
A Map-Reduce Based Framework for Heterogeneous Processing Element Cluster
Environments

Yu Shyang Tan1,3, Bu-Sung Lee1,3, Bingsheng He1, Roy H.Campbell2

1School of Computer Engineering
Nanyang Technological University

Singapore
{tanys,ebslee,bshe}@ntu.edu.sg

2Dept. of Computer Science
University of Illinois at Urbana-

Champaign
Urbana, IL, USA
rhc@illinois.edu

3Service Platform Lab
HP Labs Singapore

Singapore
{yu-shyang.tan,

francis.lee}@hp.com

Abstract - In this paper, we present our design of a Processing
Element (PE) Aware MapReduce base framework, Pamar.
Pamar is designed for supporting distributed computing on
clusters where node PE configurations are asymmetric on
different nodes. Pamar’s main goal is to allow users to seamlessly
utilize different kinds of processing elements (e.g., CPUs or
GPUs) collaboratively for large scale data processing. To show
proof of concept, we have incorporated our designs into the
Hadoop framework and tested it on cluster environments having
asymmetric node PE configurations. We demonstrate Pamar’s
ability to identify PEs available on each node and match-make
user jobs with nodes, base on job PE requirements. Pamar allows
users to easily parallelize applications across large datasets and at
the same time utilizes different PEs for processing different
classes of functions efficiently. The experiments show
improvement in job queue completion time with Pamar over
clusters with asymmetric nodes as compared to clusters with
symmetric nodes.

 Keywords - MapReduce, GPGPU, Heterogeneous resource
framework

I. INTRODUCTION
In the face of growing needs for computing power, various
hardware accelerators are investigated as potential candidates
for replacing or complementing the CPU. As shown in [1-5]
and many other studies, an increasing number of researchers
are using hardware accelerators such as Graphics Processors
(GPUs) and CELL for processing. This is due to the huge
potential performance gain that can be provided by these
accelerators. Researchers have also begun looking at utilizing
such accelerators in clusters to process their applications [6,
7]. The rising popularity of these accelerators is also evident
from the growing presence of clusters equipped with
accelerators in the top 500 Super Computers list [8]. With the
increasingly widespread adoption of hardware accelerators, it
will not be surprising to see more heterogeneous clusters in the
near future. These heterogeneous clusters with different types
of accelerators will enable users to use different processing
elements (PEs) collaboratively, thereby harnessing the
processing power of these accelerators for the computation of
different tasks. Already there are studies looking into using
CPU and GPGPU collaboratively [9, 10], in attempts to boost
performance of matrix operations.

Clusters with nodes possessing different types of PE provide
numerous benefits. On top of flexibility in choice of PEs to
use, heterogeneous PE clusters can also provide a balance in
cost-benefits when it comes to upgrading existing clusters with
accelerators. In environments where users have different PE

requirements, different partitions of a cluster can be upgraded
to satisfy these diversified requirements. This avoids having a
cluster-wide upgrade whenever there is a need for a new type
of PE.

While clusters with heterogeneous node configurations can be
beneficial, most existing distributed frameworks such as
Hadoop cannot support these types of clusters. Those
frameworks are not designed to support clusters with
heterogeneous PE configurations. They lack the ability to
gather the required information for the assignment of jobs with
different PE requirements to the appropriate nodes in the
cluster. As a result, users are either restricted to using only
PEs that exists in all the nodes or to run their jobs in separate
clusters which have the required PE in all the nodes. As such,
frameworks which are able to detect different PE types on
each node dynamically will become increasingly important in
the future. Also, they should be able to make intelligent
decisions when scheduling jobs to the nodes. This not only
prevents jobs from failing due to mismatch in PE requirements
of the job and available PEs on the node, but also improves the
efficiency.

In this paper, we present a Processing Element Aware
MapReduce base framework, Pamar. Pamar allows users to
collaboratively use GPU and CPU PEs in their MapReduce
jobs on clusters with asymmetry in GPGPU/CPU node
configurations among nodes. Users do not have to worry about
details like which nodes their jobs have to run on or how the
data is to be partitioned. All those details are handled by
Pamar. It automatically detects the type of PEs available on
each node and scans for the PE requirements of submitted jobs
with little or no user efforts. Pamar follows the MapReduce
method; partitioning the data into chunks and distributing the
tasks to the data for processing. The chunk granularity can be
adjusted so that each data chunk can be fitted into the GPGPU
accelerators. While the intention of Pamar is to facilitate the
use of GPU accelerators in cluster settings, we do not
constraint them to using pre-defined GPGPU functions like in
[11]. Users are free to implement their algorithms to run on the
GPUs. This enables greater flexibility in application
development. In addition, we implemented HPE, a
Heterogeneous Processing Element scheduler for Pamar. The
algorithm handles the scheduling of jobs to satisfy the job
requirements on PEs. As a proof of concept, we have
integrated our design into Hadoop [12] and evaluated the
prototype. Our experiments show that the prototype is able to
yield up to 23% improvement in job queue completion time,
compared with Hadoop.

This work is supported under the User and Domain Driven Data Analytics as a
service Framework project, funded through the Thematic Strategic Research
Program from A*STAR – SERC.

