
When cryptocurrencies mine their own business?

Jason Teutsch, Sanjay Jain, and Prateek Saxena

School of Computing
National University of Singapore

Singapore 117543
teutsch@comp.nus.edu.sg

sanjay@comp.nus.edu.sg

prateeks@comp.nus.edu.sg

Abstract. Bitcoin and hundreds of other cryptocurrencies employ a
consensus protocol called Nakamoto consensus which reward miners for
maintaining a public blockchain. In this paper, we study the security
of this protocol with respect to rational miners and show how a minor-
ity of the computation power can incentivize the rest of the network
to accept a blockchain of the minority’s choice. By deviating from the
mining protocol, a mining pool which controls at least 38.2% of the net-
work’s total computational power can, with modest financial capacity,
gain mining advantage over honest mining. Such an attack creates a
longer valid blockchain by forking the honest blockchain, and the at-
tacker’s blockchain need not disrupt any “legitimate” non-mining trans-
actions present on the honest blockchain. By subverting the consensus
protocol, the attacking pool can double-spend money or simply create
a blockchain that pays mining rewards to the attacker’s pool. We show
that our attacks are easy to encode in any Nakamoto-consensus-based
cryptocurrency which supports a scripting language that is sufficiently
expressive to encode its own mining puzzles.

1 Introduction

Hundreds of cryptocurrencies are in use today, and investments in cryptocur-
rencies continue to increase steadily [1]. Some cryptocurrencies, such as Bitcoin
and Ethereum, aim to serve as underlying substrates for financial applications
beyond simple distributed ledgers and payment services. Nearly all cryptocur-
rencies share a protocol known as the Nakamoto consensus protocol as their
backbone. The security of the Nakamoto consensus protocol has recently been
rigorously analyzed, under the assumption that a majority of the miners follow
the protocol honestly [11]. Does this backbone remain secure when miners purely
try to maximize their financial payoffs? In this paper, we study this question from
the lens of cryptocurrencies which permit expressive transaction semantics.

? J. Teutsch and P. Saxena’s research is supported by Singapore Ministry of Education
Grant No. R-252-000-560-112. S. Jain is supported in part by NUS grant Nos. R252-
000-534-112, R146-000-181-112 and C252-000-087-001.

Cryptocurrencies often allow applications and users to encode semantic op-
erations in blockchain transactions. For example, Bitcoin and Ethereum both
permit transaction scripts which allow users to specify conditions, or contracts,
which corresponding transactions must satisfy prior to acceptance. Transaction
scripts can encode many useful functions, such as validating that a payer owns
a coin he is spending or enforcing rules for multi-party transactions.

Scriptable cryptocurrencies allow clients to outsource computational tasks or
puzzles [13]. For instance, assuming a sufficiently expressive scripting language,
a client might post a computational puzzle and a transaction that together con-
tractually commit him to pay prize money to the first party that conveys a
correct solution. Let us call a computational puzzle encoded via a cryptocur-
rency transaction script a script puzzle. Script puzzles are one way for clients to
trade computation power directly with coins. We now ask: what are the security
implications of allowing script puzzles in a cryptocurrency? When analyzing this
question, we will assume that miners in such cryptocurrencies always try to op-
timize their expected financial gains. This assumption differs from the folklore
assumption that the majority of miners always honestly follow the mining proto-
col, irrespective of whether it gives them a financial advantage. If we assume that
miners are rational instead, then is Nakamoto-consesus based crytocurrency se-
cure against a minority of miners deviating from the protocol for financial gain?
Given the financial investments in cryptocurrencies today, it is reasonable to ask
whether the core protocol is open to manipulation by rational minorities.

In particular, this paper investigates the consequences of casting proof-of-
work mining problems as script puzzles. Miners often have dedicated hardware
for solving proof-of-work problems, and so they can easily reuse their hardware
for solving such script puzzles. In short, miners engage in a game which incen-
tivizes them to split their computation resources between solving script puzzles
and mining. We analyze this game and find that, even when the language does
not support script puzzles, an attacker with 38.2% of the computation capacity
can not only subvert the consensus protocol — effectively reducing the classic
51% attack to a 38.2% attack — but can also increase his share of mining reward
per block without double-spending. The expected minimum financial capacity
for such an attacker, beyond its cost invested in mining power, is less than a
dozen times the reward for mining a new block when the attacker’s power ex-
ceeds 39.1% of the network. Several mining pools have enjoyed such large share
of computation power in the Bitcoin network recently.

