
Extending and Inferring Functional Dependencies in
Schema Transformation

Qi He
heqi@comp.nus.edu.sg

Tok Wang Ling
lingtw@comp.nus.edu.sg

Dept. of Computer Science, School of Computing,
National University of Singapore

ABSTRACT
We study the representation, derivation and utilization of a special
kind of constraints in multidatabase systems. A major challenge is
when component database schemas are schematic discrepant from
each other, i.e., data values of one database correspond to schema
labels of another. We propose “qualified functional dependencies”
(or qualified FDs), an extension to conventional FDs to formalize
integrity constraints in multidatabase systems. We first give
inference rules to derive qualified FDs in fixed schemas, then
study the derivation of qualified FDs during the transformations
between schematic discrepant schemas. Propagation rules are
given to derive qualified FDs of transformed schemas from
qualified FDs of original schemas. Our work can be used in
different stages of building and accessing a multidatabase system,
e.g., to detect and resolve value inconsistency in schema
integration, to verify lossless schema transformations, to
normalize integrated schemas, to verify the integrity of data, and
to optimize queries at an integration level. In particular, as an
application of our theory, we will use FDs to check the validity of
SchemaSQL views (SchemaSQL is a powerful multidatabase
language).

Categories and Subject Descriptors
H.2.0 [Database Management]: General - Integrity

General Terms
Theory

Keywords
Functional dependency, Schematic discrepancy, Schema
integration, Multidatabase.

1. INTRODUCTION
Schema integration [3, 4, 14] is the activity to integrate the
schemas of existing or proposed databases into a global, unified
schema. It is regarded as an important work to build a
heterogeneous database system [18, 22] (also called

multidatabase system or federated database system), to integrate
data in a data warehouse, or to integrate user views in database
design. Schema transformation is the process to transform
heterogeneous schemas into unified ones (In this paper, we’ll blur
the difference on “integration” and “transformation”, and treat
schema integration as a special kind of schema transformation).
Existing works focused on presenting an integrated view of data
available at component schemas. People have developed some
methods to resolve naming conflicts (i.e., homonyms or
synonyms), structural conflicts (using different schema constructs
to model the same concept), and schematic discrepancy in schema
integration. A less studied area is on the constraint issues, i.e.,
how to describe, derive and utilize constraints in a multidatabase
environment. In a (individual or heterogeneous) database system,
constraints should be enforced to ensure the integrity of data in
the operations of insertion, deletion and update. Furthermore,
constraints provide semantics which could be used to optimize
queries, or to detect redundancy and data inconsistency.

Example 1.1: Suppose we want to integrate two bookstore
databases with the same schema: BS1(isbn, title, price) and
BS2(isbn, title, price). Can we just integrate them into a schema as
BS1 or BS2? The answer would be negative if we have the
constraint: a book with an isbn number has the same title but not
necessary the same price in the two bookstores, as value
inconsistency would occur on the price attribute. Actually, the FD
isbn→title is a “global” FD holding in the union of the two
relations BS1 and BS2, while the FD isbn→price only holds in
individual relations. It would be better to distinguish a book’s
prices of different bookstores in the integrated schema, e.g.,
Book(isbn, title, BS1_price, BS2_price) or Book(isbn, title, store,
price). □

In individual databases, the issue of inferring view dependencies
has been introduced in [1, 7]. However, the representation and
derivation of constraints in a multidatabase system would be
harder than in an individual database system, because a
multidatabase system is usually distributed (i.e., data may be
divided and stored in several databases) and heterogeneous (i.e.,
the similar data may be represented in quite different forms in
component databases). In particular, the integrated schema of a
multidatabase system is generated by not only relational algebra,
but also some other restructuring operators as we will introduce
later. And therefore, to derive dependencies for an integrated
schema, the existing inference rules for relational algebra are not
enough. We also need find rules for those additional restructuring
operators.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
CIKM’04, November 8–13, 2004, Washington, DC, USA.
Copyright 2004 ACM 1-58113-874-1/04/0011…$5.00.

12

In this paper, we’ll study the representation, derivation and
utilization of an important kind of constraints, FDs, in
multidatabase systems. To meet the demand of expressivity of
constraints in a multidatabase environment, we will propose
qualified FDs which are FDs holding over a set of relations or
sub-relations. Inference rules will be designed to derive unknown
qualified FDs from known ones in fixed schemas. We will also
study the propagation of qualified FDs in schema transformation.
A major challenge is when the schemas are schematic discrepant
from each other. The interplay of data and schema labels causes
schema transformations quite different from classical operations
such as union, join, etc. We will explore some propagation rules
of qualified FDs in transformations between schematic discrepant
schemas.

In the rest of this section, Section 1.1 shows schematic
discrepancy and schema transformation by example. Section 1.2
elaborates on some applications of FDs in multidatabase systems,
in order to bring out the motivation for our work. Section 1.3
describes the organization of the paper.

1.1 Schematic Discrepancy and Schema
Transformation
In relational databases, schematic discrepancy occurs when the
same information is modeled as attribute values, relation names or
attribute names in different databases. Schematic discrepancy
arises frequently since names for schema constructs often capture
some intuitive semantic information. Some scholars argue that
even within the relational model it is more the rule than the
exception to find data represented in schema constructs [11].
Recently, people have studied how to query data from discrepant
databases [11, 12, 13] and how to use schematic discrepancy [2,
19]. We hereby give an example of schematic discrepancy which
will be used as a running example in this paper.

Example 1.2: In Figure 1, we give three databases recording the
same information: supplying prices of products (identified by p#)
by suppliers (identified by s#) in different months. However, the
months are modelled respectively as attribute values, attribute
names and relation names in DB1, DB2 and DB3. For example, in
DB2, the months Jan, …, Dec are attribute names whose values
are prices in those months; in DB3, each relation with a month as
its name records the supplying information in that month.

In each database, we assume a product’s price is functionally
dependent on the product number, the supplier number and the
month. This constraint is expressed as different FDs in the three
databases.□

To integrate or interoperate with schematic discrepant databases,
people need to transform discrepant schemas into unified forms.
We call a transformation between schematic discrepant schemas a
schematic discrepant transformation. In [12], Lakshmanan et al
developed four restructuring operators, fold, unfold, unite and
split (originally introduced in the context of the tabular algebra
[8]), to implement such transformations. In what follow, we first
give the formal definition of these operators, then explain them by
Figure 1.

