3SAT is **NP**-complete

3SAT denotes the following restriction of satisfiability.

INSTANCE: A set of variables, U, and a set of clauses, C, such that each clause contains exactly 3 literals.

QUESTION: Is C satisfiable? i.e. is there a truth assignment to the variables such that all the clauses are satisfied?

In **NP**: guess a satisfying assignment and verify that it indeed satisfies the clauses.

NP-hard:

We show $SAT \leq_m 3SAT$.

Suppose (U, C) is an instance of satisfiability.

We construct an instance (U', C') of 3SAT such that, C is satisfiable iff C' is satisfiable (and the reduction can be done in poly time).
Suppose $C = \{c_1, c_2, \ldots c_m\}$.

For c_i, we will define C'_i and U'_i below.

$$U' = U \cup \bigcup_{1 \leq i \leq m} U'_i$$

$$C' = \bigcup_{1 \leq i \leq m} C'_i$$

If $c_i = (l_1)$, then

$U'_i = \{y^1_i, y^2_i\}$, and

$C'_i = \{(l_1 \lor y^1_i \lor y^2_i), (l_1 \lor \neg y^1_i \lor y^2_i), (l_1 \lor y^1_i \lor \neg y^2_i), (l_1 \lor \neg y^1_i \lor \neg y^2_i)\}$,

where y^1_i and y^2_i are NEW variables (which are not in U, and not used in any other part of the construction).
If $c_i = (l_1 \lor l_2)$, then
\[U'_i = \{ y^1_i \}, \text{ and} \]
\[C'_i = \{(l_1 \lor l_2 \lor y^1_i), (l_1 \lor l_2 \lor \neg y^1_i)\}, \]
where y^1_i is NEW variable (which is not in U, and not used in any other part of the construction).

If $c_i = (l_1 \lor l_2 \lor l_3)$, then
\[U'_i = \emptyset, \text{ and} \]
\[C'_i = \{ c_i \}. \]

If $c_i = (l_1 \lor l_2 \lor \cdots \lor l_r)$, where $r \geq 4$, then
\[U'_i = \{ y^1_i, \cdots, y^{r-3}_i \}, \text{ and} \]
\[C'_i = \{(l_1 \lor l_2 \lor y^1_i), (\neg y^1_i \lor l_3 \lor y^2_i), \cdots, (\neg y^{r-4}_i \lor l_{r-2} \lor y^{r-3}_i), (\neg y^{r-3}_i \lor l_{r-1} \lor l_r)\}, \]
where y^1_i, \cdots, y^{r-3}_i are NEW variables (which are not in U, and not used in any other part of the construction).
Clearly the transformation can be done in polynomial time. We claim that C is satisfiable iff C' is satisfiable.

Suppose C is satisfiable. Fix a satisfying assignment of C. We give a corresponding satisfying assignment of C'.

Variables from U: same truth value as in the satisfying assignment of C'.

Other variables are given truth values as follows.

(a) $|c_i| \leq 3$: variables in U'_i are assigned arbitrary truth value (clauses in C'_i are already satisfied).

(b) $|c_i| > 3$:

Suppose $c_i = (l_1, l_2, \cdots, l_r)$. Let l_j be such that l_j is true in the satisfying assignment of C fixed above.

Then let $y_{i,k}^k$ be true for $1 \leq k \leq j - 2$, and $y_{i,k}^k$ be false for $j - 2 < k \leq r - 3$. It is easy to verify that all the clauses in C'_i are satisfied.
Now suppose C' is satisfiable. Fix a satisfying assignment of C'. Then we claim that the truth assignment of U' restricted to U must be a satisfying assignment for C. To see this suppose $c_i = (l_1 \lor \ldots \lor l_r)$.

(a) $r \leq 3$: then c_i is clearly true due to construction.

(b) $r > 3$:
If y_{i}^{r-3} is true, then one of l_{r-1}, l_r must be true.
If y_{i}^{1} is false, then one of l_1, l_2 must be true.
Otherwise pick a k such that y_{i}^{k} is true but y_{i}^{k+1} is false. (Note that there must exists such a k). Then l_{k+2} must be true.

Hence C is satisfiable iff C' is satisfiable. This completes the proof of 3SAT being NP-complete.
3 Dimensional Matching is **NP**-complete

3DM is in **NP**:
To see that 3DM is in **NP** consider the following machine M. Suppose three disjoint sets, X, Y, Z, each of size n, and $S \subseteq X \times Y \times Z$ are given as input to M. M first “guesses” a subset S' of S of size n. Then M accepts iff S' is a matching.
Clearly M witnesses that 3DM is in **NP**.

3DM is **NP**-hard:
We show that 3SAT $\leq_p 3DM$.
Let $U = \{u_1, \ldots, u_n\}$ be the set of variables and $C = \{c_1, \ldots, c_m\}$ be the set of clauses of an instance of 3SAT.
We construct an instance X, Y, Z, S of 3DM such that C is satisfiable iff S contains a matching.
Construction can be done in polynomial time.
Let $X = \{t_i[j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq m\} \cup \{f_i[j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq m\}$.

