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Abstract - In this paper, we present our design of a Processing 
Element (PE) Aware MapReduce base framework, Pamar. 
Pamar is designed for supporting distributed computing on 
clusters where node PE configurations are asymmetric on 
different nodes. Pamar’s main goal is to allow users to seamlessly 
utilize different kinds of processing elements (e.g., CPUs or 
GPUs) collaboratively for large scale data processing. To show 
proof of concept, we have incorporated our designs into the 
Hadoop framework and tested it on cluster environments having 
asymmetric node PE configurations. We demonstrate Pamar’s 
ability to identify PEs available on each node and match-make 
user jobs with nodes, base on job PE requirements. Pamar allows 
users to easily parallelize applications across large datasets and at 
the same time utilizes different PEs for processing different 
classes of functions efficiently. The experiments show 
improvement in job queue completion time with Pamar over 
clusters with asymmetric nodes as compared to clusters with 
symmetric nodes.  

    Keywords - MapReduce, GPGPU, Heterogeneous resource 
framework 

I. INTRODUCTION 
In the face of growing needs for computing power, various 
hardware accelerators are investigated as potential candidates 
for replacing or complementing the CPU. As shown in [1-5] 
and many other studies, an increasing number of researchers 
are using hardware accelerators such as Graphics Processors 
(GPUs) and CELL for processing. This is due to the huge 
potential performance gain that can be provided by these 
accelerators. Researchers have also begun looking at utilizing 
such accelerators in clusters to process their applications [6, 
7]. The rising popularity of these accelerators is also evident 
from the growing presence of clusters equipped with 
accelerators in the top 500 Super Computers list [8]. With the 
increasingly widespread adoption of hardware accelerators, it 
will not be surprising to see more heterogeneous clusters in the 
near future. These heterogeneous clusters with different types 
of accelerators will enable users to use different processing 
elements (PEs) collaboratively, thereby harnessing the 
processing power of these accelerators for the computation of 
different tasks. Already there are studies looking into using 
CPU and GPGPU collaboratively [9, 10], in attempts to boost 
performance of matrix operations. 

Clusters with nodes possessing different types of PE provide 
numerous benefits. On top of flexibility in choice of PEs to 
use, heterogeneous PE clusters can also provide a balance in 
cost-benefits when it comes to upgrading existing clusters with 
accelerators. In environments where users have different PE 

requirements, different partitions of a cluster can be upgraded 
to satisfy these diversified requirements. This avoids having a 
cluster-wide upgrade whenever there is a need for a new type 
of PE.  

While clusters with heterogeneous node configurations can be 
beneficial, most existing distributed frameworks such as 
Hadoop cannot support these types of clusters. Those 
frameworks are not designed to support clusters with 
heterogeneous PE configurations. They lack the ability to 
gather the required information for the assignment of jobs with 
different PE requirements to the appropriate nodes in the 
cluster. As a result, users are either restricted to using only 
PEs that exists in all the nodes or to run their jobs in separate 
clusters which have the required PE in all the nodes. As such, 
frameworks which are able to detect different PE types on 
each node dynamically will become increasingly important in 
the future. Also, they should be able to make intelligent 
decisions when scheduling jobs to the nodes. This not only 
prevents jobs from failing due to mismatch in PE requirements 
of the job and available PEs on the node, but also improves the 
efficiency. 

In this paper, we present a Processing Element Aware 
MapReduce base framework, Pamar. Pamar allows users to 
collaboratively use GPU and CPU PEs in their MapReduce 
jobs on clusters with asymmetry in GPGPU/CPU node 
configurations among nodes. Users do not have to worry about 
details like which nodes their jobs have to run on or how the 
data is to be partitioned. All those details are handled by 
Pamar. It automatically detects the type of PEs available on 
each node and scans for the PE requirements of submitted jobs 
with little or no user efforts. Pamar follows the MapReduce 
method; partitioning the data into chunks and distributing the 
tasks to the data for processing. The chunk granularity can be 
adjusted so that each data chunk can be fitted into the GPGPU 
accelerators. While the intention of Pamar is to facilitate the 
use of GPU accelerators in cluster settings, we do not 
constraint them to using pre-defined GPGPU functions like in 
[11]. Users are free to implement their algorithms to run on the 
GPUs. This enables greater flexibility in application 
development. In addition, we implemented HPE, a 
Heterogeneous Processing Element scheduler for Pamar. The 
algorithm handles the scheduling of jobs to satisfy the job 
requirements on PEs. As a proof of concept, we have 
integrated our design into Hadoop [12] and evaluated the 
prototype. Our experiments show that the prototype is able to 
yield up to 23% improvement in job queue completion time, 
compared with Hadoop. 
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The remainder of this paper is structured as follows: In Section 
II, we introduce MapReduce, the underlying paradigm of 
Pamar. The design overview of Pamar and our prototype 
implementation is presented in Section III. In Section IV, we 
present the results of our experiments and discuss on related 
works in Section V. Finally, Section VI is the conclusion. 

