

Compressed Domain Summarization of Digital Video

C.M. Chew1 and M.S. Kankanhalli1

1 School of Computing, National University of Singapore
{chewchor, mohan}@comp.nus.edu.sg

Abstract. Video data is usually voluminous and it is desirable that one be able
to get a quick idea of the content before actually watching a video or download-
ing it from the web. In this paper, we present a video summarization algorithm
that works in the compressed domain, in particular MPEG videos. The algo-
rithm is based on an existing one used in the uncompressed domain. To adapt it
for MPEG videos, we make use of a feature known as DC histogram that can be
extracted from MPEG videos without full decompression. A video summarizer
based on our algorithm is implemented and experiments are conducted to ex-
amine its effectiveness. Results show that the summarizer performs quite well
to user expectations.

1 Introduction

With the recent and rapid advances in multimedia technology and computing power,
digital video is increasingly becoming a popular and valuable information resource.
However, the sheer amount of data in a video when compared with other forms of
media such as text and audio makes management and manipulation very difficult. To
reduce the amount of storage needed, most video clips are compressed into a smaller
size using a compression standard such as MPEG [1, 2].

However, even after going through compression, compressed videos are still too
big to transfer over general-purpose networks such as the Internet. Even if a user has
a complete video clip, he or she may just want to view a summary of the video in-
stead of watching it from the beginning till the end. Thus browsing and summariza-
tion tools that would allow the user to quickly get an idea of the overall content of the
video footage are very useful. This functionality will become very important in the
coming years when TV broadcasts worldwide will be done in a fully digital format.

Much of the research work done on video summarization methods has only fo-
cused on the uncompressed domain [3]-[7]. They cannot be used directly on com-
pressed videos such as MPEG files. An MPEG video will have to be decompressed
back to its original uncompressed form before the summarization can be performed.
This is very time consuming and requires a huge amount of space, which defeats the
original purpose of compressing videos. Moreover recompression back to compressed
form after summarization may result in loss of picture quality due to re-quantization.

In this paper, we propose a video summarization algorithm that operates directly in
the compressed domain. The algorithm uses an adaptive clustering method that has
been employed in the uncompressed domain. This clustering method does not rely on

shot detection techniques which most of the previous work, e.g. [8]-[10], have been
based on. We also show how to extract a feature from MPEG videos without full
frame decompression such that the feature still captures the essential information of
the video frames.

2 Summarization Algorithm

2.1 Clustering Method

The main aim of our summarizer is to analyze a given video clip and extract the im-
portant frames that reflect the content changes of the video. We call these important
frames representative frames (R-frames). Since it is still not possible today for com-
puters to understand the semantics of video images, we will base our summarizer on
low-level features such as color, motion, etc. However, we do not assume that all
low-level features change somewhat abruptly at shot boundaries. Instead we will use
a clustering method to remove redundant frames and retain the important frames. In
particular, we will extend an earlier work [7] and apply the technique described in
that paper to compressed domain videos.

The nature of the spatial distribution of the points corresponding to video frames
can be described as clusters connected by abrupt or gradual changes. So it is possible
to divide a video V into N’ clusters. We call these clusters units. If we represent frame
1 of all the units’ representative frames using Rp1 to RpN’, V can then be described as:

V = U1 O U2 O … O UN’
where

• Ui = { Rpi, Rpi1, …, Rp(i+1) }, i ∈ [1, N’]

• O is the temporal concatenation operation
Since the units are in temporal order, we can define the unit change as the differ-

ence between two consecutive representative frames, i.e.
 Change(Ui) = D(Rpi, Rp(i+1))

In order to extract good representative frames, we should aim to divide the video
into units that have very similar unit changes. This can be described as to minimize:

∑∑
−

=

−

+=

−
1

1

1'

1

'

)()(
N

i

N

ij
ji UChangeUChange

By having units that have very similar unit changes, we are actually dividing the
videos into individual sections whose length corresponds to the amount of content
changes within the particular section. For example, a high action scene is usually
divided into more units than a relatively static scene since the content of the high
action scene changes much quicker. This concept is what we will base our clustering
algorithm on.

Our clustering algorithm works in an iterative fashion. We start initially with all

the frames of the video and iteratively drop frames until the desired result is obtained.
For a given video V with length N, suppose we want to extract N’ representative
frames. The feature of each frame in V is computed first. Then the video is partitioned
in small units whose lengths are all L. All the units are temporally contiguous. For
example, Figure 1 shows the partitioning with L=2 and L=3. So the units for L=3 are
{(0,1,2), (2,3,4), (4,5,6), (6,7,8)}. In each unit, the unit change is computed, which is
the distance between the first frame and the last frame of the unit.