Figure 1: Schematic discrepancy: months modeled differently
in DB1~DB3

unfold(R, B, C): Let R be a relation with the schema
R(A1, …, An, B, C). unfold(R, B, C) transforms R to a relation
S(A1, …, An, b1, …, bm), where {b1, …, bm} is the set of distinct
values appearing in column B of R. The content of S is defined
as:

S={(a1, …, an, c1, …, cm) | (a1, …, an, bi, ci) ∈R, 1 ≤ i ≤ m}.

fold(R, B, C): Let R be a relation with the schema
R(A1, …, An, b1, …, bm). Suppose b1,…,bm are values from
dom(B), and all entries appearing in columns b1, …, bm of R are
from dom(C), for some attribute names B,C ∉ {A1, …, An}.
fold(R, B, C) transforms R to a relation S(A1, …, An, B, C),
defined as:

S = {(a1, …, an, bi, ci) | ∃ t ∈ R: t[A1,…,An]= (a1,…,an) & t[bi]=ci
}.

split(R, B): Let R be a relation with the schema R(A1, …,An, B).
split(R, B) transforms R to a set of relations bi(A1, …, An), for
each bi appearing in column B of R. The content of bi is defined
as:

bi = {t[A1,…,An]| t ∈ R & t[B]= bi}.

unite(RRRRB, B): Let RB={b1,…,bm} be a set of relations in a given
database, such that each relation name bi (i=1,2,…,m) is an
element of the domain of some fixed attribute B, and all the
relations have a common schema bi(A1,…,An). unite(RB, B)
transforms the relations b1,…,bm to a relation S(B, A1,…,An),
defined as:

S = {t| ∃ t’ ∈ bi: t[A1,…,An] = t’[A1,…,An] & t[B]= bi}.

For example, in Figure 1, these operators are used to implement
transformations between those discrepant databases, as described
below:

{p#, s#}→{Jan, …, Dec}

unfold(Supply, month, price)

unite({Jan,…,Dec}, month)

DB1:
Supply

p# s# month price
p1 s1 Jan 105
p1 s1 Dec 110
p1 s2 Jan 97
p1 s2 Dec 99
… … … …

DB2:
Supply

p# s# Jan … Dec
p1 s1 105 … 110
p1 s2 97 … 99

split(Supply, month)

DB3:
Jan Dec

p# s# price … p# s# price
p1 s1 105 p1 s1 110
p1 s2 97 p1 s2 99

{p#, s#, month}→price

fold(Supply, month, price)

{p#, s#}→price holds in each
relation of Jan, …, Dec

13

● The unfold operator transforms the Supply relation of DB1
into the relation of DB2. It takes the original relation name
and two attribute names as its parameters.

● The fold operation with the similar parameters is a converse
transformation of unfold. Note the original relation name
Supply refers to the relation of DB2 now. We suppose we
know in advance that the attribute names Jan, …, Dec in the
original relation of DB2 are values of some attribute month,
and their values are from the domain of another attribute
price.

● The split operator transforms the relation of DB1 into the set
of relations of DB3. It takes the original relation name and an
attribute name as its parameters.

● The unite operation with the set of original relation names and
an attribute as its parameters is a converse transformation of
split. Again, we know in advance that the relation names Jan,
…, Dec of DB3 are values of some attribute month.

To focus our work, in this paper, we study the derivation of
qualified FDs in a schematic discrepant transformation that is a
sequence of restructuring operators. In the future, we’ll extend our
work to more general transformations which include both
restructuring operators and relational algebra (union, natural join,
etc).

1.2 Applications of FDs in Multidatabase
Systems
As a special kind of integrity constraints, FDs play important roles
in relational databases. Although the inference and applications of
FDs in individual database systems have been studied for decades,
the same issue in multidatabase systems is less studied. It is not
trivial to derive the (qualified) FDs on an integrated schema from
the (qualified) FDs on component schemas, especially in the
presence of schematic discrepancies, as we’ll show in this paper.
The issue is interesting as FDs are useful not only in enforcing the
integrity of data, but also in different stages of building and
accessing a multidatabase system. In what follows, we’ll identify
some applications of FDs in schema transformation, schema
normalization and query processing. A more special application of
our theoretical work in multidatabase interoperability will be
introduced in Section 4 below.

● Verifying Lossless Transformations. As mentioned, schema
transformation plays an important role in building a multidatabase
system. In practice, one is mostly interested in semantic-
preserving transformations. A set of relations can be losslessly
converted into another set of relations, and conversely, hence the
name of lossless transformation. In other words, a lossless
transformation defines a one to one mapping from the instance set
of the original relations onto the instance set of the transformed
relations. FDs can be used to verify not only “lossless join
decomposition”, but also lossless schematic discrepant
transformation, as shown in the following example.

Example 1.3: Given a relation with the schema R(A, b1, b2),
suppose the attribute names b1, b2 are values of a fixed attribute
B, and the values of the attributes b1, b2 (i.e., c1, c2, etc) are from
the domain of another attribute C. By applying the operation
fold(R, B, C), we can transform either of the two instances I1, I2
of R (Figure 2) into the same relation instance of S. That is, the
mapping from the instances of R onto the instances of S is many

to one, which makes the recovering impossible. So the fold
operation is lossy (non-lossless). On the other hand, if the FD
A→{b1, b2} held in R, the transformation would be lossless. □

R (I1)
A b1 b2
a1 c1 c2
a1 c3 c4

R (I2)
A b1 b2
a1 c1 c4
a1 c3 c2

⇓ ⇓

S
A B C
a1 b1 c1
a1 b2 c2
a1 b1 c3
a1 b2 c4

Figure 2: A “lossy” (non-lossless) fold transformation

● Normalizing Integrated Schemas. Consolidating data into a
single physical store has been the most effective approach to
provide fast, highly available, and integrated access to related
information. The applications include coalescing all the required
data for a new e-business application for online transactions, and
enabling sophisticated data mining of warehoused historical data.
In classical relational theory, FDs are used to detect redundancy
and normalize relations. Deriving FDs for integrated schemas
becomes important, as schematic discrepant transformation would
introduce redundancy.

For example, in Example 1.1, the integrated schema Book(isbn,
title, store, price) is not in 2nd normal form, as the FDs
isbn→title and {isbn, store}→price hold in the relation (the
method to derive the two FDs will be introduced in Section 3).
We can normalize it to two relations: Book(isbn, title) and
BookPrice(isbn, store, price).