II. BACKGROUND 

A. MapReduce and Hadoop 
MapReduce [13] is a programming model from Google. The 
model comprises of two main functions, Map and Reduce 
functions. The Map function takes in a key/value pair and 
outputs an intermediate list of key/value pairs. The Reduce 
functions will than take all values associated to the same key 
and produce the final output list of key/values. Users are 
tasked with providing the Map and Reduce implementation. 

Hadoop [12] is an open source implementation of MapReduce. 
It uses a JobTracker node to perform scheduling and 
management of user jobs. The JobTracker is also responsible 
for monitoring the TaskTracker nodes which are used to 
perform the raw computation. In additional to the JobTracker, 
Hadoop also uses another master node, the Namenode, for the 
management of data. With the Hadoop File system (HDFS) 
the Namenode manages the replication and distribution of the 
data blocks across all nodes within the cluster.  

The main advantage of Hadoop over other existing distributed 
frameworks lies in allowing users to rapidly develop parallel 
and distributed applications with minimum knowledge on 
parallel programming required. The abstract Map and Reduce 
interfaces provided in Hadoop allow programmers to focus on 
application development. Hadoop abstracts non-application 
related tasks such as data partitioning, task scheduling, task 
failure detection and recovery and data redundancy from the 
users. This helps to ease the complexity of developing parallel 
and distributed applications for large dataset processing. 

B. Hardware Architecture 
Currently, most clusters are homogeneous in terms of PE type 
configurations between nodes within a cluster’s environment. 
Meaning to say, if one of the nodes has only CPU processors as 
its PE, then all other nodes should only have CPU PE type. 
Likewise, if a node has a mix of 2 or more type of PEs, all 
other nodes should have the same mix of PE types.  However, 
in practice, this is an inflexible solution. If the need for a new 
PE type arises, the whole cluster will have to be upgraded with 
the respective PE type, regardless of the user base. This might 
result in the PE being underutilized.  

One solution to this problem is to perform a partial upgrade on 
the cluster, base on the demand for the required PE. However, 
this brings about the problem of current distributed frameworks 
not being able to support such cluster configurations. Current 
schedulers and frameworks are not designed to detect user job 
PE requirements and the available PE resources on each node. 
As such, schedulers will not be able to make correct scheduling 
decisions when scheduling task. 

Pamar is designed to support cluster architectures such as the 
one shown in Figure 1. Pamar has built-in mechanisms for 
detecting the PE resource available on each individual node 

and for scanning the PE requirements for incoming user jobs. 
Both sets of information are then passed to the scheduler. With 
these information, the scheduler will be able to decide where 
the tasks can be scheduled to for smooth execution of the tasks.  
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Figure 1.Heterogeneous cluster with asymmetry in node PE 

configurations 

Pamar gives the flexibility of partially upgrading different 
portions of the cluster with different types of PEs to the 
administrators. This will encourage users to explore using more 
than one PE type in their jobs so as to increase efficiency. 
Pamar also adopts the MapReduce as the underlying 
programming paradigm, effectively allowing users of Pamar to 
easily write scalable parallel applications to process large sets 
of data. This is especially important in the current era where the 
size of readily available datasets is growing exponentially.     

III. PAMAR 
In this section, we first give a general overview of the various 
key components of Pamar. We describe the implementation of 
a prototype for Pamar which works for CPU/GPGPU 
heterogeneous clusters.  