2 Background

Bitcoin and several other cryptocurrencies use similar mechanism for maintain-
ing consensus about a distributed ledger of transactions. The distributed ledger
is maintained as a hash-chain of transaction blocks known as the blockchain
ledger. The consensus protocol used in nearly all blockchain-based cryptocur-
rencies, known as Nakamoto consensus, achieves eventual consistency assuming

an honest majority1. Miners in a cryptocurrency network solve “mining puzzles”
— a cryptographic proof-of-work puzzle (e.g. “inverting” a SHA2 hash [10]) — in
exchange for cryptocurrency mining rewards. When a miner successfully broad-
casts the solution of a proof-of-work puzzle, he proves that he has spent the
necessary computation power to merit appending his new set of transactions
to the distributed ledger. This step awards the miner a set of newly minted
coins. Miners solve the next proof-of-work puzzle using the longest blockchain,
which implicitly embodies the majority of the network’s computational effort
with overwhelming probability.

In a blockchain-based cryptocurrency, the cryptographic hash-chain guaran-
tees integrity of accepted transactions. Thus anyone can query the blockchain
for the presence of a transaction. Miners on the network race to extend the
blockchain in each time epoch (e.g. 10 minutes in the Bitcoin protocol), and this
race effectively generates randomized lottery to elect a leader in each epoch.

2.1 The 51% attack

In principle, the blockchain mechanism only ensures consensus with overwhelm-
ing probability. A transaction that appears in the longest, current blockchain can
be omitted in a future blockchain which is longer — however, creating such a
“forked” blockchain that omits a transaction requires an adversary with compu-
tation power larger than half the computation power of the entire network. The
backtracking mechanism which permits this kind of double-spending is known as
a 51% attack [16]. Satoshi Nakamoto [2] was aware of this attack when he intro-
duced Bitcoin in 2009. His proof-of-work mechanism ensures correct blockchain
consensus under the assumption that the majority of miners are honest. If, for
example, the powerful miner spent some money in another fork of the blockchain
at the time when that fork appeared to be longest, he would not necessarily have
to carry that transaction over to his own fork and could thereby double-spend
the money.

2.2 Smart contracts

Bitcoin and several cryptocurrencies allow transactions to specify conditions as
scripts. A transaction is deemed valid only if the linked condition holds. Bitcoin’s
scripts have limited expressiveness, however emerging cryptocurrencies support
expressive scripts that enable development of a variety of powerful decentralized
applications. The Ethereum cryptocurrency [9] introduced smart contracts in
which versatile scripts specify whether or not the network should accept given
transactions. Ethereum is Turing-complete in the sense that one can encode any
algorithm in its scripting language.

One can encode a smart contract which pays a reward for solution to a hash
inversion puzzle in many different ways. Figure 1 provides an example of how one
might realize such a contract in Ethereum. The protocol in this figure permits

1 It further assumes a favorable broadcast network between miners.

1 init:
2 #Record the initiator , reward and data
3 contract.storage [0]= msg.sender
4 contract.storage [1]=0
5 contract.storage [2]= msg.value
6 #record the difficulty of the puzzle
7 contract.storage [3]= msg.data [0]
8 code:
9 #if the puzzle is solved

10 if contract.storage [4] == 0:
11 return (1)
12 if msg.datasize == 1:
13 #if everything is fine , send the reward
14 if sha256(sha256(msg.data [0])) < contract.storage [3]:
15 send (1000 ,msg.sender ,contract.storage [2])
16 contract.storage [4]=0 #update status
17 contract.storage [5]= msg.data [0] #store result
18 return (2)
19 else:
20 return (1)

Fig. 1. Code snippet of a contract which asks users to solve a hashing puzzle. The
contract will verify the correctness of the result before sending out the reward.

a puzzle giver to post a blockchain transaction containing a public puzzle such
that any prover who notices the puzzle can post a solution on the blockchain. If
the miners on the network deem the prover’s solution to be correct, the prover
may receive the puzzle giver’s advertised reward in exchange for the solution.

Luu, Teutsch, Kulkarni, and Saxena [13, Section 5.2] showed how one can
modify a puzzle script, such as the one in Figure 1, so as to achieve fairness
via a commitment scheme. Their protocol rewards the first solution posted and
resolves ties as follows. Every potential prover posts a hash of his solution to the
puzzle so as both to notify the network that his solution is ready and to prevent
him from later changing his answer. The first solutions to appear effectively enter
a lottery. Once the network has confirmed the winner of this lottery, the prover
publicly reveals his solution. If the network finds that his solution is correct,
then he receives the puzzle’s reward for his solution. If the solution is incorrect,
another prover’s solution may be considered.