● Semantic Query Optimization. In a multidatabase system,
FDs and other constraints on integrated schemas could be used to
optimize queries against the integrated view [10, 16], to eliminate
subqueries which are known to yield empty results, and to
validate update transactions at the integration level [21].

For example, in Example 1.1, given the integrated schema
Book(isbn, title, store, price), a query retrieves books with the
same isbn number but different titles in the two bookstores. Such
a query will return empty results as the FD isbn→title holds in the
integrated Book relation.

1.3 Paper Overview
The main contributions of this paper are in Section 2 ~ 4. In
Section 2, we extend conventional FDs to qualified FDs, to
express FD-like constraints in multidatabase systems. Inference
rules of qualified FDs are also given in this section. Then in
Section 3, we study the propagation of qualified FDs in schematic
discrepant transformations. In Section 4, we show a special
application of our theoretical work in multidatabase
interoperability, i.e., use FDs to check the validity of SchemaSQL
views. In Section 5, we compare our work with some related
work. Section 6 is for the conclusion and future work, in which
we introduce some preliminary study on the inference and
application of FDs on XML data.

14

Notations: In this paper, capital letters near the beginning of the
alphabet, A, B, C, stand for single attributes. Capital letters near
the end of the alphabet, U, X, Y, Z, stand for sets of attributes.
Lower case letters stand for attribute values, which may be
modeled as attribute or relation names in discrepant schemas
however. The notation dom(A) stands for the domain of an
attribute A.

2. QUALIFIED FD
In this section, we introduce qualified FD, an extension to
conventional FD, to facilitate the expression and inference of
some constraints in multidatabase systems. We first give the
formal definition of qualified FDs in Section 2.1. Then in Section
2.2, we’ll give some inference rules of qualified FDs in fixed
schemas.

2.1 Definition of Qualified FD
We first give an example to show the motivation of our proposal.

Example 2.1: Suppose in DB3 of Figure 1,

Jan Dec
p# s# price … p# s# price

the following constraint holds: in the first quater, each product is
supplied with the same price by suppliers s1 and s2, independent
of months. We’ll express this constraint as:

{Jan, Feb, Mar}(s#σ={s1, s2}, p#→price).
Jan, Feb and Mar are relation names from DB3. The beginning
part “{Jan, Feb, Mar}” restricts the set of relations, and
“s#σ={s1,s2}” restricts the values of the attribute s# within which the
constraint should be enforced. Formally, let

R = ∪mi∈{Jan, Feb, Mar}(σs# ∈ {s1, s2}mi)
the FD p#→price holds in R.□

The definition below formalizes the above representation of
qualified FDs.

Definition 2.1 (Qualified FD): In general, given a set of
relations S with the same set of attributes U, we can represent a
qualified FD as:

R (A1 σ= 1S , A2 σ= 2S , …, An σ= nS , X→ Y).
Syntax of the qualified FD:

(1) R ⊆ S represents the set of relations over which the
qualified FD holds.

(2) Ai σ= iS , for each i=1, …, n, satisfies Ai ∈ U and Si ⊆
dom(Ai), indicating the restriction of attribute values
within which the qualified FD holds. For easy to reference,
we call each Ai σ= iS a qualification attribute from U.

(3) X ⊆ U and Y ⊆ U are two sets of regular attributes.

Semantics of the qualified FD:

We call the given qualified FD holds over R , if the following
holds for any two tuples t1, t2 from the relations of R (t1, t2 may
come from one or two relations):

If t1.Ai ∈ Si and t2.Ai ∈ Si, for each i = 1, …, n, and t1.Xj= t2.Xj,
for each attribute Xj ∈ X, then t1.Yk = t2.Yk, for each attribute
Yk ∈ Y. This completes the definition of qualified FD. □

In general, if a qualified FD

{R1, …, Rm}(A1 σ= 1S , …, An σ= nS , X→Y)
holds, let R = ∪i=1,…,m(σ 1A ∈ 1S , …, nA ∈ nS Ri), then the FD X→Y
holds in R. If a qualified FD only contains regular attributes and
holds in a single relation, then it is just a conventional FD.

2.2 Reasoning about Qualified FDs in Fixed
Schemas
In general, let F be a set of qualified FDs for a set of relation
schemas R , and let f be a qualified FD also for R. We say F
logically implies f, if every instance of R that satisfies the
dependencies in F also satisfies f. We define F+, the closure of F
for R , to be the set of qualified FDs for R that are logically
implied by F.

To understand logical implications among qualified FDs in fixed
schemas, we provide a complete set of inference rules, meaning
that from a given set of qualified FDs F for R, the rules allow us
to deduce all the true qualified FDs for R, i.e., those in F+.
Without causing confusion, in the next section, we’ll give another
kind of rules (called propagation rules) which allow us to infer
qualified FDs of transformed relations from qualified FDs of
original relations in a schema transformation.

Some of the inference rules are given below (a complete set of
inference rules are given in Appendix A). We assume for each
qualification attribute Aσ=S, the domain of A is a finite and fixed
set.

Inference rules of qualified FDs: Given a set of relation
schemas S with the same set of attributes U, and a set of qualified
FDs F for S, let X be a mixed set of regular and qualification
attributes from U (X may comprise only regular or qualification
attributes) 1; let Y ⊆ U and Z ⊆ U be two sets of regular attributes;
let attribute A∈U; let R1 ⊆ R ⊆ S, S1 ⊆ S ⊆ dom(A), we have the
following inference rules:

(A1) Partition on the relation set. If R (X →Y) holds, then
R1 (X →Y) holds.

(A2) Partition on the qualification. If R (Aσ=S, X →Y) holds,
then R (Aσ=S1, X →Y) holds.

(A3) Disassembly. R (X , A→Y) holds iff R (Aσ={a}, X →Y)
holds for each a ∈ dom(A).