For simplicity in understanding, for the rest of this paper, we 
define ‘job’ and ‘tasks’ as follows: A job is a user submitted 
workload consisting of multiple tasks, each responsible for a 
portion of the workload that a job is required to complete. For 
a job to be considered completed, all tasks from the same job 
have to be completed successfully.  

A. Detecting Available PE Resources 
Before Pamar performs scheduling tasks with different PEs, it 
needs to detect the available PE types in each node within the 
cluster. This is achieved by scanning the nodes for the 
presence of PE types. 

When a node is initialized, a scan is conducted to look for 
specific PE resources on the node. API libraries for the 
specific PEs are used in the scanning algorithm. The scan is 
executed on the node side through a start up script. This is to 
avoid placing additional load on the master server. By having 
the nodes execute the script themselves, it not only allows the 
simultaneous scanning of multiple nodes, but also allows new 
nodes to join the cluster at a later time independently. This can 
help avoid disruption to the master server even when nodes 
join the cluster during operation time. Once the scan is 
complete, a list of available PEs is made for each node and is 
sent to the master server. The information is stored in the 
master server and used during the scheduling phase. 

B. Scanning of Job Requirements 
In scheduling, Pamar also tries to scan for the PE requirements 
of each task. Remembering our definition of task stated 
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previously, the task can be a Map or Reduce function 
implemented by the user. Our objective here is to obtain the 
information needed with as little user intervention as possible. 
To achieve this, a dual level code scanning scheme is used. 
Figure 3 shows the flow of the whole scanning of job 
requirement process. This is done on the client side to 
maintain scalability and prevent bottlenecks at the master 
server.  

The first level looks at allowing users to inform Pamar what is 
required for each task through built-in APIs. In our prototype, 
a custom annotation class, shown in Figure 2, is implemented 
to allow users to specify to Pamar the PE requirements.  

  
Figure 2.Custom Annotation class, ClusterResource, used to 

denote PE requirements at task level 

The client component of Pamar than scans through the source 
code of the task functions in attempts to pick up such 
annotation labels. If successful, the task requirement is marked 
based on the label. Otherwise, a second level of scanning is 
executed by the client. The client will search through the 
task’s source codes or compiled class files for relevant 
keywords to identify invocations of PE specific API libraries. 
Such traces can help Pamar to decide if the relevant PEs are 
being used in the tasks. As this method of scanning for 
keywords is not fool-proof, it is only utilized in the absence of 
an annotation label.  We tested the source code scanning 
feature using several different programs written in Java and 
JCUDA and achieve 100% accuracy in mapping tasks to the 
relevant PEs.  

By having two levels of scanning, Pamar can still get some clue 
on the PE requirements of tasks even if the annotation labels 
are not used.  

C. Scheduling of Tasks 
With the two pieces of information at hand, Pamar makes 
decisions on which task gets assigned to the nodes, without 
having task failures due to mismatch between the task PE 
requirements and the PE available on the node. However, 
during our initial testing of the Pamar framework, we found 
that using the Hadoop default scheduling algorithm produces 
unstable results. We will discuss this in more detail in the 
experimental results section.  

After our analysis on the initial results, we found that the 
GPGPU tasks generally finish faster than the CPU tasks. This 
gives the idea of finishing the “shorter” tasks first so that the 
idle resources can be used to process the “longer” tasks. We 
also found that there is usually a waiting time incurred by 
tasks that requires the GPGPUs if it is queued behind a CPU 
task. This is so as the GPGPU tasks must run on a GPGPU 
enabled node. However, this is not so for the CPU tasks as 
each node comes equipped with a CPU processor by default. 
Therefore, if the CPU task is queued in front, than it will most 
likely occupy the GPGPU enabled node too. In such 
situations, even if some of the tasks complete first, freeing up 
nodes to take in new tasks, if the nodes are not GPGPU 
enabled, then the GPGPU task will have to continue waiting. 

This does not apply to the CPU tasks as they can run on any 
nodes within the cluster by default.   