Any transaction puzzle with suitable computational complexity and mone-
tary reward which incentivizes miners to repurpose their hardware suffices for
the attacks in this paper. Ethereum miners use GPU hardware, so in practice
one would need to fine tune the puzzle in Figure 1 into a GPU-friendly form in
order to achieve the desired effect.

2.3 Assumptions

Our theoretical attack will suppose the following specific conditions about min-
ers’ behavior, the attacker’s capability, and the underlying cryptocurrency.

1. Miners always mine on the longest chain. This is a fundamental and standard
assumption for Nakamoto consensus.

2. Expected time between new blocks is constant. The network calibrates the
difficulty of mining blocks so as to maintain a fixed expected time between
new blocks. Both the Ethereum and Bitcoin protocols include periodic ad-
justments based on the cumulative computational power of active miners.

3. Miners are rational. Non-attacking miners on the network distribute their
computational resources between mining and puzzle solving in order to max-
imize expected profits. They do not withhold blocks.

4. Attacker has limited resources. The attacker has a fixed amount of capital
and computational power at his disposal with which to execute his attack.
The graphs at the end of this paper show sufficient capital and computational
power as well as the trade-offs between these two parameters.

We will elaborate on and further discuss the details of these assumptions in
subsequent sections. Empirical testing may shed light on the practical validity
of the above assumptions and remains as valuable future work. Finally, for ease of
presentation, our analysis will focus on expected values rather than probabilities
for various possible outcomes.

3 The double-spend attack

An attacker with sufficient capital, regardless of computational power can double-
spend in any cryptocurrency with sufficiently expressive scripting language via
a modification of the backtracking 51% attack discussed in Section 2. We ex-
pect that block-sized hash inversion script puzzles can distribute rewards fairly
because the time required to verify the correctness of a solution is small [13].2

Attack 1. Let M be a miner with p fraction of the network’s computation
power3. Let b be the fixed reward for mining a new block. Starting from the
current block, M begins, using his full power p, privately mining new blocks on
a fork which is unknown to other miners. Meanwhile the following is repeated
until M ’s private blockchain is longer than the public one:

Once per (public) block, M posts a transaction with a hash-inversion
puzzle4 whose solution requires exactly the same amount of work as

2 Since the time required to solve these script puzzles is modest, Ethereum’s gaslimit
function does not hinder their execution.

3 In the following discussions, we assume that the total number of processors on the
network is fixed.

4 The puzzle M chooses may be identical to the nonce he needs to solve in order to
extend his private blockchain, and this choice may help M to mine faster on his
private chain. We do not attempt to quantify the advantage of implementing this
strategy, however, as latency from network broadcasts and puzzle reward commit-
ment schemes make the benefit difficult to estimate.

mining a new block5. M offers a prize for its solution exceeding

1− 2p+ ε

p− ε
· b (3.1)

for some fixed value 0 < ε < p.

Since M is free to add or not add transactions from the public blockchain into
his private blockchain, he may double-spend when the loop finally terminates by
revealing his private blockchain.

Each time the miner M from Attack 1 posts a puzzle transaction, the other
processors on the network have two options: work on the transaction puzzle or
try to mine a new block. Each processor will work on the puzzle with some
probability a and hence will mine with probability 1 − a.6 We can view this
process as a game in which each processor tries to select the value a which
optimizes his expected profits. The processors’ set of strategies for choosing a
are said to form a Nash equilibrium when no individual processor has financial
incentive to deviate from his current strategy given that the other strategies are
fixed. By definition, rational processors choose the value a which satisfies the
Nash equilibrium.

Lemma 2. Let t > 0 and let 0 < a < 1. If the miner in Attack 1 offers a reward
of a · t to solve his puzzle and the reward for mining a new block is (1−a)t, then
rational processors on the network will puzzle-solve with probability a and mine
with probability 1− a.

Proof. Suppose a given processor R has 0 < q < 1 fraction of the total computa-
tional power of the network. When every processor on the network works on the
puzzle with probability a and mines with probability 1 − a, R’s expected gain
is the sum of his expected fraction of total work on the puzzle times the puzzle
prize plus his expected fraction of total work on mining times the mining prize:

aq

aq + a(1− q)
· at+

(1− a)q

(1− a)q + (1− a)(1− q)
· (1− a)t = qt.