(A4) Reflexivity. If Y ⊆ X , then R (X →Y) holds.
(A5) Augmentation. If R (X →Y) holds, then

R (X , Z→Y, Z) holds.
(A6) Transitivity. If R (X →Y) and R (X1 , Y→Z) hold, where

X1 is a set (possibly an empty set) of some qualification
attributes of X , then R (X →Z) holds. □

Rule A1 and A2 are trivial. Rule A3 is a derived rule from the
rules in Appendix A, which is useful in the rest of the paper. We
hereby explain this rule through an example:

Example 2.2: In DB1 of Figure 1, given the FD
{month, p#, s#}→ price

1 This convention will be followed in the rest of the paper.

15

we can infer a set of qualified FDs in the same relation by the
disassembly rule, i.e.,

Supply(monthσ={mi}, p#, s#→ price)
for each mi ∈ {Jan, …, Dec}. That is, the FD {p#, s#}→price
holds in each sub-relation σmonth=mi Supply of DB1. □

Rules A4, A5 and A6 extend Armstrong’s Axioms [20], the
inference rules of FDs. Note in Rule A6, the inferred qualified FD
inherits all the qualification attributes of the given qualified FDs.
A sound and complete set of inference rules is given in Appendix
A, stated as follows:

Theorem 2.1: The inference rules in Appendix A are sound and
complete. □

We can prove this by showing that if F is the given set of
qualified FDs holding in S, and f is a qualified FD which cannot
be proved by the inference rules, then there must be an instance of
S in which the dependencies of F all hold but f does not; that is, F
does not logically imply f. For the detailed proof and more
information on qualified FDs (e.g., the computation of attribute
closure with respect to a set of qualified FDs, and the implication
algorithm), please refer to the full paper [9].

3. PROPAGATION OF QUALIFIED FDS IN
SCHEMA TRANSFORMATION
In this section, the implication of qualified FDs extends to
transforming schemas. In general, given a schema transformation
T, let R and S be the sets of original and transformed relations of
T; let F be a set of qualified FDs for the schemas of R , and f be a
qualified FD for the schemas of S ; let r be any instance of R
satisfying the dependencies of F, and s be the instance of S
transformed from r by T. We say F (logically) implies f, if s
satisfies f.

Note unlike the implication of qualified FDs in fixed schemas,
now the given set of dependencies F and the implied one f hold in
different schemas. To understand logical implications among
qualified FDs in transforming schemas, we provide a set of
propagation rules, meaning that from a given set of qualified FDs
F for the set of original relations R, the rules allow us to deduce
the qualified FDs for the set of transformed relations S.

In this section, we first give the propagation rules for split/unite
and unfold/fold operations in a pairwise way, by which we can
compute qualified FDs on transformed relations from qualified
FDs on original relations in application of those operators. Then
we propose a method to infer qualified FDs in a schematic
discrepant transformation (i.e., a sequence of restructuring
operators) using the inference rules (Appendix A) and
propagation rules.

3.1 Propagation Rules
We first give the propagation rules for split/unite operators then
for unfold/fold. The soundness of these rules are proven in [9].

Propagation of qualified FDs in application of a split/unite
operator: Let R(A1, …, An, B) be an original relation with
dom(B) = {b1, …, bm}, and bi(A1, …, An), i = 1, …, m, be the
transformed relations using split(R, B), i.e., the distinct values of
B in R, {b1, …, bm}, become the relation names of the transformed
relations. Let X be a mixed set of regular and qualification

attributes from {A1, …, An}, and Y ⊆ {A1, …, An} be a set of
regular attributes; let RB ⊆ {b1, …, bm} be a set of relation names.
We have the following rule:

(P1) R (Bσ= BR , X →Y) holds iff RB (X →Y) holds.

The same rule holds for the unite operator, when {b1, …, bm} are
the original relations, and R is the transformed relation using
unite({b1,…, bm}, B).□

Rule P1 means that in application of a split operator, the
restriction on the values of attribute B in the given qualified FD
becomes the restriction on the relation set over which the inferred
qualified FD holds, as B values become relation names in the
transformed schemas. We hereby give an example to apply this
rule:

Example 3.1: In Figure 1, given the FD in the relation Supply of
DB1: {p#, s#, month}→price which is equivalent to a set of
qualified FDs in the same relation (by the disassembly rule A3):
Supply(monthσ={mi}, p#, s#→price) for each mi ∈ {Jan, …, Dec},
we can derive a FD for each relation of DB3 by applying the
propagation rule P1 to each of the qualified FDs in DB1, i.e.,

mi(p#, s#→ price)
for each relation name mi ∈ {Jan, …, Dec} in DB3.□

Although unite is a qualified-FD preserving transformation, split
is not. Given the same conditions as those in Rule P1, a qualified
FD R(X →B) will be lost in application of split, as the values of
B become relation names in the transformed schemas.

In what follows, we’ll give the propagation rules of qualified FDs
in application of a set of unfold/fold operators. We study based on
a set of unfold/fold operators instead of individual ones because
some qualified FDs would hold over a set of relations (which are
transformed together by unfold/fold operations).

Propagation of qualified FDs in application of a set of
unfold/fold operators: Let Ri(A1, …, An, B, C), i = 1,…,l, be a
set of original relations, and Si(A1, …, An, b1, …, bm), i=1,…,l, be
the set of transformed relations by performing unfold(Ri, B, C) on
each relation of Ri. That is, the values of B in Ri, {b1, …, bm},
become attribute names in Si, and the values of C in Ri become the
values of the attributes b1, …, bm in Si. Let X be a mixed set of
regular and qualification attributes from {A1, …, An}, and Y ⊆
{A1, …, An} be a set of regular attributes. Let R ={Ri1, …, Rij} be a
subset of {R1, …, Rl}, and S ={Si1, …, Sij}, a subset of {S1, …, Sl},
be the transformed relations from R. We have the following rules:

(P2) R (Bσ={ ib }, X →C) holds iff S (X →bi) holds.

(P3) R (Bσ={ ib }, X , C→Y) holds iff S (X , bi→Y) holds.

(P4) R (X →Y) holds iff S (X →Y) holds.