Client extracts user Map 
and Reduce class files 

from user JAR file

Scan for 
annotation 

labels

File search for 
keywords in the class 
files or source code

Tags the task with 
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as PE requirements
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Figure 3. Flowchart of the scanning of job requirement process 

Base on the observations, we made 2 basic assumptions; 

1. GPGPU tasks generally execute faster than their CPU 
equivalents due to the ability to utilize more parallel 
threads. 

2. GPGPU tasks can only execute on nodes with GPUs 
while CPU tasks can execute on all nodes as each node 
comes with a CPU PE at its core. 

Taking into considerations the assumptions, we developed a 
scheduler, the Heterogeneous PE scheduler (HPE), to 
complement Pamar in the task scheduling process. At its core, 
the HPE scheduling algorithm uses the First-Come-First-Serve 
(FCFS) policy when scheduling tasks to nodes. However, 
priority is given to tasks that require the GPGPU PEs in the 
event the node requesting for task is a GPGPU enabled node. 
Algorithm 1 shows the pseudo code for the HPE scheduler.  

Algorithm 1: HPE scheduler for Pamar 
1 initialize skipcount � 0, jobGpu � false, nodeGpu � false 
2 get node profile from master server 
3 nodeGpu � get GPGPU flag of node profile 
4 check no. of available compute slots for target node 
5 compute total no. of tasks to request for 
6 foreach � � �������� 	
�������� � �  
7    jobGpu � get GPGPU flag of job profile 
8    if jobGpu == true & nodeGpu == true  
9       AssignTask(node profile, j) 
10    else if jobGpu == true & nodeGpu == false 
11        contiune foreach loop 
12    else if jobGpu == false & nodeGpu == true 
13         skipcount � skipcount + 1 
14         continue foreach loop 
15    else AssignTask(node profile, j) 
16 end foreach 
17 //Cannot find any GPGPU tasks 
18 if skipcount == 3 
19    j � first job in queue 
20    AssignTask(node profile, j) 
21 end if 

The AssignTask function will try to select a task which is 
processing data that is local to the node. If such task cannot be 
found, it will then randomly assign a task from within the job. 
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The algorithm attempts to match a task which requires the 
GPGPU to a GPGPU enabled node. Keeping in mind that a 
GPGPU task has to run on a GPGPU enabled node, if a 
GPGPU task encounters a non-GPGPU enabled node, the 
scheduler will try to look for a CPU task from other jobs 
within a queue. On the other hand, if a GPGPU enabled node 
encounters a CPU task, the algorithm will attempt to search 
for a GPGPU task from the next three jobs in the front of the 
queue. If no such task can be found, it will schedule the CPU 
task to the node. The limit of skipping three jobs is to prevent 
starvation of CPU jobs in the event where there is a constant 
incoming stream of jobs that requires the GPGPU. 

Figure 4 shows the different scenarios when running the FCFS 
policy scheduler in normal circumstances, using the default 
Hadoop scheduler on homogeneous clusters and when using 
HPE on heterogeneous clusters. It can be seen that jobs with 
different PE requirements do not have to wait for each other as 
the HPE scheduler takes into consideration assumption 2 when 
performing task scheduling. It results in jobs with different PE 
requirements being executed in parallel on nodes having 
different PE configurations as illustrated in Figure 4c. This 
differs from other schedulers, such as the Hadoop default 
scheduler, where jobs have to wait for the previous job to 
complete before proceeding, as shown in Figure 4b. Note that 
in MapReduce frameworks, Map tasks can run in parallel with 
Reduce tasks as they run on separate task slots, thus the 
overlapping in task execution shown in Figure 4b. 

Up till now, our discussions have been on general 
heterogeneous environments, not limited to only GPGPUs and 
CPUs, however, the assumptions made here and the 
implementation of the HPE are both targeted at the prototype 
implementation of Pamar. As such, only CPU and GPGPU 
PEs are mentioned in this part of the discussion. In the future 
Pamar can be extended to support other types of PEs by 
adding in the relevant device flags into the framework. Figure 
5 illustrates the design overview of the architecture of Pamar. 

D. Adopting the MapReduce paradigm 
Pamar is designed to be based off the MapReduce paradigm 
for several factors. The first factor is the handling of data and 
the ease of processing large datasets in parallel. The way data 
is partitioned into blocks and having tasks parallelized across 
those blocks for parallel processing allows for easy managing 
and processing of large sets of data. In terms of 
implementation, such mechanisms can be easily implemented 
into the framework, thus providing automatic data 
management features to the users.  