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 IEEE

DOI 10.1109/CCGrid.2012.35

57

The remainder of this paper is structured as follows: In Section
II, we introduce MapReduce, the underlying paradigm of
Pamar. The design overview of Pamar and our prototype
implementation is presented in Section III. In Section IV, we
present the results of our experiments and discuss on related
works in Section V. Finally, Section VI is the conclusion.

II. BACKGROUND

A. MapReduce and Hadoop
MapReduce [13] is a programming model from Google. The
model comprises of two main functions, Map and Reduce
functions. The Map function takes in a key/value pair and
outputs an intermediate list of key/value pairs. The Reduce
functions will than take all values associated to the same key
and produce the final output list of key/values. Users are
tasked with providing the Map and Reduce implementation.

Hadoop [12] is an open source implementation of MapReduce.
It uses a JobTracker node to perform scheduling and
management of user jobs. The JobTracker is also responsible
for monitoring the TaskTracker nodes which are used to
perform the raw computation. In additional to the JobTracker,
Hadoop also uses another master node, the Namenode, for the
management of data. With the Hadoop File system (HDFS)
the Namenode manages the replication and distribution of the
data blocks across all nodes within the cluster.

The main advantage of Hadoop over other existing distributed
frameworks lies in allowing users to rapidly develop parallel
and distributed applications with minimum knowledge on
parallel programming required. The abstract Map and Reduce
interfaces provided in Hadoop allow programmers to focus on
application development. Hadoop abstracts non-application
related tasks such as data partitioning, task scheduling, task
failure detection and recovery and data redundancy from the
users. This helps to ease the complexity of developing parallel
and distributed applications for large dataset processing.

B. Hardware Architecture
Currently, most clusters are homogeneous in terms of PE type
configurations between nodes within a cluster’s environment.
Meaning to say, if one of the nodes has only CPU processors as
its PE, then all other nodes should only have CPU PE type.
Likewise, if a node has a mix of 2 or more type of PEs, all
other nodes should have the same mix of PE types. However,
in practice, this is an inflexible solution. If the need for a new
PE type arises, the whole cluster will have to be upgraded with
the respective PE type, regardless of the user base. This might
result in the PE being underutilized.

One solution to this problem is to perform a partial upgrade on
the cluster, base on the demand for the required PE. However,
this brings about the problem of current distributed frameworks
not being able to support such cluster configurations. Current
schedulers and frameworks are not designed to detect user job
PE requirements and the available PE resources on each node.
As such, schedulers will not be able to make correct scheduling
decisions when scheduling task.

Pamar is designed to support cluster architectures such as the
one shown in Figure 1. Pamar has built-in mechanisms for
detecting the PE resource available on each individual node

and for scanning the PE requirements for incoming user jobs.
Both sets of information are then passed to the scheduler. With
these information, the scheduler will be able to decide where
the tasks can be scheduled to for smooth execution of the tasks.

Node

CPU

CPU

…

Node

CPU

CPU

…

Node

CPU G
PU

Node

CPU G
PU

Cluster Communication

….
….

Figure 1.Heterogeneous cluster with asymmetry in node PE

configurations

Pamar gives the flexibility of partially upgrading different
portions of the cluster with different types of PEs to the
administrators. This will encourage users to explore using more
than one PE type in their jobs so as to increase efficiency.
Pamar also adopts the MapReduce as the underlying
programming paradigm, effectively allowing users of Pamar to
easily write scalable parallel applications to process large sets
of data. This is especially important in the current era where the
size of readily available datasets is growing exponentially.

III. PAMAR
In this section, we first give a general overview of the various
key components of Pamar. We describe the implementation of
a prototype for Pamar which works for CPU/GPGPU
heterogeneous clusters.

For simplicity in understanding, for the rest of this paper, we
define ‘job’ and ‘tasks’ as follows: A job is a user submitted
workload consisting of multiple tasks, each responsible for a
portion of the workload that a job is required to complete. For
a job to be considered completed, all tasks from the same job
have to be completed successfully.

A. Detecting Available PE Resources
Before Pamar performs scheduling tasks with different PEs, it
needs to detect the available PE types in each node within the
cluster. This is achieved by scanning the nodes for the
presence of PE types.

When a node is initialized, a scan is conducted to look for
specific PE resources on the node. API libraries for the
specific PEs are used in the scanning algorithm. The scan is
executed on the node side through a start up script. This is to
avoid placing additional load on the master server. By having
the nodes execute the script themselves, it not only allows the
simultaneous scanning of multiple nodes, but also allows new
nodes to join the cluster at a later time independently. This can
help avoid disruption to the master server even when nodes
join the cluster during operation time. Once the scan is
complete, a list of available PEs is made for each node and is
sent to the master server. The information is stored in the
master server and used during the scheduling phase.

B. Scanning of Job Requirements
In scheduling, Pamar also tries to scan for the PE requirements
of each task. Remembering our definition of task stated

58

previously, the task can be a Map or Reduce function
implemented by the user. Our objective here is to obtain the
information needed with as little user intervention as possible.
To achieve this, a dual level code scanning scheme is used.
Figure 3 shows the flow of the whole scanning of job
requirement process. This is done on the client side to
maintain scalability and prevent bottlenecks at the master
server.