The three rules also hold for fold operators, when Si, i = 1,…,l, are
the original relations, and Ri, i=1,…,l, are the transformed
relations by performing fold(Si, B, C) on each relation of Si. □

In application of unfold operators, Rule P2 and P3 mean that the
restriction on the value of attribute B in the given qualified FD
becomes the restriction on the attribute name in the inferred
qualified FD. Rule P4 is trivial as no change happens on the
attributes involved in the given qualified FD during the
transformation. Note both fold and unfold operations are not

16

qualified-FD preserving transformations. We hereby give an
example to apply Rule P2:

Example 3.2: In Figure 1, given the FD in the relation Supply of
DB1: {p#, s#, month}→price which is equivalent to a set of
qualified FDs in the same relation: Supply(monthσ={mi}, p#,
s#→price) for each mi ∈ {Jan, …, Dec}, we can derive a set of
FDs in DB2 by applying Rule P2 on each of the qualified FDs in
DB1, i.e.,

Supply(p#, s#→mi)
for each attribute name mi ∈ {Jan, …, Dec}. That is, the FD {p#,
s#}→ {Jan, …, Dec} holds in relation Supply of DB2. □

3.2 Inferring Qualified FDs in Schematic
Discrepant Transformation
Using the inference rules in Appendix A and the propagation rules
P1~P4, we can design an algorithm to derive qualified FDs in
schematic discrepant transformations. A naive idea would be: for
each step of a schematic discrepant transformation, we first apply
the inference rules to compute the qualified FD closure on the
original relations, then apply the propagation rules to get the
qualified FDs on the transformed relations. However, the
computation of qualified FD closures takes exponential time at
least, which makes the method impractical. Instead of applying
the inference and propagation rules directly, we use some derived
rules (see Appendix B) to infer qualified FDs in schema
transformation, without computing qualified FD closures. The
basic idea of the derived rules is: given a set (not necessary a
closure) of qualified FDs F on the original relations, we propagate
not only the dependencies in F, but also those which are not in
but implied by F, and can be preserved during the schema
transformation. The general algorithm with proofs is given in [9].
We hereby present an example to explain it.

Example 3.3: Suppose in Figure 1, we have another database
DB4 with supplier numbers as the relation names:

DB4:
s1 sn
p# Jan … Dec … p# Jan … Dec

Suppose we transform DB3 into DB4 using the following
sequence of restructuring operators:

DB3 DB1 DB2

unfold(Supply, month, price)

unite({Jan,...,Dec}, month)

DB4

split(Supply, s#)

Given a set of qualified FDs in the relations of DB3:

mi(p#, s#→price)
for each relation name mi ∈ {Jan, …, Dec}, we compute the
qualified FDs in DB4 as follows:
After applying the unite operator, we get the dependencies in DB1
(by Rule P1):

Supply(monthσ={mi}, p#, s#→price)
for each mi ∈ {Jan, …, Dec}. After applying the unfold operator,
we get the dependencies in DB2 (by Rule P2):

Supply(p#, s#→ mi)

for each mi ∈ {Jan, …, Dec}. These FDs cannot be transformed
into any dependencies on DB4 by the propagation rules. However,
each of the above FDs implies a set of qualified FDs on the same
relation of DB2 (by Rule A3):

Supply(s#σ={sj}, p#→ mi)
for each sj ∈ {s1, …, sn}. Consequently, after the split operation,
these qualified FDs become FDs in DB4 (by Rule P1):

sj(p#→ mi)
for each relation name sj ∈ {s1, …, sn} and attribute name mi ∈
{Jan, …, Dec}. That is, in each relation sj of DB4, the FD
p#→{Jan, …, Dec} holds.□

Before ending this section, we show some results on the
completeness of our method. The inference rules in Appendix A
and the propagation rules P1~P4 are not complete to infer all the
qualified FDs in schematic discrepant transformation. Instead,
they are complete to infer common dependencies satisfying three
conditions:

Definition 3.1: Let S be a set of relations with the same set of
attributes U in database DB. We call a qualified FD f: R(X→Y)
reasonable if it satisfies 3 conditions:

(1) Either R = dom(B) for some attribute B whose values are
modeled as relation names in S, or R is a single relation
name from S.

(2) The qualified FD only has regular attributes.
(3) For each attribute set Z = {bi | bi ∈U is a value of an

attribute B, and the values of bi are from the domain of
another attribute C}, there’s at most one attribute of Z in
X∪Y. □

Without giving proof here (the proof is given in [9]), we have the
following results on the completeness of our method using the
propagation rules or derived rules:

Theorem 3.1: The inference rules in Appendix A and the
propagation rules P1~P4 are complete to infer reasonable
qualified FDs in schematic discrepant transformation. □

Proposition 3.1: The derived rules in Appendix B are complete to
infer reasonable qualified FDs in schematic discrepant
transformation. □

4. VERIFYING SCHEMASQL VIEWS
In this section, we will show an application of our theory in a
multidatabase query language SchemaSQL [12, 13]. SchemaSQL
is an extension to SQL for enabling multidatabase
interoperability. It treats data and schema labels in a uniform
manner, i.e., variables can range over data and schema labels,
which facilitates the interoperability among schematic discrepant
databases. Recently, SchemaSQL has been used to solve a broad
range of problems [12, 19]. However, a SchemaSQL view
definition may generate ambiguous results. We call those
problematic views not “well-defined”. The problem can be
detected using FDs derived during the processing of SchemaSQL
views. In this section, we first define “well-defined SchemaSQL
view” in Section 4.1, then show how to verify well-defined views
by deriving qualified FDs in Section 4.2.

4.1 Well-defined SchemaSQL Views
In this sub-section, we first show an example of problematic
SchemaSQL view which generates ambiguous results, then give

17

the definition of well-defined views. We consider views for query
purpose, not for update purpose.

Though a SQL view defines a mapping from the instances of
original relations onto the instances of view relations, a
SchemaSQL view defines a mapping from original relations onto
view relations including schemas and instances both. That is to
say, a SchemaSQL view may define on (and generate) relations
with variable schemas.