Figure 1: Partitioning a Video into Units

After all the unit changes are computed, these values will form an array of length
K= N/(L-1). Because our objective is to extract representative frames according to
frame content changes, the values in the array do reflect the actual degree of content
change in all the units. The values are then sorted in ascending order. After sorting,
the elements that are located at the beginning represent the frames where there are
small changes, while the units in the later part consist of frames having large changes.

By selecting a ratio 0<r<1, we cluster the array into two clusters according to the
value of unit change. The first cluster comprises of the smallest elements of the array
and its length is K*r. We call this cluster the small-change cluster. The rest of the
elements comprise the large-change cluster.

If the change of a unit belongs to the large-change cluster, we take all of its frames
as part of the current extracted representative frames. If the change of a unit belongs
to the small-change cluster, then we delete all the frames except the first and the last
from the unit. The first and the last frames are retained as part of the current extracted
representative frames. After the deletion process, K*r*(L-2) frames will be deleted.

Suppose the number of frames left is N’’. If N’ is greater than or equal to N’’ then
we have achieved the desired result and we can stop the algorithm. If not, we regroup
all the retained frames as a new video and repeat the last procedure. With the de-
crease in the number of frames after each iteration, small units are consequently clus-
tered together. A unit will physically span across more frames in the original video.
So it will represent a larger range of frame changes. Frames are deleted from the
sequence after each iterative process, so the overall number of frames left will de-
crease each time. Therefore, no matter how small a number may be required, the
algorithm will converge to the desired requirement.

Another characteristic of the clustering method is that it is general, i.e. it can use
any low-level content as a feature to calculate the difference between two frames in a

0 1 2 3 4 5 6 7 8

0 1 2 3

0 1 2 3 4 5 6 7

Frame
Number

Four Units
for L=3

Eight Units
for L=2

video. For example, the feature could be color, motion, shape or texture. The feature
used in our summarizer is discussed in the next section.

After extraction of representative frames from a video, users can make use of a
browsing tool that provides interactive functions for traversal between these frames.
However this process requires a lot of feedback between the user and the computer,
since thousands of representative frames can be generated for an hour of video. This
may be too time consuming for some users and therefore, a grazing view is preferred
in this case, i.e. a video summary is generated from the representative frames which
the user will view in order to get a general idea about the original video.

One way of generating the summary is to output the representative frames sequen-
tially to a new video. However, this approach is not really useful because when the
summary is played at the normal frame rate, users will find it very difficult to grasp
information from it. This is because the pace of the summary will be too fast and
jerky. To solve this problem, representative sequences (R-sequences) are used. An R-
sequence consists of a representative frame plus its several successive frames. The
length of the following frames is called the smoothing factor S. From experiments, it
has been found that the smoothing factor has to be greater than or equal to 5 in order
to obtain a visually pleasing result.

2.2 Feature Extraction

In order to work directly on an MPEG video, we need to find a feature with these
properties: 1) it can be extracted efficiently from the video; and 2) it can capture the
essence of each video frame such that analysis can still be carried out without much
error. In this paper, we will utilize a feature known as DC histogram that is based on
the DC image proposed by B.L. Yeo and Bede Liu [11].

The compression of MPEG video is carried out by dividing each frame of the
video into 8x8 pixel blocks. The pixels in the blocks are transformed into 64 coeffi-
cients using Discrete Cosine Transform. The DC term c(0,0) is related to the pixel
values f(i,j) via the following equation:

∑ ∑
= =

=
7

0

7

0
),(

8
1)0,0(

x y
yxfc

In other words, the value of the DC term is 8 times the average intensity of the
pixel block. If we extract the DC term and subsequently the average intensity of all
the blocks in an image, we can use the average values to form a reduced version of
the original image. This smaller image is known as the DC image.

Although the size of the DC image is only 1/64 of that of the original image, it still
retains significant amount of information. This suggests that scene operations of a
global nature originally performed on the original image can also be applied on the
DC image.

For the sake of efficiency, we will only consider luminance blocks when forming
the DC image. This is because the eye is sensitive to small changes in luminance, but

not in chrominance. Thus we can discard the chrominance information without affect-
ing the quality of the extracted DC image much.

It is trivial to extract a DC image from an I-frame in MPEG since all blocks are in-
tra-coded. The average intensity of each block is 1/8 the DC-coefficient of that block.
However, extracting DC images from P and B frames involves more effort as motion
compensation and differential coding are used in these frames.