By symmetry, no processor can expect to obtain more than his share of the
reward, so an expected reward of qt is optimal on a purely rational network.
Suppose that R were to deviate from this strategy by puzzle-solving with prob-
ability a+ δ where 0 < δ < 1− a. Then his expected reward would be

(a+ δ)q

(a+ δ)q + a(1− q)
· at+

(1− a− δ)q
(1− a− δ)q + (1− a)(1− q)

· (1− a)t

=
aq + δq

a+ δq
· at+

q − aq − δq
1− a− δq

· (1− a)t =
a− a2 − 2δaq + δq − δ2q

(a+ δq)(1− a− δq)
· qt, (3.2)

5 For simplicity of calculation, we assume that the hardness of the puzzle that M posts
in a given block is equally hard compared to the mining problem in the current block.

6 For the purposes of our calculations, it is equivalent to assume that the miner de-
votes a fraction of his computational resources to puzzle solving and 1− a fraction
to mining.

which is less than qt whenever 0 < δq < 1− a, and in particular this inequality
holds for our choice of δ < 1 − a. Indeed for such δ, the denominator of the
rightmost fraction of (3.2) is positive and exceeds its numerator by δ2q − δ2q2.
By symmetry, R gains no advantage by biasing himself towards mining, either.
Hence the given strategy yields a Nash equilibrium. ut

We now show that Attack 1 succeeds when the other processors on the net-
work are rational.

Theorem 3. If a miner M has sufficient initial capital, possesses p fraction
of the network’s computing power and the other processors on the network are
rational, then the loop in Attack 1 eventually terminates. Hence M can double-
spend any money spent since the beginning of the attack.

Proof. Let x = (1−2p+ ε)/(p− ε) as in (3.1) so that the reward for solving M ’s
puzzle is xb. Then the sum of the rewards between mining in a given block and
solving the puzzle is (1 + x)b. Thus the fraction of reward devoted to mining is
at most:

b

(1 + x)b
=

1

1 + 1−2p+ε
p−ε

=
p− ε

p− ε+ 1− 2p+ ε
=
p− ε
1− p

.

It follows that a rational processor on the network will mine with probability
less than (p− ε)/(1− p) and puzzle-solve with probability greater than 1− [(p−
ε)/(1−p)] as the Nash equilibrium is achieved with these parameters (Lemma 2).
Since at most (1 − p) · (p − ε)/(1 − p) = p − ε fraction of the network power is
devoted to extending the public blockchain and p fraction of the network power
is devoted to extending M ’s private chain, M ’s private chain will eventually
become longer than the public one. ut

4 Mining advantage without double-spending

We now observe that if a miner controls more than (3 −
√

5)/2 ≈ 38.2% of the
network’s computational power, then he can execute Attack 1 without double-
spending and still achieve an overall mining advantage. In the short run, such
a miner obtains a per-block advantage over honest mining which, as we discuss
at the end of Section 5, translates into a gain per unit time after consecutive
repetitions of the attack. Unlike our double-spend attack, in this scenario the
attacker can offer his puzzle rewards on an external website or system known
to the cryptocurrency miners; the puzzles need not be posted as transactions
within the cryptocurrency itself. Thus our analysis establishes the insecurity of
Nakamoto consensus against a rational-but-dishonest minority of miners without
assuming any scriptability properties for transactions.

Theorem 4. A miner M with p fraction of the network’s power where (3 −√
5)/2 < p ≤ 1/2 who executes Attack 1 with appropriately chosen ε > 0 so that

the reward for each of his puzzles, xb, satisfies the additional constraint

x < 1− p (4.1)

expects to gain a mining reward advantage of at least [1 − (x + p)]b per block
when other processors on the network are rational. Thus M can benefit from the
Attack 1 without double-spending or otherwise manipulating public transactions
in his private blockchain.

Proof. Since M ’s reward satisfies the lower bound from Attack 1, the argument
in Theorem 3 shows that the length of M ’s private blockchain will eventually
exceed the length of the public one. In particular, we can assume that by the
end of the attack M ’s private blockchain has at least as many blocks in it as
the public blockchain. Note that the reward that M would have expected to
receive from mining a block without posting the puzzle transaction is pb, and
the reward he receives per block on his private blockchain is b, so the attack is
only profitable if the cost of each puzzle is less than b−pb, that is, when x < 1−p.
Since M can win all the mining rewards from the network when p > 1/2 using
the 51% attack, the miner receives no additional advantage in posting puzzle
transactions when p > 1/2.

