Borodin’s Gap Theorem

In space/time hierarchy we showed that having “little” extra space or time allows us to compute “more” functions/decide more languages. However we needed the requirement that time/space bounds be “fully constructible”. Can we get rid of this requirement?

Not in general!

Theorem (Borodin): Suppose h is a recursive function such that $h(n) \geq n$. Then there exists an increasing recursive function g such that, $\text{DTIME}(g(n)) = \text{DTIME}(h(g(n)))$.

Similar Theorem applies for space.
Proof: Suppose $T_k(n)$ denotes the maximum time taken by machine k on any input of length n. Note that $T_k(n)$ is partial recursive in k and n.
We will construct a recursive function g such that, for each k, at least one of the following holds.
(1) $T_k(n) \leq g(n)$ for all but finitely many n.
(2) $T_k(n) > h(g(n))$ for infinitely many n.
Thus no machine has time complexity between $g(n)$ and $h(g(n))$ for all but finitely many n.
Let \(g(0) = 1 \). Define \(g(n) \), for \(n \geq 1 \) as follows.

\[
g(n).
\]

Search for a \(j > g(n - 1) \) such that, for all \(y < n \), \([T_y(n) > h(j), \text{or } T_y(n) < j]\). When such a \(j \) is found let \(g(n) = j \).

First note that such a \(j \) must exist (note that \(j = 1 + \max\{\{T_y(n) : y \leq n \text{ and } T_y(n) < \infty\}\} \) satisfies the constraints).

Claim: For every \(k \), \(g \) satisfies at least one of (1) and (2) above.

Suppose \(k \) is given. By construction, for all \(n > k \), \(T_k(n) < g(n) \) or \(T_k(n) > h(g(n)) \). Thus, either there are infinitely many \(n \) such that \(T_k(n) > h(g(n)) \), or, for all but finitely many \(n \), \(T_k(n) < g(n) \). Thus either (1) or (2) must hold.
Now, $\text{DTIME}(g(n)) \subseteq \text{DTIME}(h(g(n)))$, since $h(g(n)) \geq g(n)$. Suppose L is a language in $\text{DTIME}(h(g(n)))$, as witnessed by machine M_k. Then for all but finitely many n, $T_k(n) \leq g(n)$ (since (2) is not true, (1) must be true!). Thus L must also be in $\text{DTIME}(g(n))$ (finitely many inputs on which M_k took more time can be patched). QED
Intuitively what the gap theorem says is that for certain $g(n)$ time bounded computations, it does not matter if we even allowed $h(g(n))$ time!

For example if $h(n) = 2^n$, then at $g(n)$ even allowing exponentially more time does not help. Contrast this with the time hierarchy theorem where we showed that if $T(n)$ is fully time constructible then even slightly more than extra logarithmic factors increases what one can accept. Of course $h(g(\cdot))$ in the above theorem cannot be fully time constructible.
Theorem: Suppose space complexity of M is not bounded by a constant for strings which M accepts.
That is, for every i, there exists an input x accepted by M, on which M uses space at least i.
Then, there exists a constant c such that, for infinitely many n, M uses space at least $c \log \log n$, on some input of length n.
Proof: We will show:
There exist infinitely many i such that, M uses space at least i on some input (accepted by M) of length at most $2^{2^c i}$, for some constant c'.

Space below $\log \log n$
Crossing Sequence:
sequence of (state, work tape contents/head positions, input head move direction), each time the head crosses the boundary between two input cells.

Proposition: Suppose $y = y_1y_2$ and $x = x_1x_2$. Suppose M accepts by moving to the right end of the input. Consider the crossing sequence of M at the boundaries of the cells, for inputs y and x respectively. Suppose M accepts x and the crossing sequence is identical at the boundary of y_1 and y_2 to that of x_1 and x_2. Then M also accepts y_1x_2.
Let s be number of states of M, r the alphabet size, and k the number of work tapes. Consider i such that M uses space i on some input and accepts. Let y be shortest such string. Since M accepts y, no ID is repeated. Thus, at any boundary, no component in the crossing sequence is repeated. Hence, the number of possible crossing sequences is at most $\text{factorial}(1 + 2 \cdot s \cdot i^k \cdot r^i k)$.

As crossing sequence at different boundaries are different, we have:

$$|y| \leq \text{factorial}(1 + 2 \cdot s \cdot i^k \cdot r^i k) = \text{factorial}(2^{c''}i) \leq 2^{c' i},$$

for some constants c', c''. QED
Theorem: Consider the following language \(L = \{1^k01^n : k, n \geq 2 \text{ and } n \text{ is divisible by each } c \leq k\} \). Then \(L \in \text{DSPACE}(\log \log n) \).

Proof: Consider the following \(M \). \(M \) rejects any input not of the form \(1^k01^n \), for some \(k \) and \(n \geq 2 \).

\(M \) then works as follows.

1. \(c \leftarrow 1 \).

(* \(c \) is a counter and is kept in first work tape *)

Loop

2. Check whether \(n \) is divisible by \(c \).

3. If \(n \) is divisible by \(c \) then let \(c \leftarrow c + 1 \) and go to next iteration of the loop.

4. If \(n \) is not divisible by \(c \), Then check whether \(c > k \). If so accept. Otherwise reject.

Forever
One can implement step 2 above as follows:
(a) Place the input head at the beginning of 1^n.
(b) Copy c to work tape 2 (call the counter in tape 2, c').
(c) Go on decrementing c' on tape 2 and moving input head right with each decrement until c' becomes zero or end of 1^n is reached.
If the end of 1^n is reached before c' becomes 0, then n is not divisible by c. If head reaches end of 1^n exactly when c' becomes 0, then n is divisible by c. If end of 1^n is not reached when c' becomes 0, then go to (b).

Clearly, the language accepted by M above is L.
The space required by M can be bounded as follows. Suppose r is the maximum value of c in the above computation. (i.e. r is the least number such that n is not divisible by r).

Then the space needed by M is $O(\log r)$.

We know that n is divisible by all numbers smaller than r, and thus all prime numbers smaller than r.

By the prime number theorem, for some constant c', there are at least $c' * \frac{r}{\log r}$ such prime numbers.

Thus $n \geq \text{factorial}(w) \geq 2^w$, where $w = \Omega(\frac{r}{\log r})$.

Thus, $n \geq 2^{\Omega(\frac{r}{\log r})}$, for large enough n.

Since space used is $O(\log r)$, space used is bounded by $O(\log \log n)$ and hence by $O(\log \log(n + k + 1))$.