CS2105 Lecture 2

Application Layer

20 January, 2014
After this class, you are expected to:

- be able to choose the right architecture and transport-layer services for your own network application (and justify why).
- understand the basic HTTP interactions between the client and the server, including HTTP request (GET and HEAD) and HTTP response.
- understand the concepts of persistent connection, parallel HTTP connections and stateless protocol.
- understand the services provided by DNS and how a query is resolved.
"This Application Level Protocol is Used by Every Other Internet Application. If You Think I am Refering to the Web or HTTP, You Would Be Wrong."
Application
Transport
Network
Link
Physical
Networked applications runs on hosts and consists of communicating processes
The server process waits to be contacted
The client process initiates the communication
Application architecture:
client-server
peer-to-peer
hybrid
Need to identify the source and destination process
Address of a process: (host, port number)
Host addresses are 32-bit integers known as IP addresses, represented by four numbers.
Host addresses are 32-bit integers known as IP addresses, represented by four numbers.

We are going to talk a lot more about IP addresses in Lecture 6.

Recap: k bits can represent 2^k different values.
Ports are 16-bit integers (1-1023 are reserved for OS)
IANA coordinates the assignment of port number.
IANA coordinates the assignment of port number. You can find the list of port numbers at http://www.ietf.org/assignments/port-numbers. Look for familiar port numbers, such as HTTP, SSH, Battle.Net. For the list of ports, including unofficial ones not registered with IANA, check out http://en.wikipedia.org/wiki/List_of_TCP_and_UDP_port_numbers.
Socket is the software interface between processes and the Internet.
initialize a socket
listen for a connection
accept a connection
request a connection
send a message
receive a message
close the socket
initialize a socket
listen for a connection
accept a connection
request a connection
send a message
receive a message
close the socket

The actual APIs for Java will be shown to you during Lecture 3
Transport Network
Transport service requirements: loss-tolerance or critical?
Transport service requirements: throughput-sensitive or elastic?
Transport service requirements: time-critical or not?
Transport service requirements:
 time-critical or
 not?

The other transport service requirement mentioned in the textbook is *security*,
but we will move all discussion about security to Lecture 8 (Week 10).
Transport protocols:

TCP

and

UDP
TCP is connection-oriented, congestion-controlled, and reliable.
TCP takes one round trip time (RTT) to establish a connection.
TCP takes one round trip time (RTT) to establish a connection.

This slide is a gross simplification of the actual method TCP uses to establish a connection. The details will be discussed during the TCP lecture.
TCP provides no guarantees on throughput and delay
UDP is connection-less, not congestion-controlled, and not reliable.
when writing network application, ask:
what architecture?
what type of services?
how messages are exchanged?
HTTP
Hyper-Text Transfer Protocol
No time to cover everything about HTTP here. Please read up on your own about cookie (Section 2.2.4) and Web caching (Sections 2.2.5 and 2.2.6) to learn more about these two important but straightforward topics.
Web page
HTML file
Web object
URL
persistent vs. non-persistent
stateless vs. stateful
pipeline vs. sequential
GET /~cs2105/ HTTP/1.1
Host: www.comp.nus.edu.sg
User-Agent: Mozilla/5.0
Connection: close
Other common header fields are Content-Length, Content-Encoding, If-Modified-Since, Last-Modified, Server, Cookie, and Set-Cookie. We will use some of these in Assignment 1. For the full list and the purpose of each field, see http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
Other common HTTP response codes include 301 Moved Permanently, 304 Not Modified, 403 Forbidden, 404 Not Found, 500 Internal Server Error, and 503 Service Unavailable. For the full list and the purpose of each code, see http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
Demo
with telnet and curl
Demo
with telnet and curl

Sample commands:
- `telnet <hostname> 80`
- `curl -I <URL>`

You can get curl from http://curl.haxx.se/download.html
DNS
Domain Name Service
Two ways to identify a host:

hostname
(e.g., www.nus.edu.sg)

IP address
(e.g., 137.132.39.133)
DNS translates between the two
Demo
with nslookup and dig
Demo
with nslookup and dig

dig is installed on many UNIX-based systems. For Windows-based OS, installation instructions for dig is available at http://samsclass.info/40/proj/digwin.htm

Useful dig options include +trace and +short.
DNS resource record
(name, value, type, TTL)
DNS record types
A, MX, CNAME, NS
DNS uses a hierarchical distributed databases
Root servers
The list of all DNS root servers can be found on
http://www.root-servers.org/.
TLD servers
Authoritative servers
Local DNS servers
Root TLD Auth
Host Local
Root TLD Auth
Host Local
DNS runs over UDP
DNS Caching