Finally, let us consider when an x satisfying both (3.1) and (4.1) actually
exists. For ε < p, this happens when:7

1− 2p+ ε

p− ε
< 1− p,

or equivalently 1− 2p+ ε < p− ε− p2 + εp, which simplifies to

p2 − (3− ε)p+ (1 + 2ε) < 0. (4.2)

Applying the quadratic formula, using the fact that the leading coefficient in the
left-hand side of (4.2) is positive, and using that the larger root of this expression
is greater that 1/2, we find that p ≤ 1/2 is a solution to the inequality (4.2) if
and only if

p >
(3− ε)−

√
(9− 6ε+ ε2)− 4− 8ε

2
=

3− ε−
√

5 + ε2 − 14ε

2
.

Taking the limit of this expression as ε → 0, we obtain p > (3 −
√

5)/2, which
means the advantage exists for any such p whenever the attacker offers a reward
in (3.1) with sufficiently small parameter ε > 0. ut

Between 38.2% and 50% the attacker gains an increasing mining advantage
from executing the simple attack in Theorem 4. At 51% power, the miner need
not award any prize for solving his puzzle because he can outright win all the
mining rewards by extending his private blockchain quickly.

7 A slightly weaker inequality holds here. At the end of Attack 1, the attacker’s private
chain is a block longer than the public chain, and so the attacker’s expected net gain
per block actually exceeds (1−p) ·b by some positive quantity, namely [(1−p)ε/(p−
ε)] · b, which tends to zero as ε→ 0. In this argument we ultimately care only about
what happens as ε approaches 0, and so for now we ignore this quantity. We revisit
the present calculation in more detail in Lemma 7.

Can one repeat Attack 1 with double-spending more than once? Miners who
lose their rewards from solving puzzles may find themselves once bitten, twice
shy. Unlike the double-spend attack described in Theorem 3, the 38.2% attack
in Theorem 4 permits miners to keep their rewards for solving puzzles. Thus the
deterrent of “once bitten, twice shy” disappears in the latter form of this attack.

Theorem 4 highlights a tragedy of the commons for rational miners. By
working on the puzzle posed in Attack 1, miners place the integrity of the network
at risk, yet none of them are individually motivated to switch back to mining.
The assumption that miners optimize their personal profit ensures that they
work on puzzles even while “honest” miners lose all of their mining rewards.

5 How much does it cost?

Both Theorem 3 and Theorem 4 assume that the perpetrator M has “sufficient
initial capital” to successfully generate the long private fork described in At-
tack 1. We now estimate how much initial capital is “sufficient.” Following the
notation of Attack 1, let p denote the fraction of the network’s computational
power that belongs to the attacker, let ε represent the difference in mining effort
during the attack between the attacker and the rest of the network, and let b be
the prize offered by the cryptocurrency for mining a new block.

Lemma 5. A miner who executes Attack 1 using

– p fraction of the network’s computing power,
– with 0 < ε < p difference in mining effort between the attacker and the rest

of the network, and
– with prize b for mining a new block

expects to spend
1− 2p+ ε

ε
· bk (5.1)

on mining puzzles before his private blockchain becomes k blocks longer than the
public one when other processors on the network are rational.

Proof. Let t(p, ε, k) denote the expected number of public blocks which are mined
before the length ofM ’s private blockchain exceeds the public blockchain’s length
by at least k blocks, and let c(p, ε, b) denote the cost per block of the puzzle
reward given in (3.1). The expected initial capital required to execute Attack 1
for given parameters p, ε, k, and b is then t(p, ε, k) · c(p, ε, b).

Let us assume that the network generates on average one new block per
unit time. Then after s units of time, the attacker expects to have generated ps
blocks on his private chain, and the rest of the network expects to have generated
(p− ε)s blocks on the public chain (see the proof of Theorem 3 for calculation of
these estimates). We are interested in the time s at which the difference between
these blockchain lengths reaches k, that is k = ps−(p−ε)s, or equivalently when
s = k/ε. Thus

t(p, ε, k) = s · (p− ε) =
p− ε
ε
· k.

For a fixed ε, we may now estimate the total expected cost of the attack as

t(p, ε, k) · c(p, ε, b) =
p− ε
ε
· 1− 2p+ ε

p− ε
· bk

when 0 < ε < p, as required in Attack 1 in order to ensure the puzzle prize value
is positive. The above quantity simplifies to (5.1). ut

We now compute the ε which minimizes the cost of a successful double-spending
attack.

Theorem 6. A miner with p fraction of the network can double-spend using
Attack 1 with approximately b/p − b initial capital, where b is the reward for
mining a new block, when other processors on the network are rational.