The first level looks at allowing users to inform Pamar what is
required for each task through built-in APIs. In our prototype,
a custom annotation class, shown in Figure 2, is implemented
to allow users to specify to Pamar the PE requirements.

Figure 2.Custom Annotation class, ClusterResource, used to

denote PE requirements at task level

The client component of Pamar than scans through the source
code of the task functions in attempts to pick up such
annotation labels. If successful, the task requirement is marked
based on the label. Otherwise, a second level of scanning is
executed by the client. The client will search through the
task’s source codes or compiled class files for relevant
keywords to identify invocations of PE specific API libraries.
Such traces can help Pamar to decide if the relevant PEs are
being used in the tasks. As this method of scanning for
keywords is not fool-proof, it is only utilized in the absence of
an annotation label. We tested the source code scanning
feature using several different programs written in Java and
JCUDA and achieve 100% accuracy in mapping tasks to the
relevant PEs.

By having two levels of scanning, Pamar can still get some clue
on the PE requirements of tasks even if the annotation labels
are not used.

C. Scheduling of Tasks
With the two pieces of information at hand, Pamar makes
decisions on which task gets assigned to the nodes, without
having task failures due to mismatch between the task PE
requirements and the PE available on the node. However,
during our initial testing of the Pamar framework, we found
that using the Hadoop default scheduling algorithm produces
unstable results. We will discuss this in more detail in the
experimental results section.

After our analysis on the initial results, we found that the
GPGPU tasks generally finish faster than the CPU tasks. This
gives the idea of finishing the “shorter” tasks first so that the
idle resources can be used to process the “longer” tasks. We
also found that there is usually a waiting time incurred by
tasks that requires the GPGPUs if it is queued behind a CPU
task. This is so as the GPGPU tasks must run on a GPGPU
enabled node. However, this is not so for the CPU tasks as
each node comes equipped with a CPU processor by default.
Therefore, if the CPU task is queued in front, than it will most
likely occupy the GPGPU enabled node too. In such
situations, even if some of the tasks complete first, freeing up
nodes to take in new tasks, if the nodes are not GPGPU
enabled, then the GPGPU task will have to continue waiting.

This does not apply to the CPU tasks as they can run on any
nodes within the cluster by default.

Client extracts user Map
and Reduce class files

from user JAR file

Scan for
annotation

labels

File search for
keywords in the class
files or source code

Tags the task with
respect to the labels
as PE requirements

Annotation
exists?

Client extracts user Map
and Reduce class files

from user JAR file

no

yes

Figure 3. Flowchart of the scanning of job requirement process

Base on the observations, we made 2 basic assumptions;

1. GPGPU tasks generally execute faster than their CPU
equivalents due to the ability to utilize more parallel
threads.

2. GPGPU tasks can only execute on nodes with GPUs
while CPU tasks can execute on all nodes as each node
comes with a CPU PE at its core.

Taking into considerations the assumptions, we developed a
scheduler, the Heterogeneous PE scheduler (HPE), to
complement Pamar in the task scheduling process. At its core,
the HPE scheduling algorithm uses the First-Come-First-Serve
(FCFS) policy when scheduling tasks to nodes. However,
priority is given to tasks that require the GPGPU PEs in the
event the node requesting for task is a GPGPU enabled node.
Algorithm 1 shows the pseudo code for the HPE scheduler.

Algorithm 1: HPE scheduler for Pamar
1 initialize skipcount � 0, jobGpu � false, nodeGpu � false
2 get node profile from master server
3 nodeGpu � get GPGPU flag of node profile
4 check no. of available compute slots for target node
5 compute total no. of tasks to request for
6 foreach � � �������� 	
�������� � �
7 jobGpu � get GPGPU flag of job profile
8 if jobGpu == true & nodeGpu == true
9 AssignTask(node profile, j)
10 else if jobGpu == true & nodeGpu == false
11 contiune foreach loop
12 else if jobGpu == false & nodeGpu == true
13 skipcount � skipcount + 1
14 continue foreach loop
15 else AssignTask(node profile, j)
16 end foreach
17 //Cannot find any GPGPU tasks
18 if skipcount == 3
19 j � first job in queue
20 AssignTask(node profile, j)
21 end if

The AssignTask function will try to select a task which is
processing data that is local to the node. If such task cannot be
found, it will then randomly assign a task from within the job.

59

The algorithm attempts to match a task which requires the
GPGPU to a GPGPU enabled node. Keeping in mind that a
GPGPU task has to run on a GPGPU enabled node, if a
GPGPU task encounters a non-GPGPU enabled node, the
scheduler will try to look for a CPU task from other jobs
within a queue. On the other hand, if a GPGPU enabled node
encounters a CPU task, the algorithm will attempt to search
for a GPGPU task from the next three jobs in the front of the
queue. If no such task can be found, it will schedule the CPU
task to the node. The limit of skipping three jobs is to prevent
starvation of CPU jobs in the event where there is a constant
incoming stream of jobs that requires the GPGPU.