The second factor is that hardware accelerators usually have 
limited amount of onboard memory space and that different 
versions of the devices have differing amount of such memory 
spaces. This leads to a constraint on how much data can the 
accelerators process at one time. By partitioning the data into 
smaller blocks, it helps to make large data processing more 
manageable by the memory limited hardware accelerators. 
Users will not have to worry about whether the data block to 
be processed by the GPGPU task can be fitted onto the 
memory of the device. The framework can also easily 
accommodate accelerators with non-uniform amount of 
memory space via tweaking the size of the data blocks. 

Job Job Job

GPGPU job GPGPU job CPU job

Map Reduce

GPGPU job

Map Reduce

GPGPU job
Map Reduce

CPU job Task are distributed 
across all nodes as PE 
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Figure 4. Illustration of job scheduling in different scenarios 
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Figure 5. Design overview of the architecture of Pamar 

The last factor is in allowing the use of different types of PE in 
a collaborative manner in a single job. By dividing a job into 
multiple phases such as the Map and Reduce phase, it allows 
the user to better plan and implement which portion of the job 
uses what type of PE. Such segmentation also makes 
scheduling of the tasks much easier. In cases where only a 
small portion of the job uses the GPGPU for a short time while 
the rest of the job runs for a long time, such jobs will not end 
up hogging the GPGPU PEs for a long time unnecessarily. 

E. Implementing the Prototype 
In this section, we describe the modifications made to Hadoop, 
for the implementation of a proof of concept prototype for 
Pamar. While what we describe in previous sections is a 
general architecture design, it can be implemented into most 
MapReduce frameworks such as Disco[14]. Hadoop is chosen 
due to its widespread use and easy availability of source code. 
Figure 6 shows the integration of Pamar into Hadoop. The 
components with solid shaded backgrounds and solid borders 
represent the components which have been modified to suit 
Pamar’s needs. On the other hand, the components with 
crisscross background shades and dotted borders are 
components new to the framework. 

a) Normal Cluster with FCFS Scheduler on homogeneous clusters 

b) Pamar with default Hadoop scheduler on homogeneous clusters 

c) Pamar with HPE scheduler on heterogeneous clusters 
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Figure 6. Components of Prototype of Pamar 

Of the two new components, the HPE scheduler is the task 
scheduler module mentioned in the previous section, 
implemented by us and is responsible for the scheduling of 
tasks to the nodes. The JCUDA[15] module on the other hand 
is the GPGPU API library used both in the scanning of 
GPGPU PEs on nodes and used by users for interfacing with 
the GPGPUs. In future, if new PE types are to be supported, 
the APIs of the respective PEs can be added here for Pamar to 
support those PEs.  

The H-JobTracker module is essentially the master server of 
Hadoop. This module is modified to incorporate the storing 
and allowing for the retrieval of the node configurations by the 
scheduler. In additional, the master server also coordinates the 
passing of the flag status of PE requirements of the user jobs 
from the client to the scheduler. The H-TaskTracker is the 
node side script that is responsible for initializing the node it is 
deployed on. The PE scanning mechanism is incorporated into 
the H-TaskTracker script. The mechanism will scan for the 
presence of GPGPU devices on a node and relays this 
information to the H-JobTracker. These two modules work 
hand in hand to detect and store each node’s PE configuration 
within a cluster. 

Lastly, the H-JobClient is the client module that accepts user 
jobs. The scanning of user job files for task PE requirements is 
done here. Once done scanning, the appropriate flags in the 
job configuration file is set by the module and passed on to the 
master server for task scheduling.  

IV.  EXPERIMENTAL EVALUATION 

A. Experimental Setup 
To evaluate Pamar, we setup and deploy Pamar on three 
different cluster configurations using resources from Amazon 
EC2 cloud. Two main types of instance are being used, the 
Cluster Compute instance to represent the CPU only node and 
the Cluster GPU instance to represent the GPGPU enabled 
node. The detailed specifications of these two instance types 
can be found at [16]. Table 1 shows the three cluster 
configurations setup in the EC2 environment. 