Proof. The attack cost in (5.1) is minimized when ε is as large as possible, that
is, as ε approaches p. Thus the expected cost of the double-spend attack in
Theorem 3 can be made arbitrarily close to (1/p − 1) · bk. In the notation of
Lemma 5, we may assume k = 1 because the attacker’s private chain need only
be longer than the public chain momentarily in order for the double-spend attack
to succeed.8 ut

If an attacker were to double-spend only the puzzle prize money, then he would
gain approximately (1 − p)b more capital per block from executing the double-
spend attack compared to honest mining.

Lemma 7. A miner M with p fraction of the network’s power where (3 −√
5)/2 < p < 1/2 who successfully executes a 38.2% attack (that is, Attack 1

without double-spending), using 0 < ε < p difference in mining effort from the
rest of the network, expects to gain per (private blockchain) block of the attack

3p− p2 − 1− ε
p

· b (5.2)

more than he would from honest mining, where b is the reward for mining a new
block, when other processors on the network are rational.

Proof. Applying Lemma 5 with k = 1, we obtain that M ’s total expected ex-
penditures on puzzle prizes during the attack is [(1− 2p+ ε)/ε] · b, and he earns
(p/ε) · b from his length p/ε extension of the private blockchain when it becomes
public. His expected reward for mining honestly over these p/ε blocks would
have been p · (p/ε) · b, and therefore his expected net gain over honest mining
throughout the course of the attack is[

(1− p) · p
ε
− 1− 2p+ ε

ε

]
· b =

3p− p2 − 1− ε
ε

· b.

8 Since many Bitcoin users do not consider a transaction confirmed until the trans-
action is at least 6 places deep in the blockchain, one might wish to wait until the
private chain extension is at least 6 blocks long before revealing it. This can be done
be choosing an ε satisfying, in the notation of Lemma 5, t(p, ε, 1) ≥ 6 · (p− ε)/p, or
equivalently ε ≤ p/6.

It follows that M ’s per block expected gain over honest mining is

3p− p2 − 1− ε
ε

· b÷ p

ε
,

or equivalently, the quantity in (5.2). ut

The per block net gain over mining that one can expect to achieve with a
38.2% attack depends on how much initial capital one has available. In order to
make the expected gain per block in (5.2) positive, ε must be less than 3p−p2−1,
and substituting this value for ε into the estimated puzzle prize total puzzle (5.1),
we obtain the expected break-even cost given in (5.3) below.

Theorem 8. Let b be the block mining reward. A miner with p fraction of the
network’s power where (3−

√
5)/2 < p < 1/2 expects to spend in total

p− p2

3p− p2 − 1
· b (5.3)

on puzzle prizes during a 38.2% attack (without double-spending) in order to
break even on the rewards he would have earned from honest mining over the
same number of blocks. Moreover, if the miner

– chooses a target puzzle prize budget for Attack 1 of xb (by setting ε = (1 −
2p)/(x− 1)), and

– xb exceeds the quantity in (5.3),

then his expected net gain per block (of private mining9) over honestly mining
will be:

3p− p2 − 1− 1−2p
x−1

p
· b (5.4)

when other processors on the network are rational.

Proof. Suppose (3 −
√

5)/2 < p < 1/2, x > (p − p2)/(3p − p2 − 1) and let
ε = (1−2p)/(x−1). We wish to show 0 < ε < p so that we may apply Lemma 7.
Now

ε <
1− 2p
p−p2

3p−p2−1 − 1
=

(1− 2p)(3p− p2 − 1)

1− 2p
= 3p− p2 − 1 ≤ p.

as p < 1/2.
Since p < 1/2, we have 1− 2p > 0, which implies p− p2 > 3p− p2 − 1, and

therefore x > (p−p2)/(3p−p2−1) > 1 as both the numerator and denominator
of this fraction are positive whenever (3 −

√
5)/2 < p ≤ 1/2. Since ε is the

quotient of two positive reals, we have ε > 0.
By Lemma 7, the attacker gains per block [(3p − p2 − 1 − ε)/p] · b, which

immediately establishes (5.4) as his total net gain over honest mining through
the entire course of the attack. Note that by setting (5.4) equal to 0 and solving
for x, we obtain the break-even point (5.3) modulo a factor of b. ut
9 In the long run, the private blockchain becomes the main chain.

