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Abstract—Companies are increasingly moving their data processing to the cloud, for reasons of cost, scalability, and
convenience, among others. However, hosting multiple applications and storage systems on the same cloud introduces resource
sharing and heterogeneous data processing challenges due to the variety of resource usage patterns employed, the variety
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1 INTRODUCTION

THERE is increasing interest for companies to de-
ploy their business systems on the cloud. The

typical expectation is that the cloud computing service
provider will provision computing resources (e.g.,
processors, storage, software, and possibly even ap-
plications) on-demand over the network. In the same
way that the electricity distribution grid revolution-
ized business use of electricity by allowing com-
panies to access electricity without investing in the
infrastructure to produce it, cloud computing allows
companies to access powerful computing resources
without requiring large IT investments from the com-
panies. Small and medium companies can deploy
their business systems on the public cloud, hosted by
service providers such as Google or Amazon, and thus
eliminate the costs of ownership. Large corporations
can build an on-premise private cloud to consolidate
computing resources, and thus reduce the overall cost
of operations.

A typical first step for deploying a business system
in the cloud is to move back-end data management to
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the cloud. Thus, cloud infrastructures have to support
data management, for multiple applications and busi-
ness units, in an efficient and scalable manner. The
standard way to address this requirement is through
an elastic scaling-out approach, namely, on-demand
provision of more server instances for speeding up
data processing tasks or handling increasing work-
loads. Therefore, a data management system is suit-
able for cloud deployment only if it is architecturally
designed to leverage the elastic scaling-out feature.
Initially, only distributed file systems (e.g., GFS [1]
and HDFS [2]) and massive parallel processing (MPP)
analytical database systems [3] could readily serve
as the basis for cloud deployment. With advances
in database sharding and NoSQL storage systems
(such as BigTable [4], HBase [5] and Cassandra [6]),
additional options for cloud deployment are now
available. Today, there continues to be a great deal of
effort towards the study of the design, architecture,
and algorithms for building scalable data manage-
ment systems [3], [7], [8], [9], [10]. We expect that in
the future, more back-end scale-out possibilities will
be developed, and hence, even more business systems
will migrate to the cloud environment.

Notwithstanding the advantages of deploying busi-
ness systems in the cloud, hosting multiple data stor-
age systems in the same cloud introduces issues of
resource sharing and heterogeneous data processing
[11]. The cloud has to manage the variety of storage
resource usage patterns (e.g., large file system block
size vs. small block size), the variety of data managed
(e.g., structured data, unstructured data, or media
data such as digital maps and images), and the variety
of programming interfaces (e.g., SQL, MapReduce,
key-value retrieval) presented by different systems.
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This article explores the challenges and opportuni-
ties in the design and implementation of data man-
agement systems on the cloud that can handle the
variety in storage usage patterns, the variety of data
managed, and the variety of programming interfaces.
We first consider the shared-nothing architecture, an
architecture currently followed by data management
systems for cloud deployment. We then explore the
challenges of hosting multiple architecturally similar
data management systems on the cloud and sug-
gest directions towards possible solutions. Finally, we
introduce epiC, a system that supports transparent
resource management and heterogeneous data pro-
cessing for federated cloud data management systems
through a framework design.

The rest of the paper is organized as follows. Sec-
tion 2 presents the physical characteristics of the cloud
environment and the shared-nothing architecture for
data management systems hosted on the cloud. Sec-
tion 3 presents the issues of deploying multiple da-
ta management systems on the cloud and desired
features for such federated data management. We
also discuss why such features are either missing or
incompletely supported in current data management
systems. Section 4 overviews the epiC system, fol-
lowed by conclusion in Section 5.

2 CHARACTERISTICS OF CLOUD DATA
MANAGEMENT SYSTEMS

In this section, we first present the physical charac-
teristics of cloud computing environments and the
architecture of a data management system that is
suitable for cloud deployment. Afterwards, we dis-
cuss the desired features in providing federated data
management service in the cloud.