Figure 4 shows the different scenarios when running the FCFS
policy scheduler in normal circumstances, using the default
Hadoop scheduler on homogeneous clusters and when using
HPE on heterogeneous clusters. It can be seen that jobs with
different PE requirements do not have to wait for each other as
the HPE scheduler takes into consideration assumption 2 when
performing task scheduling. It results in jobs with different PE
requirements being executed in parallel on nodes having
different PE configurations as illustrated in Figure 4c. This
differs from other schedulers, such as the Hadoop default
scheduler, where jobs have to wait for the previous job to
complete before proceeding, as shown in Figure 4b. Note that
in MapReduce frameworks, Map tasks can run in parallel with
Reduce tasks as they run on separate task slots, thus the
overlapping in task execution shown in Figure 4b.

Up till now, our discussions have been on general
heterogeneous environments, not limited to only GPGPUs and
CPUs, however, the assumptions made here and the
implementation of the HPE are both targeted at the prototype
implementation of Pamar. As such, only CPU and GPGPU
PEs are mentioned in this part of the discussion. In the future
Pamar can be extended to support other types of PEs by
adding in the relevant device flags into the framework. Figure
5 illustrates the design overview of the architecture of Pamar.

D. Adopting the MapReduce paradigm
Pamar is designed to be based off the MapReduce paradigm
for several factors. The first factor is the handling of data and
the ease of processing large datasets in parallel. The way data
is partitioned into blocks and having tasks parallelized across
those blocks for parallel processing allows for easy managing
and processing of large sets of data. In terms of
implementation, such mechanisms can be easily implemented
into the framework, thus providing automatic data
management features to the users.

The second factor is that hardware accelerators usually have
limited amount of onboard memory space and that different
versions of the devices have differing amount of such memory
spaces. This leads to a constraint on how much data can the
accelerators process at one time. By partitioning the data into
smaller blocks, it helps to make large data processing more
manageable by the memory limited hardware accelerators.
Users will not have to worry about whether the data block to
be processed by the GPGPU task can be fitted onto the
memory of the device. The framework can also easily
accommodate accelerators with non-uniform amount of
memory space via tweaking the size of the data blocks.

Job Job Job

GPGPU job GPGPU job CPU job

Map Reduce

GPGPU job

Map Reduce

GPGPU job
Map Reduce

CPU job Task are distributed
across all nodes as PE
type configuration is
uniform across all nodes

Map Reduce

GPGPU job

Map Reduce

GPGPU job

Map Reduce

CPU job

GPGPU tasks scheduled to
GPGPU enabled nodes only
due to PE requirements

CPU tasks scheduled to CPU
only nodes if GPGPU
enabled nodes are busy

Figure 4. Illustration of job scheduling in different scenarios

compute

Master node

compute compute

Scheduler

Client

3) Scans PE type on each node
and maintains it in memory

5) Schedules job base
on available PEs on
nodes and job
requirements

4) PE info for each node and
job PE requirements sent to
scheduler for scheduling

1) User submits job

2) Client scans job
files for requirements

Figure 5. Design overview of the architecture of Pamar

The last factor is in allowing the use of different types of PE in
a collaborative manner in a single job. By dividing a job into
multiple phases such as the Map and Reduce phase, it allows
the user to better plan and implement which portion of the job
uses what type of PE. Such segmentation also makes
scheduling of the tasks much easier. In cases where only a
small portion of the job uses the GPGPU for a short time while
the rest of the job runs for a long time, such jobs will not end
up hogging the GPGPU PEs for a long time unnecessarily.

E. Implementing the Prototype
In this section, we describe the modifications made to Hadoop,
for the implementation of a proof of concept prototype for
Pamar. While what we describe in previous sections is a
general architecture design, it can be implemented into most
MapReduce frameworks such as Disco[14]. Hadoop is chosen
due to its widespread use and easy availability of source code.
Figure 6 shows the integration of Pamar into Hadoop. The
components with solid shaded backgrounds and solid borders
represent the components which have been modified to suit
Pamar’s needs. On the other hand, the components with
crisscross background shades and dotted borders are
components new to the framework.

a) Normal Cluster with FCFS Scheduler on homogeneous clusters

b) Pamar with default Hadoop scheduler on homogeneous clusters

c) Pamar with HPE scheduler on heterogeneous clusters

60

Figure 6. Components of Prototype of Pamar

Of the two new components, the HPE scheduler is the task
scheduler module mentioned in the previous section,
implemented by us and is responsible for the scheduling of
tasks to the nodes. The JCUDA[15] module on the other hand
is the GPGPU API library used both in the scanning of
GPGPU PEs on nodes and used by users for interfacing with
the GPGPUs. In future, if new PE types are to be supported,
the APIs of the respective PEs can be added here for Pamar to
support those PEs.