Let $Y = A \cup S_1 \cup G_1$, where

$A = \{a_i[j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq m\}$,

$S_1 = \{s_1[j] : 1 \leq j \leq m\}$, and

$G_1 = \{g_1[j] : 1 \leq j \leq m(n - 1)\}$.

Let $Z = B \cup S_2 \cup G_2$, where

$B = \{b_i[j] : 1 \leq i \leq n \text{ and } 1 \leq j \leq m\}$,

$S_2 = \{s_2[j] : 1 \leq j \leq m\}$, and

$G_2 = \{g_2[j] : 1 \leq j \leq m(n - 1)\}$.
Let $S = G \cup (\cup_{1 \leq j \leq m} E_j) \cup (\cup_{1 \leq i \leq n} V_i^1) \cup (\cup_{1 \leq i \leq n} V_i^2)$, where

$V_i^1 = \{(f_i[j], a_i[j], b_i[j]) : 1 \leq j \leq m\}$.

$V_i^2 = \{(t_i[j], a_i[j+1], b_i[j]) : 1 \leq j < m\} \cup \{(t_i[m], a_i[1], b_i[m])\}$.

$E_j = \{(t_i[j], s_1[j], s_2[j]) : u_i \text{ appears in } c_j\} \cup \{(f_i[j], s_1[j], s_2[j]) : \neg u_i \text{ appears in } c_j\}$.

$G = \{(t_i[j], g_1[k], g_2[k]), (f_i[j], g_1[k], g_2[k]) : 1 \leq i \leq n \text{ and } 1 \leq j \leq m \text{ and } 1 \leq k \leq m * (n - 1)\}$.

We will show later that S has a matching iff C is satisfiable.

Intuition: The set S contains three portions,

(1) $(\cup_{1 \leq i \leq n} V_i^1) \cup (\cup_{1 \leq i \leq n} V_i^2)$: truth assignment portion,

(2) $(\cup_{1 \leq j \leq m} E_j)$: satisfaction testing portion, and

(3) G: garbage collection portion.
Truth assignment Portion

Fix i. Note that if $S' \subset S$ “covers” all of $a_i[j], b_i[j], 1 \leq j \leq m$, exactly once then either

(a) S' contains all of V_i^1 and none of V_i^2 OR

(a) S' contains all of V_i^2 and none of V_i^1.

This can be considered as assigning a “truth” value to the variable u_i.

We used $t_i[1], \ldots, t_i[m]$ (and correspondingly $f_i[1], \ldots, f_i[m]$) instead of just using t_i, f_i to give “fan out” of m for the variable u_i, so that one can use different copies in different clauses (see below).

Satisfaction Testing Portion

Note that if $S' \subset S$ “covers” $s_1[j], s_2[j]$ exactly once then S' contains exactly one element from E_j. Intuitively, this gives us the literal in c_j which must be “TRUE”.
Garbage Collection Portion

The elements of G are essentially for garbage collection. Note that we had a fan out of m for each variable (giving us a total of $m \times n$ “truth items”). However only m instances of these are used in the Satisfaction testing component. Thus we need to do a garbage collection for remaining $m \times (n - 1)$ elements. This is what G is used for.
We now show that C is satisfiable iff S contains a matching. Suppose S has a matching S'. Then we claim that an assignment of u_i being true iff $V_i^1 \subseteq S'$ shows that C is satisfiable.

Suppose C is satisfiable. Fix a satisfying assignment $t : U \rightarrow \{T, F\}$. For each j, suppose C_j is true due to u_i being true (false). Let $w_j[j]$ denote $t_i[j]$ ($f_i[j]$ respectively).

The matching is formed by taking the following three subsets of S.

1. $\bigcup_{t(i) = T} V_i^1 \cup \bigcup_{t(i) = F} V_i^2$.
2. $\{(w_j[j], s_1[j], s_2[j]): 1 \leq j \leq m\}$.
3. G', where G' is an appropriate subset of G, such that all the elements of $\{t_i[j], f_i[j]: 1 \leq i \leq n$ and $1 \leq j \leq m\} - \{w_j[j]: 1 \leq j \leq m\}$ are covered (using each of $g_1[k], g_2[k], 1 \leq k \leq m(n - 1)$ exactly once).
Partition is \textbf{NP}-complete

In \textbf{NP}: Suppose a set A, and corresponding sizes $s(a)$ is given. To see that Partition is in \textbf{NP}, one just needs to guess a subset A' of A and verify that $\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$.