2.1 Characteristics of Cloud Computing
Under the hood, the cloud computing service
provider (e.g., Google, Amazon or an IT department
of an organization) manages a large number of com-
puters interconnected by the network for on-demand
provisioning presented later. Those computers are
hosted either inside a single data center or among
multiple data centers connected by a wide area net-
work (WAN). The service provider models a single
data center as a ‘big’ virtual computer and multiple
data centers as a networked virtual computer [12]. The
virtual computer (big or networked) is then virtual-
ized as a set of virtual server instances of different
types based on their computing power, such as CPU
and storage capacity. For example, the Amazon EC2
cloud offering provides six different instance types.
The most powerful instance type is equipped with 15
GB memory and 8 virtual cores [13].

The service provider serves its customers with vir-
tual server instances based on requests for the in-
stance type and instance number. Usually, the service

provider offers a fixed number of instance types to
choose from. But, there is no a priori limit on the
maximum number of virtual server instances that
customers can request. The actual limit (called a soft
limit) depends on the capacity of the cloud and varies
over time

2.2 The Architecture of Scalable Cloud Data Man-
agement Systems

There are two approaches to scale data management
systems deployed on the cloud: scale up and scale out.
In the scale-up approach, the company deploys the
database system on a single virtual server instance.
When the workload increases, the business upgrades
the virtual server instance to a more powerful type.
In the scale-out approach, the company deploys the
database on a set of virtual server instances of the
same instance type. Scaling involves requesting more
virtual server instances for processing the increased
workload. Since the service provider poses a fixed
limit on the instance types that one can choose and
merely a soft limit on the number of virtual server
instances that one can request, the scale-out approach
is usually preferred. We will focus on scale-out in this
paper.

Parallelism has been studied extensively in the
database community. A standard approach to par-
allelism is called shared-nothing, and this has turned
out to be suitable for building scale-out data manage-
ment systems [14]. The shared-nothing architecture
decomposes the data management system into two
components: master and worker. A typical shared-
nothing data management system consists of a single
master server and any number (at least theoretically)
of worker servers. Worker servers are independent
from each other. Each worker server independently
serves read and write requests to its local data without
requiring help from other worker servers. The master
server coordinates the worker servers to give users
the illusion of data distribution transparency. Figure
1 presents a typical shared-nothing architecture. The
shared-nothing architecture has two main advantages.
First, it can leverage the elastic scaling out capability
provided by cloud services to handle increased work-
load by adding more worker servers to the system
without adversely affecting the higher level applica-
tions. Second, since worker servers are independent
of each other, the whole data management system
(also called a cluster) is highly resilient to worker
failures. When a worker fails, only data stored on
that worker need to be recovered. Data stored on
other workers are not affected. Furthermore, one can
speed up the recovery process by involving several
”healthy” workers in the recovery process, with each
healthy worker recovering over a portion of data
stored on the failed worker.

As an example, GFS [1] (and its corresponding open
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Fig. 1. The Shared-nothing Architecture
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Fig. 2. The HDFS Architecture. F1, F2 and F3 are
replicated files.

source implementation HDFS) is a typical shared-
nothing storage system. The GFS system provides a
service of reading and writing files of arbitrary size.
The system consists of a single master and a number
of slaves (i.e., workers). A file is stored as a number
of fixed size blocks, which are stored on the slaves.
Each slave is capable of reading and writing file blocks
stored on that slave. The master is responsible for
maintaining the meta-information (e.g., file name, file
size, block locations) of each file. Figure 2 shows the
architecture of HDFS system.

The shared-nothing architecture is not only useful
for building scalable storage systems but also suitable
for building a distributed data processing system.
Similar to a storage system, a distributed data pro-
cessing system also consists of a single master and
any number of independent workers. Each worker is
capable of performing a query or a data processing
task independently. For a data processing task, the
master coordinates the workers to complete the data
processing task.

Shared-nothing architectures are commonly used in
cloud data management, and we will focus on these
for this paper. In other words, we assume that we
have a number of independent workers serving local
requests and a master that coordinates those workers.