Since most cryptocurrencies periodically adjust the hardness of their mining
problems so that the expected number of blocks mined per unit time remains
constant, we can expect that if one repeats the 38.2% attack several times in
row, then the expected gain per block eventually becomes equal to the expected
gain per unit clock time for mining one block. Thus, in the long run, one can
use the same figures to estimate the profit of performing a 38.2% attack relative
to honest mining over clock time as well. Since the attacker’s private blockchain
becomes the main blockchain in the long run, clock time per block eventually
corresponds to per block time on the private chain.

At the market rate in September 2015 of approximately b = $6000 reward per
block in Bitcoin, Theorems 6 and 8 show that a miner with 40% of the network
power can execute a 38.2% attack for $36,000. This cost is significantly lower
than the amount one would have to spend to purchase the hardware needed to
execute a 51% attack, and moreover the attacker gets his initial capital back
after a successful attack. See the figures at the end of this paper for other cost
and return estimates.

6 Rationality and Nakamoto consensus

When analyzing the ultimate success of Attack 1, we tacitly assumed that miners
always mine on the longest available blockchain. Will rational miners actually
choose this strategy? We cannot answer this question decisively since many dis-
tinct sets of mining strategies achieve Nash equilibrium. The collective strategy
which says “everyone mine on the longest chain” is a Nash equilibrium, but so
is the collective strategy which says “everyone mine on the same chain as Fred
Flintstone.” Under the usual convention that the majority of computing power
selects valid transactions and blocks, the optimal strategy for an individual miner
is always to mine on the chain where most processors are mining.

While one can imagine individuals deciding to mine on chains which are
adversarial against Attack 1 or chains which maximize personal capital, miners
do have compelling reasons to choose the canonical honest strategy of mining
on the longest chain. As an official default strategy, we may view the situation
where everyone mines on the longest chain as a de facto initial condition. As this
initial condition happens to both be a Nash equilibrium and satisfies the desired
objective that individuals follow the majority, miners will persist in mining on
the longest chain unless some particular influence drives them to change their
behavior. Thus, under reasonable assumptions, rational miners will mine on the
longest chain.

As established in Section 4, puzzle prizes in a 38.2% attack need not be en-
coded into transactions but rather may appear anywhere in the network ecosys-
tem. This means that the 38.2% attack is not strike against expressiveness of
scripting languages but rather Nakamoto consensus itself. Every cryptocurrency
based on Nakamoto consensus, including Bitcoin, is vulnerable to a 38.2% attack.
Consequently if miners are rational rather than majority-honest, then Bitcoin
may be not only insecure when an adversary controls more than half of the net-

work’s computation power, as Nakamoto pointed out in his original paper [14],
but even when the adversary controls merely 38.2% of the network’s power. Can
we achieve secure consensus beyond 38.2% under the assumption of rational
miners?

7 Related work

Cryptocurrency incentive structure flaws, such as the ones we pointed out in
Ethereum and Bitcoin, can be difficult to detect. Other Bitcoin attacks which
also rely on misplaced incentives include selfish mining [8] and mining pool block
withholding [7,12]. We outline these attacks below. Although all three of these
types of attack appeal to parties’ rational behavior, the execution mechanisms
vary considerably. First, unlike the 38.2% attack, neither selfish mining nor min-
ing pool block withholding attacks use puzzle transactions. Second, the 38.2%
attack motivates other miners to deviate from protocol, whereas only the at-
tacker deviates in the other two attacks. The relative profit margins for a 38.2%
attack or double-spend attack exceed those of selfish mining and mining pool
block withholding. Finally, unlike a mining pool block withholding attack, the
38.2% attack has no inherent need for mining pools. Cortois, Bahack, and Rosen-
feld also analyzed Bitcoin block withholding attacks [5,6,15]. Bonneau, Felten,
Goldfeder, Kroll, and Narayanan [4] investigated a variation of our double-spend
attack in which one offers monetary bribes, rather than puzzle rewards, to gain
control of the network.

Selfish mining. Selfish mining permits miners who posses less than half of the
network’s computational power to perpetrate double-spend attacks. Due to sheer
luck, a miner who controls a significant portion of the network occasionally
find himself successfully mining two or three blocks in rapid succession. When
this happens, the miner might not immediately announce his blocks but rather
continue to mine privately on a private blockchain. At this point, the miner’s
private blockchain is longer than the public one, so he may continue to mine
blocks on his private chain and include or not include any transactions in his
private blocks. Right before the public chain catches up to the private one, the
miner reveals his longer chain which the consensus protocol dictates is, in fact,
the valid chain. Thus the miner may, double-spend any money spent on the
public blockchain during the fork. Eyal and Sirer introduced this attack in [8].

