1. Compute the CRC for the bits 10101010 using the generator \(G = 1001 \).
 (Answer: 101)

2. (Modified from KR, Chapter 5, P7) In this problem, we explore some of the properties of CRC. For the generator \(G = 1001 \),
 (a) why can it detect any single bit error in data \(D \)?
 (b) can the above \(G \) detect any odd number of bit errors? why? (Hint: any number with odd number of ones cannot be divisible by 11).

3. Nodes \(A \) and \(B \) are accessing the same shared medium using CSMA/CD, with a propagation delay of 245 bit times between them. The minimum frame size is 64 bytes. Suppose node \(A \) begins transmitting a frame and, before it finishes, node \(B \) begins transmitting a frame.
 (a) What is the minimum possible time taken by \(A \) to finish transmission?
 (b) When is the latest time, by which \(B \) can begin its transmission?
 (c) Can \(A \) finish transmitting before it detects that \(B \) has transmitted?
 Express all your answers above in the unit of bit time.

4. (KR, Chapter 5, P19) Suppose nodes \(A \) and \(B \) are on the same 10 Mbps Ethernet segment, and the propagation delay between two nodes is 245 bit times. Suppose \(A \) and \(B \) send frames at the same time, the frames collide, and then \(A \) and \(B \) choose different values of \(K \) in the CSMA/CD algorithm. Assuming no other nodes are active, can the retransmission from \(A \) and \(B \) collide?
 Work out the following example. Suppose \(A \) and \(B \) begin transmission at \(t = 0 \) bit times. They both detect collisions at \(t = 245 \) bit times. Suppose \(K_A = 0 \) and \(K_B = 1 \). At what time does \(B \) schedule its retransmission? At what time does \(A \) begin transmission? (Note that a node must wait for an idle channel after returning to Step 2 – see protocol.) At what time does \(A \)’s signal reach \(B \)? Does \(B \) refrain from transmitting at its scheduled time?