3 FEDERATION CHALLENGES IN CLOUD
DATA MANAGEMENT

A cloud system comprises a set of perfectly reliable,
identical independent workers, collectively dedicated
to the completion of one task of interest. While this
simple picture is useful in many contexts, it is inaccu-
rate when it comes to actual deployment of a cloud
system. Relaxing each of the simplifying assumptions

is a challenge, as we describe in this section. In the
next three subsections we respectively consider the
challenges due to workers not being identical, due to
their having to accomplish a heterogeneous collection
of tasks, and due to their being less than perfectly
reliable.

3.1 Asymmetric Hardware Capability

It is typical to assume, in scale-out systems, that all
nodes are identical in capability. While this situation
may be true for a short while following a new cloud
installation, it is unlikely to remain true over time. It
is often the case that a cloud owner will add services
to the cloud over time, and in doing so, s/he will
purchase new hardware. If even only a few months
have gone by since the previous purchase, technology
will likely have progressed, and the new nodes may
have better clock speeds, more cache or memory,
and so on. It is likely the cloud owner will desire
to purchase newer models of hardware available at
the time of purchase, rather than try to replicate a
previous purchase of older hardware. At the same
time, the cloud owner is unlikely to retire the older
model nodes until their useful life is over. Hence, we
should not expect that individual nodes in a cloud are
identical in practice.

In the classic map-reduce paradigm, there is a
synchronization point at the reduce phase, which
requires that all mappers complete their tasks before
the reduce phase begins. If the nodes implementing
the map phase are heterogeneous in their capabilities,
then this heterogeneity must be taken into account
when distributing tasks across the nodes so as to
optimize the overall completion time for the map and
reduce phases.

3.2 Dynamic Resource Sharing

It is well-recognized that there are two major classes
of data management applications: transactional data
applications and analytical data applications. Compa-
nies develop transactional data applications for their
businesses needs (e.g., airline ticket reservations).
Transactional data applications tend to have a large
number of database reads and writes. Even though
the total number of database reads and writes may
be large, each read tends to process only a small
number of records (a thousand records per read is
considered large in most companies) and each write
typically only inserts a single record or a small num-
ber of records into the database [15]. Companies build
analytical data applications to derive insights from the
business data for decision making. Such applications
favor periodic reads and writes performed in batches.
Each query or loading operation can involve retrieval
or insertion of a huge number of records (millions or
billions).
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To support the two kinds of data applications, two
kinds of data management systems are built: transac-
tional and analytical. To achieve good performance,
both types of data management systems persist data
to the underlying file systems or storage devices (e.g.,
hard disks) in different ways. Analytical data man-
agement systems favor sequential reads and writes of
a large number of records and thus tend to employ a
large file-system block size (tens or hundreds of MB
typically) for excellent throughput. On the other hand,
transactional data management systems favor random
reads and writes of a small number of records and
thus, they usually adopt a small file system block size
(tens of KB at most) to reduce data transmission time
and latency.

Traditionally, the needs of these two different class-
es of applications are deemed so disparate that they
cannot be run efficiently on the same machine. For the
same reasons, deploying both transactional and ana-
lytical data management systems on the same cloud
introduces similar conflicts in storage resource usage.
In the shared-nothing architecture, if one allows both
kinds of data management systems to share the same
set of workers by employing a small file system
block size, then one can potentially achieve good
resource utilization (space freed by one system can
be reclaimed by another system). However, the per-
formance of the analytical data management system
will be suboptimal. This is because the large number
of insertions, deletions and updates introduced by the
transactional database will fragment data files stored
on hard disks over time and therefore, prevent the
analytical data management system from claiming
large consecutive storage blocks. On the other hand,
if one separates the two data management systems by
placing them on different workers, better performance
can be achieved as the data management systems
are effectively isolated from each other. However, the
overall resource utilization is likely to be low since
the storage space released by one system cannot be
reused by the other.

Given that different kinds of data management
systems favor different resource usage patterns, com-
panies must deploy different file systems on the cloud
for different data-persistence requirements. Each file
system is dedicated to a specific storage system.
Companies must also employ a resource-management
system for dynamic resource sharing between those
file systems. The resource-management system should
balance two conflicting goals: performance isolation –
ensuring that each file system operates on a dedicated
storage space without being affected by other file
systems – and resource utilization – ensuring storage
space released by one file system can be reclaimed by
another file system.