Mining pool block withholding. In order to obtain a nontrivial chance of winning
the race to mine the next block, miners arrange themselves into “pools” which
split both the mining work and rewards among members. According to the pool
protocol, a miner who solves the nonce should announce it, and then everyone
in the pool shares the reward for mining a new block. However, Luu, Saha,
Parameshwaran, Saxena, and Hobor [12] and Eyal [7] demonstrated that miners
have financial incentive not to reveal their solution. A miner can join multiple
pools simultaneously, and by not reporting a block in one he increases his chances
of obtaining a reward in the other.

Acknowledgements

We thank Frank Stephan, Loi Luu, and Gregory J. Duck for useful discussions
and helpful feedback.

References

1. http://coinmarketcap.com/.
2. http://www.mail-archive.com/cryptography@metzdowd.com/msg09959.html,.
3. https://en.bitcoin.it/wiki/Script#Transaction_puzzle.
4. Joseph Bonneau, Edward W. Felten, Steven Goldfeder, Joshua A. Kroll, and

Arvind Narayanan. Why buy when you can rent? bribery attacks on Bitcoin
consensus. http://www.jbonneau.com/doc/BFGKN14-bitcoin_bribery.pdf.

5. Nicolas T. Courtois. On the longest chain rule and programmed self-destruction
of crypto currencies. CoRR, abs/1405.0534, 2014.

6. Nicolas T. Courtois and Lear Bahack. On subversive miner strategies and block
withholding attack in Bitcoin digital currency. CoRR, abs/1402.1718, 2014.

7. Ittay Eyal. The miner’s dilemma. In IEEE Symposium on Security and Privacy
(SP 2015), pages 89–103, May 2015.

8. Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining is vulner-
able. In Nicolas Christin and Reihaneh Safavi-Naini, editors, Financial Cryptogra-
phy and Data Security, volume 8437 of Lecture Notes in Computer Science, pages
436–454. Springer Berlin Heidelberg, 2014.

9. Ethereum Foundation. Ethereum’s white paper. https://github.com/ethereum/
wiki/wiki/White-Paper, 2014.

10. Pedro Franco. Understanding Bitcoin: Cryptography, Engineering and Economics.
John Wiley & Sons, 2014.

11. Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone
protocol: Analysis and applications. In Proceedings of Eurocrypt 2015, 2015.

12. Loi Luu, Ratul Saha, Inian Parameshwaran, Prateek Saxena, and Aquinas Hobor.
On power splitting games in distributed computation: The case of bitcoin pooled
mining. http://eprint.iacr.org/2015/155.

13. Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. Demystifying
incentives in the consensus computer. To appear in CCS 2015. http://eprint.
iacr.org/2015/702.

14. Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. http://

bitcoin.org/bitcoin.pdf.
15. Meni Rosenfeld. Analysis of Bitcoin pooled mining reward systems. CoRR,

abs/1112.4980, 2011.
16. Florian Tschorsch and Björn Scheuermann. Bitcoin and beyond: A technical survey

on decentralized digital currencies. http://eprint.iacr.org/2015/464.

http://coinmarketcap.com/
http://www.mail-archive.com/cryptography@metzdowd.com/msg09959.html
https://en.bitcoin.it/wiki/Script#Transaction_puzzle
http://www.jbonneau.com/doc/BFGKN14-bitcoin_bribery.pdf
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
http://eprint.iacr.org/2015/155
http://eprint.iacr.org/2015/702
http://eprint.iacr.org/2015/702
http://bitcoin.org/bitcoin.pdf
http://bitcoin.org/bitcoin.pdf
http://eprint.iacr.org/2015/464

Capital required for double-spending

f(p) = 1
p
− 1

Fig. 2. Expected initial capital required to execute a double-spend attack with p frac-
tion of the network power (for k = 1 block advantage).

Capital required for 38.2% attack

f(p) = p−p2

3p−p2−1

Fig. 3. Expected initial capital required to break even on a 38.2% attack relative to
honest mining without double-spending and with p fraction of the network power.

Gain per block from 38.2% attack (p = .4)

f(x) =
3p−p2−1− 1−2p

x−1

p

Fig. 4. Expected net gain over honest mining for a 38.2% attack without double-
spending and with p = 40% of the network power.

Gain per block from 38.2% attack (p = .45)

f(x) =
3p−p2−1− 1−2p

x−1

p

Fig. 5. Expected net gain over honest mining for a 38.2% attack without double-
spending and with p = 45% of the network power.

	When cryptocurrencies mine their own business