Example 4.1: In Figure 3, suppose in the relation Supply, a FD
{product, supplier, month}→ price holds. The SchemaSQL
statements below define a view SupView:

create view SupView(product, T.month)
select T.product, T.price
from Supply T

Supply
product supplier month price
p1 s1 Jan 100
p1 s1 Feb 105
p1 s2 Jan 95
p1 s2 Feb 97

Allocated table
product Jan Feb
p1 100 -
p1 - 105
p1 95 -
p1 - 97

SupView(I1)
product Jan Feb
p1 100 105
p1 95 97

SupView(I2)
product Jan Feb
p1 100 97
p1 95 105

Figure 3: Ambiguous SchemaSQL view: SupView may have
one of two instances I1 and I2

The above statements are similar to a SQL view definition except
a variable T.month in the “create view” clause. The result view
schema therefore depends on the instantiation of T.month, i.e., the
values of the month attribute in the Supply relation. In this case,
the view has a schema of SupView(product, Jan, Feb). To
evaluate this view, they will temporarily generate an "allocated
table" shown in Figure 3. Each tuple in the allocated table comes
from a tuple of the Supply relation with the values of month
modeled as attribute names. "-" is used to denote the null value.
Then they merge the tuples in the allocated table, and get the final
result. Two tuples are merge-able if for a common attribute, either
the attribute values of the 2 tuples are the same, or at least one
value is null. For example, the 1st tuple can be merged with the
2nd or 4th tuple. Then the result view relation is not unique for
the different choices of merging tuples. Two possible results are
SupView(I1) and SupView(I2) in Figure 3. That is, the mapping
from the original relations onto the view relations is one to many.
□

We call a view definition in Example 4.1 is not well-defined. In
general, we have:

Definition 4.1 (Well-defined SchemaSQL view): Let V be a
view definition in SchemaSQL. Let S1 = {R | R is an original

relation (or relation set) on which V is defined}, S2 = {R | R is a
view relation (or relation set) generated by V}. If the view
definition V: S1 S2 is a many to one mapping, we call V is
well-defined. □

Intuitively, for a well-defined view V, given a query Q against a
view relation (or relation set) S∈S2, we have:

Q(S) = Q(V(R)) = Q ο V (R), for some R∈S1.
That is, the query Q against S is mapped onto the unique query
QοV against the original relation (or relation set) R, if V is a many
to one mapping.

4.2 Verifying Well-defined SchemaSQL
Views Using FDs
In this sub-section, we first give a theorem, then a method to
verify well-defined SchemaSQL views. The theorem below gives
a necessary and sufficient condition to check whether a
SchemaSQL view is well-defined by use of FDs. To simplify the
expression, the theorem only applies to SchemaSQL views
generating individual relations without aggregations. The result
can be extended to general SchemaSQL views readily.

Theorem 4.1: A SchemaSQL view is well-defined iff it satisfies
the following condition: if the output schema declaration through
the create view statement of the view definition has a form of
“R(A1, …, An, B)”, where R is the name of the view relation, A1,
…, An are attribute names, and B is a variable ranging over a set of
values {b1, …, bm}, then the FDs

{A1, …, An}→ bi, i = 1, …, m, hold in R. □

In general, when the declaration of a view schema contains a
variable, the mapping from the original relations onto the view
relations is many to many. However, if certain FDs hold, we can
ensure the mapping be many to one. The detailed proof of this
theorem is given in [9].

Note according to the SchemaSQL syntax [13], there’s at most
one variable in the attribute list of the output schema declaration
through a create view statement. And Theorem 4.1 implies that if
a view definition does not contain a variable in the attribute list of
the output schema declaration, then the view is always well-
defined. That is, Theorem 4.1 could be used to check all the
SchemaSQL views which generate single relations without
aggregations.

According to Theorem 4.1, in order to check whether a
SchemaSQL view is well-defined, we need to infer FDs holding in
the view relation. SchemaSQL queries/views can be implemented
by use of the restructuring operators and relational algebra
(selection, projection, join, and so on) [12]. Consequently, we
need develop propagation rules and algorithms to infer qualified
FDs in application of the relational algebra besides those four
restructuring operators, which are omitted here. We hereby give
an example to describe this process.

Example 4.2: The view of Example 4.1 can be implemented in
two steps: (1) project out the supplier column from the Supply
relation, and get an intermediate relation, say Sup1(product,
month, price); (2) perform unfold(Sup1, month, price), and get the
result relation SupView. As Step (1) projects out the supplier
attribute, the given FD {product, supplier, month}→price is lost

18

after the projection. Consequently, no FD holds in SupView,
which means the view is not well-defined.

On the other hand, if the view schema declaration contains the
attribute supplier, i.e., SupView(product, supplier, Jan, Feb), then
the view is implemented by performing unfold(Supply, month,
price). Using Rule A3 and P2, we can derive a FD {product,
supplier}→{Jan, Feb} in SupView. According to Theorem 4.1,
the view is well-defined. □

5. RELATED WORK
Most of the existing relational dependencies, such as FDs,
multivalued dependencies, embedded multivalued dependencies
etc, are defined on individual relations. They differ from our
proposal of qualified FDs which are constraints on a set of
relations or sub-relations. Some unifying frameworks were
proposed to generalize those existing dependencies. One of the
most powerful methods is to use tableaux (a table form
representation) to present constraints, and use “chase” (a
procedure based on the successive application of constraints to
tableaux) to analyze implication and construct axiomatization [1].
However, the existing tableaux paradigm does not subsume our
proposal of qualified FDs which have restrictions on attribute
values and hold over the union of a set of relations. And the
inference rules developed in the chase paradigm cannot be used to
infer qualified FDs.

Another kind of extension to FDs in the database design world are
FDs partially holding in a relation, in the sense that only some
tuples, called exceptions, break the dependencies. These
dependencies include weak FDs [17], afunctional dependencies
[6] and partial FDs [5]. The difference between those
dependencies and qualified FDs is that the former ones work over
instances while the qualified FDs are defined on schemas. Given a
relation schema, a weak FD (or some other similar dependency)
predicates that some tuples (but don’t know which tuples) in the
relation would violate the dependency, while a qualified FD
indicates exactly what kind of tuples satisfy the dependency.
Furthermore, we are not aware of any axiomatizations for those
dependencies. At last, those dependencies are specified on
individual relations, while qualified FDs can be on a set of
relations.

Some work [15, 21, 23] has been done on the derivation of
constraints in schema integration. Those works are based on
semantic rich schemas (ER schema or object oriented schema).
They failed to consider schematic discrepancy in schema
integration; neither did they prove the completeness of their
methods.

6. CONCLUSION AND FUTURE WORK
In [16], Chen Li introduced some open problems and preliminary
study on describing and utilizing constraints to answer queries in
data integration systems. Our work solved some of those
problems. In particular, we have made three contributions on the
representation, derivation and utilization of constraints in
multidatabase systems: (1) We proposed qualified FDs to
formalize some constraints in multidatabase systems. We gave a
complete set of inference rules to derive qualified FDs in fixed
schemas. (2) We gave the propagation rules of qualified FDs in
application of the restructuring operators, and proposed a method
to derive qualified FDs in schematic discrepant transformations.