There are a few systems that support dynamic
resource sharing on cloud environment. Cluster man-
agement systems such as Mesos [16] guarantee perfor-

mance isolation on computing devices (e.g., CPU and
memory). However, its performance isolation capabil-
ities on storage devices (e.g., hard disks, SSDs) is only
in the experimental stages. The project most closely
related to this topic is HDFS federation [17]. This
system allows companies to deploy multiple HDFS
file systems on the same cloud. It allows the same data
node (i.e., a worker server of HDFS storing file blocks)
to be shared among multiple HDFS file systems.
However, the system does not provide performance
isolation. A single system cannot gain exclusive access
to the underlying storage device.

In addition to sharing a computer node between
different storage systems, there is another kind of
resource sharing in an enterprise cloud environment,
which is sharing a computer node between a compu-
tation framework such as MapReduce and a storage
system such as GFS. In the latter case, a compute
node contributes a fixed number of computing units
(called slots) to the computation framework (e.g.,
MapReduce) for running tasks and a set of storage
devices ( e.g., disks) to the storage system for storing
and retrieving data.

It is well-known that data retrieval or scanning
performance dominates the performance of large-
scale data analytical jobs. Thus, the aforementioned
resource sharing scheme introduces an issue of how
to efficiently fetch data from the storage system to the
computation framework for processing. The current s-
tate of the art approach for handling this problem is to
increase data-locality during data processing, namely,
launching as many tasks on compute nodes that have
those tasks’ input as possible. Since data is primarily
stored on disks, data locality is usually realized at the
disk level (called disk locality). However, due to the
advances in networking technology, the disk-locality
approach may not work well in an in-house business
cloud environment. Recent studies have shown that,
with improved commodity network, the read band-
width from local disk is only slightly (about 8%) faster
than the read bandwidth from a remote disk hosted in
the same rack [18]. Furthermore, when a data center
employs bisection topology [19], the inter-rack read
bandwidth is equal to the intra-rack read bandwidth.
As a result, the performance of reading remote disks
will be comparable to the performance of reading
local disks, meaning the disk-locality approach may
not deliver better data retrieval performance.

However, the principle of data-locality to improve
data retrieval performance still applies. Instead of fo-
cusing on disk-locality, we need to focus on memory-
locality. That is, to read data from local memory in-
stead of from remote memory and disks, since reading
data from local memory is at least two orders of
magnitude faster than reading data from disks (local
or remote) or remote memory, and the performance
gap is unlikely to be affected by advances in network
technology [18], [20].
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To achieve memory-locality, two problems need to
be resolved. First, can data be effectively held in the
memory of the cluster? Second, how can we schedule
tasks to increase memory-locality? To solve the first
problem, a recent proposal suggests a RAMCloud ap-
proach, namely using memory as the primary storage
device to store all input data and only using disks
for backup or archival purposes [21]. Unfortunately,
given that companies produce data at a tremendous
rate these days and the capacity of disks in today’s
enterprise cloud environment is several orders of
magnitude larger than the size of the memory, it is not
viable to entirely replace the disks with memory. For
the second problem, a recent work attempts to adopt
a dynamical data repartitioning technique to reduce
the inter-memory data transmission for repeated jobs
[22].

In this article, we argue that a better and more
feasible approach for handling the memory-capacity
problem is to use memory as a cache. Instead of
holding all input data in memory at any time (sug-
gested by RAMCloud), the caching scheme caches
data (both input data and intermediate data produced
by analytical jobs) in memory as much as possible,
and employs an eviction strategy to make space for
newly arrived or computed data. The cache is adap-
tive and designed to facilitate data scheduling. Based
on the query workload, the cache management sys-
tem actively redistributes the cached data to increase
memory-locality by ensuring most tasks can read data
from local memory instead of remote memory or
disks. The caching scheme presents several challenges
including scalable meta data management (i.e., how to
effectively maintain location information for cached
data as the data may be distributed) and an eviction
strategy designed for achieving better job-completion
performance instead of high hit ratio. These chal-
lenges are not well studied so far.

