CS3233
Competitive Programming

Dr. Steven Halim
Week 12 – Harder Stuffs
Outline

• Mini Contest #10 (the last one) + Discussion + Break
• CLASS PHOTO!!
• Admins
• Last Lecture (let’s not get too ambitious):
 – Problem Decomposition (Section 8.2)
 – Meet in the Middle/Bidirectional Search
The harder ones
(you have seen some of these before; now, let’s demistify some of them)

Soft skills needed:
Ability to spot the individual components and break them apart!

This is based on what I know from ~ 1422 UVa problems

PROBLEM DECOMPOSITION
Problem Decomposition (1)

Binary Search the Answers + X

• We have seen this form earlier (Chapter 3.3)
• But the “X” component of this ‘classical’ combination can be “many thing”, not just simulation problem
• So far, I have seen that X can be:
 – Greedy algorithm: UVa 714, 11516
 – MCBM: UVa 10804, 11262
 – SSSP: UVa 10186
 – Max Flow: UVa 10983
• Tips to spot this type: If you guess the answer, will the problem turn into a True/False problem?
Problem Decomposition (2)
Involving DP 1D Range Sum/Max/Min

• This one can be easily decomposed

• Tips to spot this type:
 The problem ask you for **static range queries**
 – Especially the 1D one
 – Usually range sum, but can also be max/min queries, how?

• **Range Sum Query**: Pre-process the answers in O(n)
 – \(dp[0] = ans[0] \)
 – \(dp[i] = dp[i-1] + ans[i] \) \(\forall i \in [1..n-1] \)

• So that each **RSQ** can be answered in O(1)
 – \(rsq(i, j) = dp[j] \) if \(i == 0 \), or \(dp[j] - dp[i - 1] \) if \(j > 0 \)
Problem Decomposition (3)

SSSP/APSP/SCC contraction + DP/Something else

• Another ‘classical’ combination is to use shortest path (or SCC contraction) as one sub problem to transform the original problem into a shortest path table (or a DAG) and then pass this table (or DAG) to a DP/other solution
 – BFS/Dijkstra’s to build shortest path matrix → DP-TSP (UVa 10937, 10944, 10405, 11813, NOI 2011)
 – Run Dijkstra’s algorithm → build DAG from SP information → Counting paths on DAG (UVa 10917)
 – Run Floyd Warshall’s algorithm → do something else (UVa 1233, 10793, 11463)
 – Run Tarjan’s SCC algorithm to contract SCC → Longest Path in DAG (UVa 11324)

• Tips to spot this type: Shortest path (or SCC) is one of the component, but not the only one…
Problem Decomposition (4)

$X + Y$

- Here, X is the “main issue”
 - But that problem is written in Y flavour
- Tips to spot this type: Usually,
 - X is either: BFS, Complete Search, Binary Search, (mostly Chapter 3 stuffs), and
 - Y is either: Graph, Mathematics, or Geometry (mostly Chapter 4-5-7 stuffs)
- Example: UVa 11730
 - Actually a BFS (SSSP on unweighted graph) problem
 - But the graph is implicitly derived via Mathematical rules
Problem Decomposition (5)
Involving (Advanced) Data Structures/DS

• Tips to spot this type: If you got a problem “AC” but very slow (TLE)

• Consider the possibility that some operations in your algorithm can be optimized by using a better DS
 – This better DS are usually harder to implement though

• These DSes are usually:
 – Balanced BST: map/set, or the self-coded one due to the need to augment data
 – Binary Indexed (Fenwick) Tree
 – Segment Tree, etc
Problem Decomposition (6)

Three (or More?) Components

- UVa 1079 – A Careful Approach
 - http://uva.onlinejudge.org/external/10/1079.html
 - ACM ICPC World Finals 2009 problem

- Solution:
 - Complete Search + Binary Search the Answer + Greedy :O
Problem Decomposition (7)

• There are many other possible combinations...
• Note: If there are X basic types of contest problems...
 – There can be \(\binom{X}{2} \) possible pairs of combinations
 – And there can be \(\binom{X}{3} \) triples...
• You will get more familiar to spot the individual components as you master them
 – All the best
a.k.a. Bidirectional Search