Our work can be used to verify lossless schema transformations,
normalize transformed/integrated schemas, optimize queries at the
integration level and so on in building and accessing a
multidatabase system. (3) As a special application of our
theoretical work in multidatabase interoperability, we showed
how to use FDs to check well-defined SchemaSQL views in
detail.

Information integration using XML as a standard to represent and
exchange data provides a competitive advantage to businesses.
However, the flexibility of XML also brings great challenge in the
integration of XML data from different sources. Although our
work in this paper is based on the relational model, the results
could be extended to the hierarchical model of XML as well. We
are currently studying this problem. In the example below, we
show some ideas on the application and derivation of FDs in the
integration of XML schemas.

Example 6.1: In Figure 4, we represent XML schemas as tree
structures in which elements are represented as rectangles and
attributes as circles (filled circles denote keys of the owning
elements). The schemas X1, …, Xn model the book information
of n bookstores with the store names s1, …, sn. We assume a book
with an isbn number has the same title and authors but not
necessary the same price in those bookstores. That is, the FD
isbn→title holds over the union of the instances of X1, …, Xn.
However, the FD isbn→price only holds in each Xi.

Guided by these dependencies, we can integrate these schemas by
transforming the schema labels s1, …, sn into attribute values of a
new created element store. The integrated schema is also given in
Figure 4. Note the attribute price is attached to the element store
now, as its values depend on both isbn numbers and bookstore
names. Actually, price is an attribute of the relationship type
between book and store. We can derive the FDs isbn→title and
{isbn, s_name}→price in the integrated schema.□

s1_book

author

isbn

a_name

price

...Schema X1

title

sn_book

author

isbn

a_name

price

Schema Xn

title

book

author

isbn

a_name

title

Integrated Schema

store

s_name price

...

dom(sname)
={s1, ..., sn}

Figure 4: Integration of XML schemas. The values of the

attribute price depend on isbn numbers and bookstore names.

19

7. REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of

Databases. Addison-Wesley, 1995, 173-187, 216-235.
[2] R. Agrawal, A. Somani, and Y. R. Xu. Storing and querying

of e-commerce data. VLDB, 2001, 149-158.
[3] J. Albert. Theoretical Foundations of Schema Restructuring

in Heterogeneous Multidatabase Systems. CIKM, 2000.
[4] C. Batini, M. Lenzerini, and S. B. Navathe. A comparative

analysis of methodologies for schema integration. CN
computing surveys 18(4), 1986, 323-364.

[5] F. Berzal, J. C. Cubero, F. Cuenca, J. M. Medina. Relational
decomposition through partial functional dependencies. Data
& Knowledge Engineering 43(2), 2002, 207-234.

[6] P. De Bra and J. Paredaens. Conditional dependencies for
horizontal decompositions. ICALP, 1983.

[7] G. Gottlob. Computing covers for embedded functional
dependencies. SIGMOD, 1987.

[8] M. Gyssens, L. Lakshmanan, and S. N. Subramanian. Tables
as a paradigm for querying and restructuring. PODS, 1996.

[9] Qi He, Tok Wang Ling. Extending and inferring functional
dependencies in schema transformation: extended version.
Technical report, TRA3/04. School of Computing, National
University of Singapore, 2004. http://www-
appn.comp.nus.edu.sg/~esubmit/diglib/public/techrep/
2004/TRA304/report.pdf

[10] C. N. Hsu and C. A. Knoblock. Semantic query optimization
for query plans of heterogeneous multidatabase systems.
TKDE 12(6), 2000, 959-978.

[11] R. Krishnamurthy, W Litwen, and W. Kent. Language
features for interoperability of databases with schematic
discrepancies. SIGMOD, 1991, 40-49.

[12] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian. On
efficiently implementing schemaSQL on SQL database
system. VLDB, 1999, 471-482.

[13] L. V. S. Lakshmanan, F. Sadri, and S. N. Subramanian.
SchemaSQL—an extension to SQL for multidatabase
interoperability. TODS, 2001, 476-519.

[14] Mong Li Lee, Tok Wang Ling. A methodology for structural
conflicts resolution in the integration of entity-relationship
schemas. Knowledge and Information Sys., 5, 2003, 225-
247.

[15] Mong Li Lee and Tok Wang Ling. Resolving constraint
conflicts in the integration of ER schemas. ER, 1997, 394-
407.

[16] Chen Li. Describing and Utilizing Constraints to Answer
Queries in Data-Integration Systems. IIWeb, 2003, 163-168.

[17] Tok Wang Ling. Extending classical functional dependencies
for physical database design (lecture notes), 2001.
http://www.comp.nus.edu.sg/~lingtw/cs4221/
extended.fds.pdf

[18] Tok Wang Ling, Mong Li Lee. Issues in an entity-
relationship based federated database system. CODAS, 1996,
60-69.

[19] R. J. Miller. Using schematically heterogeneous structures.
SIGMOD, 1998, 189-200.

[20] R. Ramakrishnan and J. Gehrke. Database Management
Systems, 2nd Ed. McGraw-Hill, 1999, 427, 438-444.

[21] M. P. Reddy, B. E. Prasad, and A. Gupta. Formulating global
integrity constraints during derivation of global schema.
Data & Knowledge Engineering, 1995, 241-268.

[22] A. P. Sheth and S. K. Gala. Federated database systems for
managing distributed, heterogenous, and autonomous
databases. ACM Computing Surveys, 1990.

[23] M. W. W. Vermeer and P. M. G. Apers. The role of integrity
constraints in database interoperation. VLDB, 1996, 425-435.

APPENDIX
A. A Complete Set of Inference Rules to Infer
Qualified FDs in Fixed Schemas
Given a set of relation schemas S with the same set of attributes U
in database DB, and a set of qualified FDs F holding in S, let X
be a mixed set of regular and restriction attributes from U (X
may comprise only regular or restriction attributes), Y ⊆ U and Z
⊆ U be two sets of regular attributes, and A∈U; let R1 ⊆ R ⊆ S,
S1 ⊆ S ⊆ dom(A), we have the following inference rules:

(1) If R (X →Y) holds, then R1 (X →Y) holds.
(2) If {Ri, Rj}(X →Y) holds for any Ri, Rj ∈ R, then R

(X →Y) holds.
(3) If R (X , Aσ=S→Y) holds, then R (X , Aσ=S1→Y) holds.
(4) If R (X , Aσ={ ia , ja }→Y) holds for any ai, aj ∈ S, then

R (X , Aσ=S→Y) holds.
(5) If ai ∈ dom(A), then R (Aσ={ ia }→A) holds.