3.2.1 Diversity in Node Query Interfaces
Given that cloud storage systems employ a shared-
nothing architecture, data access requests are actual-
ly performed by storage workers. Different storage
workers present different query interfaces. For exam-
ple, a distributed file system worker exposes a byte-
oriented interface for users to read and write bytes
from file blocks; and a NoSQL store worker exposes
a key-value interface for accessing key-value pairs.
To facilitate programming, application programmers
often wrap these native low-level query interface into
a high-level data processing interface. In this section,
we describe the desired features that such a high-level
interface should support if the local data is expected to
be processed by a distributed data processing system.

There are two kinds of query interfaces proposed
so far: record-oriented and set-oriented. A record-
oriented query interface presents users a set of in-
terfaces (i.e., functions) with well defined semantics.

The input of each function is a single record. Users
specify the data processing logic in the body of the
function. The return value of the function could be a
record, a scalar value, or a list of records, depending
on the semantics of that function. A set-oriented query
interface presents a collection of pre-defined operators
to users. Each operator takes a single set or a fixed
number of sets of records as input and produces a
set of records as the output. Users specify their data
processing tasks by composing those operators. Here,
the definition of a set is similar to the definition of a
set in mathematics, except that duplicate records are
permitted in some systems.

The advantage of the record-oriented approach is
that the query interface allows users to implement
arbitrary data-processing logic. There is no hard limit.
A disadvantage of the record-oriented approach is
that the query interface is not operationally closed.
A function is operationally closed if the inputs and
outputs are of the same type. For example, the integer
arithmetic operations such as plus and minus are
operationally closed since both the inputs and outputs
of those operators are all integers. If query interfaces
are operationally closed, one can easily compose an
arbitrary number of functions by piping the output
of one function to another and thus write queries and
data processing tasks concisely. Furthermore, with op-
erational closure a query can be optimized by a query
planner to automatically generate a good evaluation
order. This capability further reduces the burden for
users to optimize the query performance.

The advantage of the set-oriented approach is that
the query interface is operationally closed. The inputs
and output of each operator are all sets. Howev-
er, a disadvantage of set-oriented approach is that
the queries and data-processing tasks that users can
express are limited by the operators available. For
example, if one wants to partition a dataset for parallel
processing and the partition operator is missing in the
interface, then the user has no systematic way to per-
form that task and has to resort to an ad-hoc solution.
Another disadvantage of the set-oriented approach
is that the programming model does not provide
a way for users to customize the behavior of pre-
defined operators. For example, if the built-in filtering
operator is deemed inappropriate for an application’s
filtering logic, one may want to implement his or her
very own filtering logic to replace the default filtering
operator. Such modification is typically not allowed or
difficult to do in set-oriented querying systems.

Given that there is an unbounded number of po-
tential useful operators desired, we argue that the
ideal query interface for per-node query processing
should be a mixture of the record-oriented and set-
oriented styles with capabilities for expanding the
built-in operator set. The query interface should pro-
vide two collections of APIs: a record-oriented API for
customizing the behavior of the built-in operators, an
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extension API for introducing user-defined operators
to the system and a set-oriented API for composition
of both built-in and user-defined operators. To evalu-
ate a query, the optimizer should be able to generate
query plans for queries composed by a mixture of
built-in operators and user-defined operators.

The desired hybrid query interface and query opti-
mization technique are missing in the current systems.
Existing systems only offer a single query interface,
which is either record-oriented or set-oriented. The
MapReduce system employs a record-oriented query
interface. Each local query processing task is either
performed in a map or reduce function. The signa-
tures of the two functions are as follows [23].

map (k1, v1) → list(k2, v2)

reduce (k2,list(v2)) → list(v2)

It is clear that the interface is not operationally
closed. The input and output of map or reduce func-
tions are of different types. Therefore, it is impos-
sible to directly feed the output of map functions
to reduce functions. Actually, the major service of-
fered by the MapReduce runtime system (i.e., sorting,
shuffling and merging) is to transform the output
format of mappers to the input format of reducer-
s. Therefore, the runtime system implicitly enforces
an evaluation order between mappers and reducers.
Complex queries are performed by chaining a number
of MapReduce jobs. This evaluation strategy often
results in sub-optimal performance [9], [24], [25], [26].