\textbf{NP}-hard: We show $3\text{DM} \leq_{p_m} ^{p} \text{Partition}$.
Suppose three disjoint sets X, Y, Z of size n each, and $S \subseteq X \times Y \times Z$ is an instance of 3DM.
We construct (in polynomial time) an instance of Partition by giving set A, and $s(a), a \in A$, such that S has a matching iff there exists a subset A' of A such that $\sum_{a \in A'} s(a) = \sum_{a \in A - A'} s(a)$.
Suppose $X = \{x_1, x_2, \ldots, x_n\}$, $Y = \{y_1, y_2, \ldots, y_n\}$, and $Z = \{z_1, z_2, \ldots, z_n\}$.
Suppose S has k elements m_1, m_2, \ldots, m_k.
Then A will have $k + 2$ elements, a_1, \ldots, a_{k+2}.
The elements a_1, \ldots, a_k will correspond to m_1, \ldots, m_k and a_{k+1}, a_{k+2} will be special elements.
If $m_i = (x_f(i), y_g(i), z_h(i))$, then
$s(a_i) = 2^{3pn-pf(i)} + 2^{2pn-pg(i)} + 2^{pn-ph(i)}$, where p is such that $2^p > k$. Intuitively one can consider the number $s(a_i)$ as being divided into $3n$ zones, each of p bits as follows.

The number $s(a_i)$ is formed by placing 1 at the rightmost bit corresponding to zones $x_f(i), y_g(i), z_h(i)$, and other bits being 0.
Important characteristic: on adding the sizes corresponding to any subset of \(\{a_1, \ldots, a_k\} \), there is no “carry over” from one zone to another as long as \(2^p > k \).

Thus if we let \(B = \sum_{0 \leq j \leq 3n-1} 2^{pj} \), (which is the number formed by placing 1 in the rightmost bit of each zone),
Then any subset \(A' \subseteq \{a_1, \ldots, a_k\} \) will satisfy
\[
\sum_{a \in A'} s(a) = B, \text{ iff } \{m_i : a_i \in A'\} \text{ is a matching of } S.
\]

Let \(s(a_{k+1}) = \lfloor 2 \times \sum_{1 \leq i \leq k} s(a_i) \rfloor - B \).
Let \(s(a_{k+2}) = \sum_{1 \leq i \leq k} s(a_i) + B \).
Note that the number of bits needed to specify \(s(a_{k+1}) \) and \(s(a_{k+2}) \) is a polynomial in \(k, n \).
Claim: there exists a subset $A' \subseteq A$ such that $\Sigma_{a \in A'} s(a) = \Sigma_{a \in A - A'} s(a)$ iff S has a matching.

Note that $\Sigma_{a \in A} s(a) = 4 \Sigma_{1 \leq i \leq k} s(a_i)$.

Suppose S has a matching S'.

Then clearly, $A' = \{a_i : m_i \in S'\} \cup \{a_{k+1}\}$, gives

$\Sigma_{a \in A'} s(a) = ([2 \Sigma_{1 \leq i \leq k} s(a_i)] - B) + B = 2 \Sigma_{1 \leq i \leq k} s(a_i) = \Sigma_{a \in A - A'} s(a)$

If there exists $A' \subseteq A$ such that

$\Sigma_{a \in A'} s(a) = 2 \Sigma_{1 \leq i \leq k} s(a_i)$,

then exactly one of a_{k+1} and a_{k+2} must be in A' (otherwise the sum will be $\geq 3 \Sigma_{1 \leq i \leq k} s(a_i)$).

Without loss of generality suppose that $a_{k+1} \in A'$.

Then $[\Sigma_{i \in A'} s(a_i)] - s(a_{k+1}) = B$.

Hence $\{m_i : a_i \in A' - \{a_{k+1}\}\}$ is a matching of S.

This shows that partition is NP-complete.
Multi Processor Scheduling is \textbf{NP}-complete

The multiprocessor scheduling problem is as follows:

\textbf{INSTANCE:} A finite set A of tasks, a length $l(a)$ for each $a \in A$, a number m of processors, and a deadline D.

A schedule $S = (A_1, A_2, \ldots, A_m)$ is a partition of A into pair-wise disjoint sets A_1, A_2, \ldots, A_m. Time taken by a schedule S, denoted $\text{Time}(S)$, is $\max \{ \sum_{a \in A_i} l(a) : 1 \leq i \leq m \}$.

\textbf{QUESTION:} Is there a schedule S such that $\text{Time}(S) \leq D$?

Clearly, Multiprocessor scheduling problem is in \textbf{NP} (one just needs to guess a schedule, S, and verify that $\text{Time}(S) \leq D$).

We reduce Partition to Multiprocessor schedule. Suppose a set A and size $s(a)$, for $a \in A$ is an instance of Partition problem.

Generate the instance of Multiprocessor scheduling as follows.
Let $B = \Sigma_{a \in A}s(a)$.

If B is odd then let $m = 1$, $A = \{a_1\}$, $l(a_1) = 5$, and $D = 2$.

If B is even, then generate an instance of Multiprocessor scheduling as follows:
m = 2.
l(a) = s(a).
D = B/2.

It is easy to verify that there exists a subset $A' \subseteq A$ such that $\Sigma_{a \in A}s(a) = \Sigma_{a \in A-A'}s(a) = B/2$ iff there exists a schedule such that $Time(S) \leq D = B/2$.