We set the amount of Map task slots on the GPGPU enabled 
node to 3 as the GPU can only run 1 task at a time. The setting 
of 3 tasks allows the node to overlap the loading of data of the 
2nd and 3rd task with the execution of the 1st task. Once the 
first task completes, the 2nd task can execute and the 3rd task 

would give the node time to request and prepare for new tasks 
execution, thus fully utilizing the node. 

Table 1. Summary of EC2 cluster configurations 

Config 
type 

No. of 
CPU 
nodes 

No. of 
GPGPU 

nodes 

No. of 
GPGPU 
enabled 

map task 
slots 

No. 
of 

CPU 
map 
task 
slots 

No. of 
GPGPU 
enabled 
reduce 

task slots 

No. of 
CPU 

reduce 
task 
slots 

E1 8 0 0 32 0 8 

E2 0 8 32 0 8 0 

E3 2 6 24 8 6 2 
 

Three applications were used to substitute for jobs with 
different PE requirements in our experiments; 

Matrix Multiplication: The application looks at multiplying 
two 6000 by 6000 square matrices, M and N together. Each 
Map task is given an equal sub-portion of matrix M and is 
responsible for computing that sub-portion. The Reduce 
function merges back the results from each Map task to form 
the final resulting matrix. We implement the Maps to run on 
the GPGPU, utilizing its massive parallel threads feature.  

Word Count: This benchmarking application from the 
Apache Hadoop examples is used here to count the number of 
occurrences of each word that appears in a set of text files.  

DNS log analysis: This application extracts data from log files 
of the root DNS servers, then uses the data to compute and 
determines the performance of the root DNS servers based on 
a custom defined performance matrix [17]. The Map tasks 
processes each file individually and performs the 
computations required on the GPGPU. The Reduce task then 
merges the sub-results to form the final output.  

The Matrix Multiplication and DSN log analysis applications 
are not optimized to run on the GPGPUs. This is so as our 
main focus is on a framework that is able to intelligently 
schedule jobs with different PE requirements to the 
corresponding nodes automatically in clusters with 
heterogeneous PEs and node configurations. The data to be 
processed and the application used in each experiment are kept 
constant. The reason is on the response time for the jobs to run 
on Pamar in the different cluster configurations. 

B. Homogeneous vs. Heterogeneous 
In this experiment, we look at how Pamar performs in the 
different cluster configurations. We construct a queue with 
jobs having different PE requirements, using the 3 mentioned 
applications. The jobs are submitted in the following order; 
Matrix Multiplication, DNS log and the Word Count 
application.  We also used a CPU only job queue as a baseline 
for comparison. In this queue, the Matrix Multiplication and 
DNS log applications are re-implemented to use only on the 
CPU for processing. This job queue is term as “CPU version” 
in the subsequent figures. Figure 7 shows the time it takes to 
complete each job and the entire job queue for each cluster 
configurations. The job timings are recorded from the time of 
submission till the time the job completes. For the timing 
recorded for the job queues, timing is taken from the 
submission of the first job to the queue till the completion of 
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the last job in the same job queue. While the same Word 
Count application is used on all 3 cluster settings, we note that 
the difference in its completion timing across the different 
clusters. This is due to the different amount of GPGPU 
enabled nodes being utilized in the initial processing of the 
GPGPU tasks, thus reducing the number of nodes use in 
processing the Word Count application.   

 
Figure 7.Completion time of each job and job queue completion 

for each cluster configuration 
 

The main interest here is in the job queue completion timing. 
We argue that by having different nodes serving the various 
jobs with different PE requirements, it is possible to reduce the 
waiting time between jobs. This can be observed from the last 
set of data, the Job Queue results, in Figure 7. The 
heterogeneous cluster, E3, manage to complete the entire job 
queue first, among the three clusters. This is attributed to the 
HPE scheduler. Since HPE gives priority to GPGPU tasks, it 
will schedule the GPGPU tasks, i.e, the Map tasks of Matrix 
Multiplication and DNS log jobs, to the GPGPU enabled 
nodes. This leaves the CPU only nodes available to process 
the Word Count job. In this manner, jobs with different PE 
requirements are executed in parallel, as illustrated in Figure 
4c. Compared to the homogeneous clusters E1 and E2, tasks 
from each job are distributed equally across all nodes for 
processing. Even though more nodes can be used in the 
processing of jobs, jobs at the back of the queue have to wait 
for the previous ones to finish, incurring longer waiting time. 
This is illustrated in Figure 4b.  