All shared-nothing parallel databases employ a set-
oriented query interface for local data processing.
Even though the idea of employing user-defined func-
tions for parameterizing built-in operators such as
selection and aggregations is well discussed in the
database community, such a feature is still missing in
most database systems [27]. In addition, the support
for user-defined functions is incomplete in all com-
mercial database systems we are familiar with. Addi-
tionally, not every operator is allowed to be parame-
terized. For example, to the best of our knowledge, no
commercial database system supports a user-defined
join function, even though it is allowed in theory
[28]. Furthermore, no commercial database system
supports user defined composable operators.

3.2.2 Diversity in the System-Level Query Interface
As discussed previously, in addition to structured
data stored in relational data management systems,
companies also produce unstructured data stored in
distributed file systems and other business data stored
in NoSQL storage systems. These storage systems
present fundamentally different data access methods,
ranging from simple byte reading (file systems), and
key-value retrieval (NoSQL stores) to relational query
(SQL databases). If one designs the data processing

system to be general and thus only assumes the
underlying storage system provides a simple byte-
oriented or key-value retrieval interface, the resulting
system may lose the chance of leveraging advanced
query processing provided by SQL database systems.
As a result, users may need to manually perform
query processing at the application level. If one de-
signs the data processing system to use an advanced
query interface for data retrieval, it will be difficult
for the system to retrieve data from file systems or
NoSQL stores as many advanced query features are
missing in those systems. As mentioned previously, to
process or analyze data stored in the cloud, a shared-
nothing distributed data processing system is used.
To protect the investment of businesses in building
analytical data applications, the distributed data pro-
cessing system should be able to process data stored
inside a single storage system (called intra-system
data processing) and within a set of storage systems
(called inter-system data processing). The ability to
support both intra and inter-system query processing
allows all business analytical data applications to be
built under the same framework. Thus, the knowledge
and experiences of tuning and programming the data
processing systems can be preserved, captured, and
shared among developers.

Since both the data processing and storage sys-
tems employ shared-nothing architectures, the query-
processing or data-storage tasks are decomposed into
independent workers. This decomposition poses a
major problem in designing effective data retrieval
interfaces between the data-processing workers and
the data-storage workers. Since there is a variety of
query interfaces that can be exposed by a data-storage
worker, ranging from record-oriented to set-oriented,
to enable data processing over those interfaces, the
data processing system should avoid introducing any
preference (record or set oriented) in its programming
model. Instead, the data processing system should
only offer the worker as a “placeholder” for hosting
the user’s data processing program and let the user
choose the right interface to retrieve data from the
storage worker. In summary, an ideal cloud data pro-
cessing system should be independent of any specific
query models and enable users to write query-aware
data-processing workers by fully leveraging query
facilities offered by the underlying storage systems.

Current data-processing systems, such as MapRe-
duce and shared-nothing parallel databases, do
not support the desired model-independent data-
processing style. The MapReduce system enforces a
record-oriented approach in programming the map
task and reduce task. If the underlying storage system
features a powerful SQL engine, one must develop
a reader to bridge to the SQL interface from the
record-oriented interface. The bridging can only be
performed at the map side since, according to the
programming model, only map tasks can take input
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from readers, while reduce tasks cannot. As a result,
systems such as HadoopDB [8] must shift part of the
relational query processing tasks to the hand-coded
MapReduce programs even though the underlying
storage worker is capable of performing those queries.

Shared-nothing parallel databases, on the other
hand, assume that each storage worker exposes a SQL
query interface and therefore focus on coordination of
those independent SQL engines. As a result, it is ex-
tremely difficult to use the system for analyzing data
stored in distributed file systems or NoSQL stores,
as workers of those systems do not expose a SQL
interface. To process data stored in system without
SQL support, one must employ an ETL system to
extract data out of the original systems and load the
extracted data into a parallel database for analysis.
In many cases, the ETL process is either laborious
or costly [29]. Even though some recent work partly
reduces the loading overhead by pushing certain data
processing logic to the native data processing systems,
such as MapReduce to perform, in general, such data
movement between different data processing systems
(e.g., databases, MapReduce) during data processing
is unavoidable [30].