(6) If R (Aσ={ ia }, X →Y) holds for each ai ∈ S, then

R (Aσ=S, A, X →Y) holds.
(7) If Y ⊆ X , then R (X →Y).
(8) If R (X →Y) holds, then R (X , Z→Y, Z).
(9) If R (X →Y) and R (X1 , Y→Z) hold, where X1 is a set

(possibly an empty set) of some restriction attributes in
X , then R(X →Z) holds.

(10) If R (X →Y) holds and A does not occur in the restriction
attributes of X , then R (X , Aσ=dom(A)→Y) holds.

(11) If R (X , Aσ=dom(A)→Y) holds, then R (X →Y) holds. □

B. Derived Rules to Infer Qualified FDs in
Schema Transformation.
The rules in each algorithm below are used to infer qualified FDs
in schematic discrepant transformation. These rules are derived
from the inference rules in Appendix A and the propagation rules
P1~P4 in Section 3. These derived rules apply to the qualified
FDs of original relations, and produce the implied qualified FDs
of the transformed relations, avoiding the computation of
qualified FD closures. The rules are complete to compute
reasonable qualified FDs in schematic discrepant transformation.

20

Algorithm INFER_SPLIT: Inference of qualified FDs for a split
operation.

INPUT: Let R(A1, …, An, B) be an original relation, and bi(A1,
…, An), i = 1, …, m, be the transformed relations using split(R,
B). Let F be a set (not necessary a closure) of qualified FDs on
R.
OUTPUT: a set of qualified FDs, G, holding in the set of the
transformed relations {b1, …, bm}.
METHOD: Let X and Y be 2 mixed sets of regular and
qualification attributes from {A1, …, An}, and A ∈ {A1, …, An}.
We compute the qualified FDs in G using the following rules:

(1) If R(X →A) ∈ F, then dom(B)(X →A)∈ G.
(2) If R(X , B→A) ∈ F, then bi(X →A) ∈ G for each bi ∈

dom(B).
(3) If R(X →B) ∈ F and R(Y , B→A) ∈ F, then

dom(B)(X , Y →A) ∈ G. □

Algorithm INFER_UNITE: Inference of qualified FDs for a
unite operation.

INPUT: Let bi(A1, …, An), i = 1, …, m, be original relations,
and R(A1, …, An, B) be the transformed relations using
unite({b1, …, bm}, B). Let F be a set (not necessary a closure) of
qualified FDs holding in the original relations {b1, …, bm}.
OUTPUT: a set of qualified FDs, G, holding in the transformed
relation R.
METHOD: Let X be a mixed set of regular and qualification
attributes from {A1, …, An}, and A ∈{A1, …, An}. We compute
the qualified FDs in G using the following rules:

(1) If dom(B)(X →A) ∈ F, then R(X →A) ∈ G.
(2) If RB(X →A) ∈ F for a set of relations RB ⊂ {b1, …, bm},

then R(Bσ= BR , X →A) ∈ G. □

Algorithm INFER_UNFOLD: Inference of qualified FDs for a
set of unfold operations.

INPUT: Let Ri(A1, …, An, B, C) (i=1,…,l) be original relations,
and Si(A1, …, An, b1, …, bm) be the transformed relations using
unfold(Ri, B, C) for each i=1, …, l. Let F be a set (not necessary
a closure) of qualified FDs holding in the set of the original
relations {R1, …, Rl}.
OUTPUT: a set of qualified FDs, G, holding in the transformed
relations {S1, …, Sl}.
METHOD: Let X , Y and Z be mixed sets of regular and
qualification attributes from {A1, …, An}, and A ∈ {A1, …, An}.

Let R and S be subsets of relations of {R1, …, Rl} and {S1, …,
Sl} respectively; the relations of S are transformed from the
relations of R. We compute the qualified FDs in G using the
following rules:

(1) If R (Bσ={ ib }, X →C) ∈ F, then S (X →bi) ∈ G.
(2) If R (B, X →C) ∈ F or R (X →C) ∈ F, then

S (X →bi) ∈ G for each bi ∈ dom(B).
(3) If R (Bσ={ ib }, X , C→A) ∈ F, then S (X , bi→A) ∈ G.
(4) If R (B, X , C→A) ∈F or R (X , C→A) ∈F, then

S (X , bi→A) ∈ G for each bi ∈ dom(B).
(5) If R (X →A) ∈ F, then S (X →A) ∈ G.
(6) If R (X →B) ∈ F and R (Y , B→A) ∈ F, then

S (X , Y →A) ∈ G.
(7) If R (X →C) ∈ F and R (Y , C→A) ∈ F, then

S (X , Y →A) ∈ G.
(8) If R (X →B) ∈ F, R (Y , B→C) ∈ F and R (Z , C→A) ∈

F, then S (X , Y , Z →A) ∈ G.
(9) If R (X →C) ∈ F, R (Y , C→B) ∈ F and R (Z , B→A) ∈

F, then S (X , Y , Z →A) ∈ G. □

Algorithm INFER_FOLD: Inference of qualified FDs for a set
of fold operations.

INPUT: Let Ri(A1, …, An, b1, …, bm) (i=1,…,l) be original
relations, and Si(A1, …, An, B, C) be the transformed relations
using fold(Ri, B, C) for each i=1, …, l. Let F be the set of (not
necessary a closure) qualified FDs holding in the set of the
original relations {R1, …, Rl}.
OUTPUT: a set of qualified FDs, G, holding in the transformed
relations {S1, …, Sl}.
METHOD: Let X be a mixed set of regular and qualification
attributes from {A1, …, An}, and A ∈ {A1, …, An}. Let R and S
be subsets of relations of {R1, …, Rl} and {S1, …, Sl}
respectively; the relations of S are transformed from the
relations of R. We compute the qualified FDs in G according to
the following rules:

(1) If R (X →bi) ∈ F then S (Bσ={ ib }, X →C) ∈ G.
(2) If R (X , bi→A) ∈ F then S (Bσ={ ib }, X , C→A) ∈ G.
(3) If R (X →A) ∈ F then S (X →A) ∈ G. □

21