The H-JobTracker module is essentially the master server of
Hadoop. This module is modified to incorporate the storing
and allowing for the retrieval of the node configurations by the
scheduler. In additional, the master server also coordinates the
passing of the flag status of PE requirements of the user jobs
from the client to the scheduler. The H-TaskTracker is the
node side script that is responsible for initializing the node it is
deployed on. The PE scanning mechanism is incorporated into
the H-TaskTracker script. The mechanism will scan for the
presence of GPGPU devices on a node and relays this
information to the H-JobTracker. These two modules work
hand in hand to detect and store each node’s PE configuration
within a cluster.

Lastly, the H-JobClient is the client module that accepts user
jobs. The scanning of user job files for task PE requirements is
done here. Once done scanning, the appropriate flags in the
job configuration file is set by the module and passed on to the
master server for task scheduling.

IV. EXPERIMENTAL EVALUATION

A. Experimental Setup
To evaluate Pamar, we setup and deploy Pamar on three
different cluster configurations using resources from Amazon
EC2 cloud. Two main types of instance are being used, the
Cluster Compute instance to represent the CPU only node and
the Cluster GPU instance to represent the GPGPU enabled
node. The detailed specifications of these two instance types
can be found at [16]. Table 1 shows the three cluster
configurations setup in the EC2 environment.

We set the amount of Map task slots on the GPGPU enabled
node to 3 as the GPU can only run 1 task at a time. The setting
of 3 tasks allows the node to overlap the loading of data of the
2nd and 3rd task with the execution of the 1st task. Once the
first task completes, the 2nd task can execute and the 3rd task

would give the node time to request and prepare for new tasks
execution, thus fully utilizing the node.

Table 1. Summary of EC2 cluster configurations

Config
type

No. of
CPU
nodes

No. of
GPGPU

nodes

No. of
GPGPU
enabled

map task
slots

No.
of

CPU
map
task
slots

No. of
GPGPU
enabled
reduce

task slots

No. of
CPU

reduce
task
slots

E1 8 0 0 32 0 8

E2 0 8 32 0 8 0

E3 2 6 24 8 6 2

Three applications were used to substitute for jobs with
different PE requirements in our experiments;

Matrix Multiplication: The application looks at multiplying
two 6000 by 6000 square matrices, M and N together. Each
Map task is given an equal sub-portion of matrix M and is
responsible for computing that sub-portion. The Reduce
function merges back the results from each Map task to form
the final resulting matrix. We implement the Maps to run on
the GPGPU, utilizing its massive parallel threads feature.

Word Count: This benchmarking application from the
Apache Hadoop examples is used here to count the number of
occurrences of each word that appears in a set of text files.

DNS log analysis: This application extracts data from log files
of the root DNS servers, then uses the data to compute and
determines the performance of the root DNS servers based on
a custom defined performance matrix [17]. The Map tasks
processes each file individually and performs the
computations required on the GPGPU. The Reduce task then
merges the sub-results to form the final output.

The Matrix Multiplication and DSN log analysis applications
are not optimized to run on the GPGPUs. This is so as our
main focus is on a framework that is able to intelligently
schedule jobs with different PE requirements to the
corresponding nodes automatically in clusters with
heterogeneous PEs and node configurations. The data to be
processed and the application used in each experiment are kept
constant. The reason is on the response time for the jobs to run
on Pamar in the different cluster configurations.

B. Homogeneous vs. Heterogeneous
In this experiment, we look at how Pamar performs in the
different cluster configurations. We construct a queue with
jobs having different PE requirements, using the 3 mentioned
applications. The jobs are submitted in the following order;
Matrix Multiplication, DNS log and the Word Count
application. We also used a CPU only job queue as a baseline
for comparison. In this queue, the Matrix Multiplication and
DNS log applications are re-implemented to use only on the
CPU for processing. This job queue is term as “CPU version”
in the subsequent figures. Figure 7 shows the time it takes to
complete each job and the entire job queue for each cluster
configurations. The job timings are recorded from the time of
submission till the time the job completes. For the timing
recorded for the job queues, timing is taken from the
submission of the first job to the queue till the completion of

61

the last job in the same job queue. While the same Word
Count application is used on all 3 cluster settings, we note that
the difference in its completion timing across the different
clusters. This is due to the different amount of GPGPU
enabled nodes being utilized in the initial processing of the
GPGPU tasks, thus reducing the number of nodes use in
processing the Word Count application.

Figure 7.Completion time of each job and job queue completion

for each cluster configuration

The main interest here is in the job queue completion timing.
We argue that by having different nodes serving the various
jobs with different PE requirements, it is possible to reduce the
waiting time between jobs. This can be observed from the last
set of data, the Job Queue results, in Figure 7. The
heterogeneous cluster, E3, manage to complete the entire job
queue first, among the three clusters. This is attributed to the
HPE scheduler. Since HPE gives priority to GPGPU tasks, it
will schedule the GPGPU tasks, i.e, the Map tasks of Matrix
Multiplication and DNS log jobs, to the GPGPU enabled
nodes. This leaves the CPU only nodes available to process
the Word Count job. In this manner, jobs with different PE
requirements are executed in parallel, as illustrated in Figure
4c. Compared to the homogeneous clusters E1 and E2, tasks
from each job are distributed equally across all nodes for
processing. Even though more nodes can be used in the
processing of jobs, jobs at the back of the queue have to wait
for the previous ones to finish, incurring longer waiting time.
This is illustrated in Figure 4b.