3.3 Reliability
Not all nodes will be perfectly reliable. This impacts
both the synchronization model and possible data
replication, as we consider in the following two sub-
sections, respectively.

3.3.1 Parallelism and Recovery
There are three parallelism models that can be used
to build a distributed data processing system on top
of a shared-nothing architecture, namely fine-grained,
coarse-grained and embarrassing parallelism. These
three parallelism models differ in the programming
model, communication pattern and recovery and thus
are suitable for different applications. The embar-
rassing parallelism model assumes that there is no
communication between the execution of subtasks
and the synchronization between up-stream tasks and
down-stream tasks is achieved by blocking, namely
the down-stream tasks wait for the completion of all
up-stream tasks to start. An example of such paral-
lelism model is MapReduce. There is no inter-task
communication between map tasks (i.e., up-stream
tasks) or reduce tasks (i.e., down-stream tasks). But
the reduce function must wait for the completion of all
map tasks to start. The fine-grained parallelism model
assumes that the subtasks have to communicate in
order to complete the whole computation and syn-
chronization is required after a majority, but not all,
tasks are completed. An example of such parallelis-
m model is Pregel. Coarse-grained parallel systems
are in between the two extremes. The computational
requirement of an application makes one parallelism

model more suitable than the other. For example,
for graph processing and iterative processing, fine-
grained parallelism is more efficient, while for simple
non-repetitive processing, embarrassing parallelism is
more efficient. Most systems have been designed to
adopt one parallelism model for efficiency and ease
of design.

With an increasing number of compute nodes as the
data processing systems scale out to improve paral-
lelism, the likelihood of node failure also increases.
Existing systems employ either a checkpoint based
recovery method or a confined recovery method. The
checkpoint based recovery method requires each com-
pute node to periodically and synchronously write its
data to the local hard disk as a checkpoint. It requires
all the active compute nodes to rollback to the most
recent checkpoint when there is a failure, and uses
an unused active compute node to replace the failed
node and let all the nodes synchronously re-execute
all the major steps. The confined recovery method
will not rollback all active compute nodes as in the
checkpoint based recovery method; instead, it requires
every compute node to cache all messages sent to
the other nodes, and uses an unused active node to
replace the failed node. In this case, only the new node
will re-execute all major steps. Other active nodes
will just resend the messages to the new node. Since
checkpointing and recovery are expensive processes,
there have been recent efforts in trying to reduce
or do away with checkpointing whenever possible,
such as decomposing a task into subtasks that have
few dependencies between them, and in speeding up
recovery by relying on designs such as leveraging a
precomputed recovery index to distribute the recov-
ery process.

3.3.2 Consistency in Data Replication
All cloud storage systems adopt data replication for
high availability. Data replication also fits the shared-
nothing architecture well, as workers can indepen-
dently serve the local data and replicate the data
with the coordination of the master server. However,
the CAP theorem states that, for data replication
systems, when the network is partitioned, one can
only achieve the ’C’ (consistency) or ‘A’ (availability)
but not both [31]. Here, consistency means that reads
from the primary copy of the data and any replicas
always return the same result; availability means that
reads and writes always succeed. Since availability is
always desired, in practice, most storage systems go
for availability by adopting weaker data consistency
[6], [7], [32].