MEET IN THE MIDDLE
UVa 11212 – Editing a Book
Rujia Liu’s Problem

• Given \(n \) equal-length paragraphs numbered from 1 to \(n \)
• Arrange them in the order of 1, 2, ..., \(n \)
• With the help of a clipboard,
you can press Ctrl-X (cut) and Ctrl-V (paste) several times
 – You cannot cut twice before pasting, but you can cut several contiguous paragraphs at the same time - they'll be pasted in order
• The question: What is the minimum number of steps required?
• Example 1: In order to make \{2, 4, (1), 5, 3, 6\} sorted,
you can cut 1 and paste it before 2 \(\Rightarrow \{1, 2, 4, 5, (3), 6\} \)
 then cut 3 and paste before 4 \(\Rightarrow \{1, 2, 3, 4, 5, 6\} \Rightarrow \text{done} \ \checkmark \)
• Example 2: In order to make \{(3, 4, 5), 1, 2\} sorted,
you can cut \{3, 4, 5\} and paste it after \{1, 2\} \(\Rightarrow \{1, 2, 3, 4, 5\} \ \checkmark \)
or cut \{1, 2\} and paste it before \{3, 4, 5\} \(\Rightarrow \{1, 2, 3, 4, 5\} \ \checkmark \)
Loose Upper Bound

• **Answer:** $k-1$
 – Where k is the number of paragraph in the wrong position

• **Trivial but wrong algorithm:**
 – Cut a paragraph that is in the wrong position
 – Paste that paragraph in the correct position
 – After $k-1$ such cut-paste, we will have a sorted paragraph
 • The last wrong position will be in the correct position at this stage
 – But this may not be the shortest way

• **Examples:**
 – $\{(3), 2, 1\} \rightarrow \{(2), 1, 3\} \rightarrow \{1, 2, 3\} \rightarrow 2$ steps
 – $\{(5), 4, 3, 2, 1\} \rightarrow \{(4), 3, 2, 1, 5\} \rightarrow \{(3), 2, 1, 4, 5\} \rightarrow \{(2), 1, 3, 4, 5\} \rightarrow \{1, 2, 3, 4, 5\} \rightarrow 4$ steps
The Actual Answers

• \{3, 2, 1\}
 – Answer: 2 steps, e.g.
 • \{(3), 2, 1\} → \{(2), 1, 3\} → \{1, 2, 3\}, or
 • \{3, 2, (1)\} → \{1, (3), 2\} → \{1, 2, 3\}

• \{5, 4, 3, 2, 1\}
 – Answer: Only 3 steps, e.g.
 • \{5, 4, (3, 2), 1\} → \{3, (2), 5\}, 4, 1\} → \{3, 4, (1, 2), 5\} → \{1, 2, 3, 4, 5\}

• How about \{5, 4, 9, 8, 7, 3, 2, 1, 6\}?
 – Answer: 4, but very hard to compute manually

• How about \{9, 8, 7, 6, 5, 4, 3, 2, 1\}?
 – Answer: 5, but very hard to compute manually
Some Analysis

• There are at most $n!$ permutations of paragraphs
 – With maximum $n = 9$, this is $9!$ or 362880
 – The number of vertices is not that big actually

• Given a permutation of length n (a vertex)
 – There are $\binom{n}{2}$ possible cutting points (index $i, j \in [1..n]$)
 – There are n possible pasting points (index $k \in [1..(n-(j-i+1))]$)
 – Therefore, for each vertex, there are about $O(n^3)$ branches

• The worst case behavior if we run single BFS on this search space graph: $O(V+E) = O(n! + n!*n^3) = O(n!*n^3)$
 – With $n = 9$, this is $9! * 9^3 = 264539520 \sim 265$ M, TLE (or maybe MLE...)

[All other details are hidden for NUS ACM ICPC/Singapore IOI teams only :)]

CS3233 - Competitive Programming,
Steven Halim, SoC, NUS
Actually we will still meet again next week for final contest :D

SOME PARTING WORDS
What You Have Been Exposed To
(as of Tonight, Wed 04 Apr 2012)

- Competitive Coding Style
- Extensive usage of libraries
- Bitmask
- BIT/FT
- Iterative BF Techniques: Subset, Permutation
- Recursive backtracking
- Some classical Greedy problems
- Binary Search the Answer
- The thinking process to get DP states and transitions
- Graph DS, Traversal: DFS/BFS, MST (briefly), SSSP: Dijkstra’s, Bellman Ford’s, APSP: Floyd Warshall’s
- Tarjan’s SCC algorithm

- More DP techniques
- Network Flow: Edmonds Karps’
- Bipartite Graph: MCBM++
- Mathematics-related problems: Log techniques, Big Integer, Prime Factor techniques, Modulo arithmetic
- Various string processing skills
- Suffix Tree/Array: String Matching, Longest Repeated Substring, Longest Common Substring
- Basic geometry routines
- Algorithms on polygon
- Problem decomposition
- Meet in the middle/bidirectional search
What You Have NOT Been Exposed To
(as of Tonight, Wed 04 Apr 2012)

• Many more cool and exotic algorithms out there :O
• Maybe read CP3 in the future 😊
• Or join NUS ACM ICPC trainings
• Or do self study