In Figure 7, the gain in overall job queue completion time
from the E3 compared to E2 is small. However this is so as
there are only 3 jobs in the queue. Figure 8 shows the
difference between job queue completion time of the
homogeneous and heterogeneous clusters, increasing as the
no. of jobs in the queue increases. At a job queue length of 9,
Pamar can provide up to approximately 23% of improvement
in terms of job queue completion time.

Having said so, one must also be careful when determining the
ratio of the different nodes within a heterogeneous cluster.
Compared to homogeneous cluster configurations,
heterogeneous clusters with asymmetry node configurations
will have lesser amount of specialized PEs to process jobs
with requirement for the respective PEs. This might
potentially lead to a longer processing time as there are lesser
nodes to share the workload. This can be seen vaguely in the
performance of the DNS application in Figure 7. The
homogeneous cluster outperforms the heterogeneous cluster
marginally as there are lesser nodes with GPGPU resources.

Figure 8.Job queue completion time for different no. of job

submission between E2 (homo.) and E3 (hetero.)

C. Impact of jobs order
Next, we look at how job submission order will affect the job
queue completion time in Pamar. In this experiment, we run
Pamar on E2 to represent homogeneous cluster and E3 to
represent heterogeneous cluster. We use the Hadoop’s default
scheduler on E2 as a comparison for HPE scheduler. We
submit the Matrix Multiplication (M), DNS log analysis (D)
and Word Count (W) applications in different order to the
different scenarios and record the job queue completion time.
The results are shown in Figure 9. Overall, heterogeneous
clusters running Pamar with HPE shows better job queue
completion time compared to homogeneous clusters running
Pamar with Hadoop’s default scheduler. This is attributed to
how tasks are scheduled, as explained in the previous sections.

Figure 9 shows that the job queue completion time for the
HPE scheduler is not affected by the order as compared to the
Hadoop’s default scheduler. The y-axis of the Figures in
Figure 9 do not start from zero for clarity sake of the Figures.
Recall the assumptions and scheduling decision for the HPE
scheduler. We assume that GPGPU tasks generally complete
execution faster than the CPU tasks due to its ability to utilize
large amount of parallel threads. Thus giving priority to
GPGPU tasks when nodes with GPGPU PEs requests for task
can help to process jobs in the queue faster, minimizing the
impact on other jobs in the queue. Due to the consideration of
priority, the scheduling order becomes more or less the same
regardless of the order of submission for the HPE scheduler.
On the other hand, the Hadoop scheduler is very much
affected by the order. Because in each node, the task slots for
Map and Reduce tasks are separated, thus it is possible for
Map and Reduce tasks from different jobs to run in parallel on
a single node. As such, situations where the previous job has a
long Reduce phase overlaps with the next job with a long Map
phase but short Reduce phase will have better performance
than one with the opposite properties. This applies even as the
number of job submission increases, as shown in Figure 9b,
where the number of jobs submitted is increased to 6.

In situations where influx of user jobs with different PE
requirements is constant, HPE scheduler will provide a more
stable execution time as compared to the Hadoop’s default
scheduler. It is true that one may obtain optimized results from

0

20

40

60

80

100

120

140

Matrix Multi. DNS App Word Count Job Queue

E1

E2

E3

0
50

100
150
200
250
300
350
400
450

3 4 6 8 9Co
m

pl
et

io
n

tim
e

in
 s

ec
 (s

)

No. of jobs in queue

E2 E3

Co
m

pl
et

io
n

tim
e

in
 s

ec
 (s

)

62

proper ordering of jobs when using Hadoop default scheduler,
as shown in Figure 9a. However, the order of job submissions
on operational clusters is an uncertainty.

Figure 9.Job queue completion time for different job submission
order in different scenarios

V. RELATED WORK
[18-20] are MapReduce frameworks that support GPGPU
processing on standalone machines. [18] reduces complexity
of GPGPU programming through generating GPGPU codes
for the user. Mars[19] on the other hand uses APIs and pre-
defined Map and Reduce function. The scheduler takes care of
the transfer of data between the main memory and the device
memory and also the invocation of functions on the GPGPU.
MapCG[20] aims to enable users to write once, deploy on
different architectures through a code abstraction layer. The
compiler will compile the user codes into the relevant binary
version for the respective PEs. Merge [11] is a library-oriented
platform for heterogeneous multi-core system. The Merge
compiler and runtime dynamically selects the best function
variant from the library, for a given input and machine
configuration, compiles it and sends it to the appropriate PE
for processing. PLASMA [21] looks at compiling applications
during runtime for different PEs and schedules the
applications to run on the different PEs in parallel. Although
[11, 18-20] demonstrates significant speed up when compared
to CPU processors, the frameworks run on standalone
machines with GPGPU PEs. [22] is an extension of Mars to
work in clusters. However it only runs on homogeneous

clusters with GPGPU PEs. On the other hand, Merge can be
extended to support other types of accelerators by adding the
respective function variants into the library. Such extensibility
has been incorporated into Pamar. Compare to these works,
Pamar provides heterogeneity support in a cluster setting.