There are three reasons that we need to rethink
the weak consistency solution. First, some business
applications such as financial systems cannot work
with weak consistency storage systems. In such sys-
tems, a strong data consistency guarantee is necessary.
Second, the proof of the CAP theorem makes an
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assumption that reading and writing on replicas are
permitted. The reason for allowing such permission
is to improve performance. The CAP theorem was
originally designed for storage systems deployed on
a wide area network. In such a setting, allowing
reading and writing on a replica closest to the us-
er’s computer can dramatically improve performance.
However, for a cloud system hosted at a single data
center, the service provider typically adopts a tree
structured topology for connecting computer servers.
The number of hops between each pair of servers
is bounded and small (2 or 3 hops at most in most
offerings). Therefore, the latency of reading data from
its primary copy is not significantly greater than the
latency of reading the closest replica. As a result, it
is possible to always perform read and write requests
on the primary copy and only use replicas for fail-
over. This primary-copy-always solution breaks the
condition that the CAP theorem assumes. Third, tradi-
tionally, the backend storage system is considered to
be the only software system that needs to be designed
for fault tolerance. Data applications do not need to
handle failures. However, we have observed that in
the cloud software stack, each tier is capable of han-
dling machine failures. For example, the MapReduce
system is designed to be highly resilient to worker
failures and network partitioning. When such a fault
is detected, the MapReduce system will re-execute the
failed tasks on healthy worker nodes. Therefore, it is
possible for the storage system to delegate part of the
fail-over task to the application framework and thus
entirely bypass the CAP problem. For example, when
the storage system detects certain primary copies or
replicas are lost due to network partition, it notifies
the upper-level MapReduce system to re-execute tasks
that access those lost copies.

In summary, in a federated setting, a framework
design that allows the designer of each storage system
to choose the right solution for tradeoff between
consistency and availability is preferable to the weak
consistency solution.

4 THE EPIC SYSTEM

In this section, we provide a brief description of the
epiC system [10], [33], which has been designed as an
attempt to provide the missing features of resource
management and heterogeneous data processing for
cloud federated data management and to support
various granularity of parallelism, from fine-grained
to embarrassingly parallelism. Fig. 3 shows the archi-
tecture of the epiC system. The epiC system has five
major novel components: E3 concurrent programming
framework, trusted data service, ES2 storage manager,
virtual block service, and performance monitoring
module.

At the lowest level, the epiC system provides a
resource management framework (called virtual block
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Fig. 3. The Architecture of epiC system

service) for managing storage devices. The virtual
block service manages all storage devices (e.g., disks
and memory) and visualizes those devices as a set of
virtual blocks. Users can deploy multiple distributed
file systems on the same cloud. For each distribut-
ed file system, users allocate virtual blocks through
virtual block services for that file system to store
data. Currently, epiC supports both HDFS and its
key-value storage system, ES2 [34], to store data on
virtual blocks. When one virtual block is allocated to
a specific distributed file system, other distributed file
system cannot access it. Thus, in epiC, I/O perfor-
mance isolation is achieved at the virtual block level.
Furthermore, virtual blocks that are explicitly released
by a distributed file system can be reclaimed by other
distributed file systems.

Virtual blocks are replicated for high availability.
The epiC system provides a flexible framework de-
sign for handling data consistency issues when the
network is partitioned. The upper-level distributed
file system can choose to receive network partition
notifications and handle the consistency issues itself,
or ignore the network partition issue and request
epiC to tackle data consistency by presenting certain
conditions.

The epiC system also introduces a trusted data
service for users to protect data privacy by encryption
and a subsystem E3 [35] to manage distributed data
processing.

E3 has been implemented based on the Actor con-
current programming model and designed for large
clusters. To facilitate users access to their favorite
data processing methods and data retrieval inter-
face (record or set-oriented) for data processing, it
provides three plug-ins (i.e., MapReduce, DAG and
Pregel) for users to specify data processing logic and
a hybrid set-oriented query interface for wrapping the
native query interface. The query interface contains
a set of built-in operators that are composable and
customizable. It also allows users to specify their own
user-defined operators.

Finally, the epiC system provides a performance
monitoring module for users to profile the perfor-
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mance of their data processing jobs.

5 CONCLUSION

In this paper, we explored the challenges of building
a real cloud system. Most existing cloud systems use
an idealized representation of the cloud, which is
of value in initial conceptualization and algorithm
development. However, one has to go beyond this
ideal environment to build and manage a real sys-
tem. In this paper, we considered issues in deploy-
ing multiple data management systems on a cloud
infrastructure. We highlighted the resource-sharing
and data-processing issues introduced by hosting a
federated data management system. We identified the
desired features of a cloud-based federated data man-
agement system. These features are either missing or
improperly supported in current systems. We hope we
have convinced the readers of the need for fresh new
perspectives on designing cloud data management
systems to support these features.
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