In Figure 7, the gain in overall job queue completion time 
from the E3 compared to E2 is small. However this is so as 
there are only 3 jobs in the queue. Figure 8 shows the 
difference between job queue completion time of the 
homogeneous and heterogeneous clusters, increasing as the 
no. of jobs in the queue increases. At a job queue length of 9, 
Pamar can provide up to approximately 23% of improvement 
in terms of job queue completion time.  

Having said so, one must also be careful when determining the 
ratio of the different nodes within a heterogeneous cluster. 
Compared to homogeneous cluster configurations, 
heterogeneous clusters with asymmetry node configurations 
will have lesser amount of specialized PEs to process jobs 
with requirement for the respective PEs. This might 
potentially lead to a longer processing time as there are lesser 
nodes to share the workload. This can be seen vaguely in the 
performance of the DNS application in Figure 7. The 
homogeneous cluster outperforms the heterogeneous cluster 
marginally as there are lesser nodes with GPGPU resources.  

 
Figure 8.Job queue completion time for different no. of job 

submission between E2 (homo.) and E3 (hetero.) 

C. Impact of jobs order 
Next, we look at how job submission order will affect the job 
queue completion time in Pamar. In this experiment, we run 
Pamar on E2 to represent homogeneous cluster and E3 to 
represent heterogeneous cluster. We use the Hadoop’s default 
scheduler on E2 as a comparison for HPE scheduler. We 
submit the Matrix Multiplication (M), DNS log analysis (D) 
and Word Count (W) applications in different order to the 
different scenarios and record the job queue completion time. 
The results are shown in Figure 9. Overall, heterogeneous 
clusters running Pamar with HPE shows better job queue 
completion time compared to homogeneous clusters running 
Pamar with Hadoop’s default scheduler. This is attributed to 
how tasks are scheduled, as explained in the previous sections.  

Figure 9 shows that the job queue completion time for the 
HPE scheduler is not affected by the order as compared to the 
Hadoop’s default scheduler. The y-axis of the Figures in 
Figure 9 do not start from zero for clarity sake of the Figures. 
Recall the assumptions and scheduling decision for the HPE 
scheduler. We assume that GPGPU tasks generally complete 
execution faster than the CPU tasks due to its ability to utilize 
large amount of parallel threads. Thus giving priority to 
GPGPU tasks when nodes with GPGPU PEs requests for task 
can help to process jobs in the queue faster, minimizing the 
impact on other jobs in the queue. Due to the consideration of 
priority, the scheduling order becomes more or less the same 
regardless of the order of submission for the HPE scheduler. 
On the other hand, the Hadoop scheduler is very much 
affected by the order. Because in each node, the task slots for 
Map and Reduce tasks are separated, thus it is possible for 
Map and Reduce tasks from different jobs to run in parallel on 
a single node. As such, situations where the previous job has a 
long Reduce phase overlaps with the next job with a long Map 
phase but short Reduce phase will have better performance 
than one with the opposite properties. This applies even as the 
number of job submission increases, as shown in Figure 9b, 
where the number of jobs submitted is increased to 6.   

In situations where influx of user jobs with different PE 
requirements is constant, HPE scheduler will provide a more 
stable execution time as compared to the Hadoop’s default 
scheduler. It is true that one may obtain optimized results from 
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proper ordering of jobs when using Hadoop default scheduler, 
as shown in Figure 9a. However, the order of job submissions 
on operational clusters is an uncertainty. 