[23-26] are some works that attempts to utilize multiple PEs in
a distributed cluster setting. QP[23] is a multi-accelerator
cluster with homogeneous node PE configuration. Each node
is equipped with CPU, GPU and FPGAs PEs. Axel’s[24]
cluster configuration is similar to QP, but using FGPAs and
GPUs PEs and is based off MapReduce. MGP [25] looks at
providing programmers the flexibility of running their
applications on the GPUs transparently by providing them
with the MGP APIs. These frameworks uses multiple software
such as Phoenix [27], MPI and Torque for multi-level task
scheduling, adding complexity to the frameworks. They allow
users to utilize different PEs collaboratively. Differing from
those frameworks, [26] uses a single layer of scheduling but
focus on using the GPGPU for computation. The CPU is used
only for optimizing the transfer of the output results between
the main memory and the GPGPU’s device memory. The
crucial difference with Pamar is that the mentioned
frameworks are only capable of supporting clusters which
have homogeneous node PE configurations. In comparison,
Pamar targets at clusters with nodes having different PE
configurations, without having code execution issues and
requires little effort from users when deploying their
applications.

Considerable amount of work have already been done in the
field of heterogeneous resource scheduling. [28] investigates
using CPU and GPGPU collaboratively for improving
performance of compute intensive applications. Using the
Anthill runtime environment, they evaluated two scheduling
algorithms, FCFS and DWRR. The DWRR policy divides the
events to be process and assigns a dynamic weightOn the other
hand, Lei Wang et al[29] looks at first profiling the tasks on
the CPU and GPU separately, then base on a model, decide
whether to schedule the task to run on the CPU or GPU.
However, doing so requires the application to be implemented
in both CPU and GPGPU before any profiling can be done.

VI. CONCLUSION
In this paper, we presented Pamar, a MapReduce base
framework for clusters with nodes having heterogeneous PE
configurations. Pamar detects both the PE configurations on
each node in the cluster and the PE requirements of user jobs
and does the match-making of tasks via scheduling, for the
user with little user effort required. We also showed how the
HPE scheduler is implemented to complement the Pamar
framework, increasing the stability and robustness of Pamar.

In the future, we envision that clusters will be equipped with
different accelerators to cater to efficient processing of jobs
with different properties. We plan to extend Pamar to support
other accelerators such as CELL in heterogeneous clusters. Our
focus in this work is on developing a framework that is capable
of supporting node PE configuration heterogeneity across a
cluster. Scheduler is not the main focus, as such for ease of
implementing; the FCFS policy is chosen for the HPE.
However, results shown in [28] clearly tells us that using FCFS

100

110

120

130

140

150

MDW DMW DWM WDM WMD MWD

Q
ue

ue
 C

om
pl

et
io

n
tim

e
in

 s
ec

 (s
)

Job submission order

HPE on E3 Hadoop Scheduler on E2

210
220
230
240
250
260
270

Q
ue

ue
 c

om
pl

et
io

n
tim

e
in

 s
ec

 (s
)

Job submission order

HPE on E3 Hadoop Scheduler on E2

b) Queue of 6 jobs

a) Queue of 3 jobs

63

is not sufficient in trying to achieve a highly efficient
framework. Beyond performance optimizations, monetary
efficiency of heterogeneous executions should be
investigated[30, 31]. Therefore, improving the HPE scheduling
algorithm will also be one of our future focuses.

REFERENCE
[1] Garnett Wilson and Wolfgang Banzhaf; "Deployment of CPU and

GPU-based genetic programming on heterogeneous devices," in
GECCO'09, Québec, 09.

[2] Chen Chen, Bertil Schmidt, Liu Weiguo, and Wolfgang Muller-
Wittig; "GPU-MEME: Using Graphics Hardware to Accelerate
Motif Finding in DNA Sequences," in Third IAPR International
Conference on Pattern Recognition in Bioinformatics,
Melbourne, Australia 2008.

[3] Bowen Zhang and Cornelis W. Oosterlee; "Option pricing with
COS method on graphics processing units," in IPDPS'09.

[4] Svetlin Manavski and Giorgio Valle; "CUDA compatible GPU
cards as efficient hardware accelerators for Smith-Waterman
sequence alignment," BMC Bioinformatics vol. 9, 2008.

[5] Kanupriya Gulati and Sunil P. Khatri; "Accelerating Statistical
Static Timing Analysis Using Graphics Processing Units," in
ASP-DAC09, Yokohama, Japan, Jan 2009.

[6] Reza Farivar, Abhishek Verma, Ellick Chan, and Roy H.
Campbell; "MITHRA: Multiple data Independent Tasks on a
Heterogeneous Resource Architecture," in Cluster09, New
Orleans, Louisiana, 2009.

[7] George Teodoro, Rafael Sachetto, Olcay Sertel, Metin N.Gurcan,
Wagner Meira Jr., Umit Catalyurek, and Renato Ferreira;
"Coordinating the use of GPU and CPU for Improving
Performance of Compute Intensive Applications," in Cluster 09,
Louisiana, 2009.

