buf}' = \langle \rangle \\
tag \neq \text{head acknowledgement} \Rightarrow \text{buf}' = \text{buf} \\
tag' = \text{tag}
\]

At any time the tagged message at the head of \textit{msgchan} can be lost.

\[
\text{LoseMsg} \\
\Delta \text{Msg Chan} \\
msgchan \neq \langle \rangle \\
msgchan' = \text{tail msgchan}
\]

At any time the acknowledgement at the head of \textit{ackchan} can be lost.

\[
\text{Lose Ack} \\
\Delta \text{Ack Chan} \\
ackchan \neq \langle \rangle \\
ackchan' = \text{tail acknowledgements}
\]
Behavioural Modelling in Z

- move from an initial state to successor states by a sequence of enabled operations
- no inbuilt constraints on the selection of enabled operations
- history (trace) constraints must be explicitly introduced with history variables
- non-determinism in both operation specification and in the selection of enabled operations