 

 

Figure 9.Job queue completion time for different job submission 
order in different scenarios 

V. RELATED WORK 
[18-20] are MapReduce frameworks that support GPGPU 
processing on standalone machines. [18] reduces complexity 
of GPGPU programming through generating GPGPU codes 
for the user. Mars[19] on the other hand uses APIs and pre-
defined Map and Reduce function. The scheduler takes care of 
the transfer of data between the main memory and the device 
memory and also the invocation of functions on the GPGPU. 
MapCG[20] aims to enable users to write once, deploy on 
different architectures through a code abstraction layer. The 
compiler will compile the user codes into the relevant binary 
version for the respective PEs. Merge [11] is a library-oriented 
platform for heterogeneous multi-core system. The Merge 
compiler and runtime dynamically selects the best function 
variant from the library, for a given input and machine 
configuration, compiles it and sends it to the appropriate PE 
for processing. PLASMA [21] looks at compiling applications 
during runtime for different PEs and schedules the 
applications to run on the different PEs in parallel. Although 
[11, 18-20] demonstrates significant speed up when compared 
to CPU processors, the frameworks run on standalone 
machines with GPGPU PEs. [22] is an extension of Mars to 
work in clusters. However it only runs on homogeneous 

clusters with GPGPU PEs. On the other hand, Merge can be 
extended to support other types of accelerators by adding the 
respective function variants into the library. Such extensibility 
has been incorporated into Pamar. Compare to these works, 
Pamar provides heterogeneity support in a cluster setting.  

[23-26] are some works that attempts to utilize multiple PEs in 
a distributed cluster setting. QP[23] is a multi-accelerator 
cluster with homogeneous node PE configuration. Each node 
is equipped with CPU, GPU and FPGAs PEs. Axel’s[24] 
cluster configuration is similar to QP, but using FGPAs and 
GPUs PEs and is based off MapReduce. MGP [25] looks at 
providing programmers the flexibility of running their 
applications on the GPUs transparently by providing them 
with the MGP APIs. These frameworks uses multiple software 
such as  Phoenix [27], MPI and Torque for multi-level task 
scheduling, adding complexity to the frameworks. They allow 
users to utilize different PEs collaboratively. Differing from 
those frameworks, [26] uses a single layer of scheduling but 
focus on using the GPGPU for computation. The CPU is used 
only for optimizing the transfer of the output results between 
the main memory and the GPGPU’s device memory. The 
crucial difference with Pamar is that the mentioned 
frameworks are only capable of supporting clusters which 
have homogeneous node PE configurations. In comparison, 
Pamar targets at clusters with nodes having different PE 
configurations, without having code execution issues and 
requires little effort from users when deploying their 
applications.  

Considerable amount of work have already been done in the 
field of heterogeneous resource scheduling. [28] investigates 
using CPU and GPGPU collaboratively for improving 
performance of compute intensive applications. Using the 
Anthill runtime environment, they evaluated two scheduling 
algorithms, FCFS and DWRR. The DWRR policy divides the 
events to be process and assigns a dynamic weightOn the other 
hand, Lei Wang et al[29] looks at first profiling the tasks on 
the CPU and GPU separately, then base on a model, decide 
whether to schedule the task to run on the CPU or GPU. 
However, doing so requires the application to be implemented 
in both CPU and GPGPU before any profiling can be done.   

VI. CONCLUSION 
In this paper, we presented Pamar, a MapReduce base 
framework for clusters with nodes having heterogeneous PE 
configurations. Pamar detects both the PE configurations on 
each node in the cluster and the PE requirements of user jobs 
and does the match-making of tasks via scheduling, for the 
user with little user effort required. We also showed how the 
HPE scheduler is implemented to complement the Pamar 
framework, increasing the stability and robustness of Pamar.  

In the future, we envision that clusters will be equipped with 
different accelerators to cater to efficient processing of jobs 
with different properties. We plan to extend Pamar to support 
other accelerators such as CELL in heterogeneous clusters. Our 
focus in this work is on developing a framework that is capable 
of supporting node PE configuration heterogeneity across a 
cluster. Scheduler is not the main focus, as such for ease of 
implementing; the FCFS policy is chosen for the HPE. 
However, results shown in [28] clearly tells us that using FCFS 
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is not sufficient in trying to achieve a highly efficient 
framework. Beyond performance optimizations, monetary 
efficiency of heterogeneous executions should be 
investigated[30, 31]. Therefore, improving the HPE scheduling 
algorithm will also be one of our future focuses.  
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