To obtain the DC coefficients of a P frame, we need to use the coefficients in the
reference I or P frame. This is illustrated in Figure 2. Consider the current block in a
new P frame. This block can be reconstructed from the information in the reference
block in a previous I or P frame referred to by the motion vector. Thus, by using the
DC coefficients of P1, P2, P3, and P4, the DC coefficient of the current block, Dc,
can be reconstructed by

ehwPDCD
i

iiic += ∑
=

4

1
00)]([

64
1

where 00)]([iPDC refers to the DC coefficient of the block Pi and e is an error term.
In practice, e is found to be small and thus the first term is a good enough approxima-
tion of the desired DC coefficient.

Figure 2: Determining DC coefficient of a P frame

The same technique can also be applied to B frames which are forward-only or
backward-only predicted. For bi-directional frames, two DC coefficients are first
obtained in each prediction direction and the final coefficient value is the average of
the two.

Although DC images are 1/64 the size of the original video frame size, they are
uncompressed and thus takes up a substantial amount of space. For example, a DC
image for a 320 x 240 video frame will occupy 40 x 30 = 1200 bytes. Assuming a
frame rate of 30 fps, the total amount of space required for a 2 hour video is 1200 x
30 x 60 x 60 x 2 = 247.2 MB. This number will be even larger for higher resolution
videos such as DVD and Digital TV.

To reduce the amount of data to be processed, we will use a DC histogram as the
feature for each frame instead of the DC image. The histogram will be divided into 64
bins, i.e. each bin will account for 4 luminance values. Since luminance values ranges
from 0 (black) to 255 (white), we can assume that this range is linear and thus values
close together are similar. The cost of computing the histogram is very low and each

Reference

Block Current
Block

P1 P2

P3 P4

hh

h h (∆x, ∆y)

frame now only takes up 64 x 2 = 128 bytes (assuming a 16-bit integer is used for the
value of each histogram bin) regardless of the frame size. So a 2 hour video will only
occupy 128 x 30 x 60 x 60 x 2 = 26.4 MB, a figure that average computers nowadays
can handle quite easily. To calculate the difference between two histograms, the sum
of the absolute bin-to-bin difference is taken.

3 Experimental Results

Evaluating the quality of a video summary is difficult as the factors to consider are
highly complex and difficult to quantify computationally. Some methods based on
shot detection have used the number of shots detected as their metric. However, as
our algorithm is not based on shot detection, this metric cannot be used for our sum-
marizer. Since there is no absolute measure of summarization quality available today,
we decide to measure the quality of our summaries by user questioning.

For the experiment, we used 10 persons as our test subjects. Three video summa-
ries generated using our summarizer were used as the test videos. Information about
the summaries is shown in Table 1. P refers to the summarization percentage, L the
unit length, r the clustering ratio and S the smoothing factor applied.

Video Genre Original

Length
Summarization
Parameters

Summary
Length

A Movie 1h 59m 34s P=1.5%, L=5,
r=0.3, S=5

5m 10s

B News 21m 20s P=2%, L=12,
r=0.3, S=20

2m 17s

C Movie 2h 28m 32s P=0.2%, L=11,
r=0.3, S=20

1m 51s

Table 1: Details of Video Clips used for User Evaluation

Before viewing the video summaries, the test subjects were given some informa-
tion about each summary such as the genre and the aim of the summary. After view-
ing each summary, each person was then asked to rate the summary in four categories
(Clarity, Conciseness, Coherence and Overall Quality) on a scale of 1 to 7, corre-
sponding to worst and best respectively. At the end of the questionnaire, the person is
then requested to rate the automatically generated summaries against their opinions of
human-generated ones. Table 2 shows the average scores of the evaluation exercise.

Video Clarity Conciseness Coherence Overall

Quality
A 5.2 5.7 4.8 5.3

B 6.0 6.2 5.8 6.0

C 5.2 5.2 5.2 5.2

Average 5.5 5.7 5.3 5.5

Table 2: Results of User Evaluation

From the table, we can see that on the whole, the summaries performed quite well
with scores of over 5 in all but one category. Looking at the performance of each
individual summary, Video A scored highly in conciseness but got the lowest coher-
ence score among the three videos. This is expected since the aim of the summary is
to portray the complete story of the original video as much as possible to the viewer
within the 5 minutes. The smoothing factor has to be set to a relatively low value of 5
in order to keep the length of the summary within the desired length. This results in a
certain degree of choppiness when viewing the video, thus affecting the coherence
score.