[8] TOP500.org. Available: http://www.top500.org/list/2010/06/100
[9] MAGMA. Available: http://icl.cs.utk.edu/magma/index.html
[10] Stanimire Tomov, Jack Dongarra, and Marc Baboulin; "Towards

dense linear algebra for hybrid GPU accelerated manycore
systems," Parallel Comput., vol. 36, pp. 232-240, 2010.

[11] Michael D. Linderman, Jamison D. Collins, Hong Wang, and
Teresa H. Meng; "Merge: A Programming Model for
Heterogeneous Muti-core Systems," in ASPLOS'08, Seattle,
Washington, USA, Mar 2008.

[12] Hadoop. (April). Available:
http://hadoop.apache.org/common/docs/current/mapred_tutorial.h
tml

[13] Jeffrey Dean and Sanjay Ghemawat; "MapReduce: Simplified
Data Processing on Large Clusters," in OSDI, Dec 2004.

[14] Spiros Papadimitriou and Jimeng Sun; "Disco: Distributed Co-
clustering with Map-Reduce: A Case Study towards Petabyte-
Scale End-to-End Mining," in International conference on Data
Mining, ICDM'08, Pisa, Italy, 2008.

[15] JCuda - Java binding for CUDA. Available:
http://www.jcuda.org/jcuda/JCuda.html

[16] Amazon EC2 instance type. Available:
http://aws.amazon.com/ec2/instance-types/

[17] Bu-Sung Lee, Yu Shyang Tan, Yuji Sekiya, Atsushi Narishige,
and Susumu Date; "Availability and Effectiveness of Root DNS
servers: A long term study," in NOMS'10, Osaka.

[18] Bryan Catanzaro, Narayanan Sundaram, and Kurt Keutzer; "A
Map Reduce Framework for Programming Graphics Processors,"
in STMCS08, Boston.

[19] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K. Govindaraju,
and Tuyong Wang; "Mars: A MapReduce Framework on

Graphics Processors," in PACT'08, Toronto, Ontario, Canada,
Oct 2008.

[20] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng,
and Haibo Lin; "MapCG: writing parallel program portable
between CPU and GPU," in Proceedings of the 19th international
conference on Parallel architectures and compilation techniques,
Vienna, Austria, 2010, pp. 217-226.

[21] Sreepathi Pai, R.Govindarajan, and M.J. Tjhazhuthaveetil;
"PLASMA: Portable Programming for SIMD Heterogeneous
Accelerators," in HPCA/PPoPP'10, Bangalore, India, Jan 2010.

[22] Fang Wenbin; "Mars: Accelerating MapReduce with Graphics
Processors," IEEE Transactions on Parallel and Distributed
Systems, vol. 99, 2010.

[23] Michael Showerman, Jeremy Enos, Avneesh Pant, Volodymyr
Kindratenko, Craig Steffen, Robert Pennington, and Wen-mei
Hwu; "QP: A Heterogeneous Multi-Accelerator Cluster," in 10th
LCI International conference on High-Performance Clustered
Computing, Boulder, Colorado, Mar 2009.

[24] Kuen hung Tsoi and Wayne Luk; "Axel: A Heterogeneous
Cluster with FPGAs and GPUs," in FPGA'10, Monterey.

[25] Amnon Barak, Tal Ben-nun, Ely Levy, and Amnon Shiloh; A
Package for OpenCL Based Heterogeneous Computing on
Clusters with Many GPU Devices. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.173.678

[26] Jeff A. Stuart and John D. Owens; "Multi-GPU MapReduce on
GPU Clusters," in Proceedings of the 2011 IEEE International
Parallel & Distributed Processing Symposium, 2011, pp. 1068-
1079.

[27] Richard M. Yoo, Anthony Romano, and Christos Kozyrakis;
"Phoenix Rebirth: Scalable MapReduce on a Large-Scale Shared-
Memory System," in IISWC09, Austin, Tx, Oct 2009.

[28] George Teodoro, Rafel Sachetto, Olcay Sertel, Metin N. Gurcan,
Wagner Meira Jr., Umit Catalyurek, and Renato Ferreira;
"Coordinating the use of GPU and CPU for improving
performance of compute intensive applications," in Cluster
Computing and Workshops CLUSTER'09, New Orleans,
Louisiana, 2009.

[29] Lei Wang, Yong-zhong Huang, and Xin Chen; "Task Scheduling
of Parallel Processing in CPU-GPU Collaborative Environment,"
in Computer Science and Information Technology ICCSIT'08,
2008.

[30] Shadi Ibrahim, Bingsheng He, and Hai Jin; "Towards Pay-As-
You-Consume Cloud Computing," in Proceedings of the 2011
IEEE International Conference on Services Computing, 2011, pp.
370-377.

[31] Hongyi Wang, Qingfeng Jing, Rishan Chen, Bingsheng He,
Zhengping Qian, and Lidong Zhou; "Distributed systems meet
economics: pricing in the cloud," in Proceedings of the 2nd
USENIX conference on Hot topics in cloud computing, Boston,
MA, 2010, pp. 6-6.

64