Video B scored the highest in all categories. A news programme usually cycles be-
tween the news presenter and the video footage of the story currently presented. The
luminance difference between these two kinds of scenes is usually quite large, so our
video summarizer was able to extract all the segments in the programme. Coupled
with the fact that a large smoothing factor of 20 was used, the resultant summary was
very clear and smooth flowing.

Video C’s score was the same for all the categories. Since the aim of this summary
is to give a general idea of the movie’s content rather than portraying the whole plot
(which is the case for the summary of Video A), the parameters used for summariza-
tion (smaller percentage, larger unit size and smoothing factor) were different from
those used for Video A. Therefore, the amount of content covered is less (accounting
for the lower conciseness score) but the summary is more fluid (accounting for the
higher coherence score).

The last question of the survey asked the viewer to rate the automatically generated
summaries against their opinions of human-generated ones. The average score for this
question is 5.00 (out of a maximum of 7), which means that the users agree to a lim-
ited extent that the quality of the summaries is comparable to that of human-generated
ones. This is quite a good score for an automated summarizer. Since our summarizer
is still based on a low-level feature, it is expected that the automatically generated
summaries are still inferior to human-generated summaries that are based on seman-
tics.

4 Summary

We have presented a video summarization algorithm that operates directly in the
compressed domain (MPEG videos) without employing shot detection techniques.
We extract the DC histogram feature from each frame of the MPEG video and use it
together with an adaptive clustering method to extract representative frames to form
the summary. User surveys conducted have shown encouraging results.

An area for further investigation is the use of other features such as motion vec-
tors. We have explained that our clustering method is general, i.e. it can use any low-
level content of a video as the feature for summarization. Therefore it would be inter-
esting to study how different features affect the quality of summarization and the
effectiveness of these features in the various genres of video.

References

[1] ISO/IEC 11172-2, Coding of Moving Pictures and Associated Audio for Digital Storage
Media at up to about 1.5 Mbit/s, Part 2: Video.

[2] ISO/IEC 13818-2, Generic Coding of Moving Pictures and Associated Audio Information,
Part 2: Video.

[3] JungHwan Oh, Kien A. Hua, “An Efficient Technique for Summarizing Videos Using
Visual Contents”, Multimedia and Expo, 2000. ICME 2000. IEEE International Confer-
ence, Vol. 2, pg 1167 – 1170, Jul 2000.

[4] Yihong Gong, Xin Liu, “Generating Optimal Video Summaries”, Multimedia and Expo,
2000. ICME 2000. IEEE International Conference, Vol. 3, pg 1559 – 1562, Jul 2000.

[5] D. DeMenthon, V. Kobla, D.Doermann, “Video Summarization by Curve Simplification”,
Technical Report LAMP-TR-018, CS-TR-3916, University of Maryland, College Park,
1998.

[6] Rainer Leinhart, Silvia Pfeiffer, Wolfgang Effelsberg, “Video Abstracting,” Communica-
tions of the ACM, Vol. 40, No. 12, Dec 1997.

[7] X. Sun, M. Kankanhalli, “Video Summarization Using R-Sequences”, Journal of Real-
Time Imaging, Vol. 6, No. 6, pp. 449-459, Dec 2000.

[8] N. Gamaz, X. Huang, S. Panchanathan, “Scene Change Detection in MPEG Domain”,
Image Analysis and Interpretation, IEEE Southwest Symposium, pg 12 – 17, Apr 1998.

[9] Ali M Dawood, Mohammed Ghanbari, “Clear Scene Cut Detection Directly from MPEG
Bit Streams”, IEEE Image Processing and its Applications, No. 465, Vol. 1, pg 285 – 289,
Jul 1999.

[10] Jongho Nang, Seungwook Hong, Youngin Ihm, “An Efficient Video Segmentation
Scheme for MPEG Video Stream using Macroblock Information”, 7th ACM international
conference on Multimedia, pg 23 – 26, Oct 1999.

[11] B. L. Yeo and B. Liu, “Rapid Scene Analysis on Compressed Video,” IEEE Transactions
on Circuits and Systems for Video Technology, Vol. 5, No. 6, Dec 1995.

[12] H.S. Chang, S. Sull, and S.U. Lee, “Efficient Video Indexing Scheme for Content-based
Retrieval”, IEEE Transactions on Circuits and Systems for Video Technology, Vol. 9, No.
8, pp. 1269-1279, Dec 1999.

[13] A. Hanjalic and H.J. Zhang, “An Integrated Scheme for Automatic Video Abstraction
Scheme Based on Unsupervised Cluster-validity Analysis”, IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 9, No. 8, pp. 1280-1289, Dec 1999.

